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Transfer RNAs (tRNAs) are a central component for the biological
synthesis of proteins, and they are among the most highly conserved
and frequently transcribed genes in all living things. Despite their
clear significance for fundamental cellular processes, the forces
governing tRNA evolution are poorly understood. We present evi-
dence that transcription-associated mutagenesis and strong purifying
selection are key determinants of patterns of sequence variation
within and surrounding tRNA genes in humans and diverse model
organisms. Remarkably, the mutation rate at broadly expressed
cytosolic tRNA loci is likely between 7 and 10 times greater than
the nuclear genome average. Furthermore, evolutionary analyses
provide strong evidence that tRNA genes, but not their flanking
sequences, experience strong purifying selection acting against this
elevated mutation rate. We also find a strong correlation between
tRNA expression levels and the mutation rates in their immediate
flanking regions, suggesting a simple method for estimating individ-
ual tRNA gene activity. Collectively, this study illuminates the extreme
competing forces in tRNA gene evolution and indicates that muta-
tions at tRNA loci contribute disproportionately to mutational load
and have unexplored fitness consequences in human populations.
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Transfer RNAs (tRNAs) are essential to protein synthesis
across all of life. Their primary function is in translation of

the genetic code into the corresponding amino acid sequences
that make up proteins. Thus, tRNA molecules are critical for
virtually all cellular processes, and the genes encoding tRNA
molecules have been highly conserved over evolutionary time (1,
2). Mitochondrial tRNAs have been the subject of many studies,
as mutations in these genes lead to a large number of maternally
inherited genetic diseases (3). However, eukaryotic genomes
contain ∼10- to 20-fold as many tRNA genes encoded in their
nuclear chromosomes, which are required for cytosolic protein
translation (2, 4). Despite their importance to the cell, there has
been little study of evolutionary conservation or pathogenic
mutations in cytosolic tRNA genes (5, 6). tRNAs are required in
exceptionally large quantities, and therefore tRNA genes may
experience greater levels of transcription than even the most
highly transcribed protein-coding genes (7, 8). In turn, this may
lead to high levels of transcription-associated mutagenesis (TAM).
As the largest, most ubiquitous RNA gene family, cytosolic tRNAs
constitute an ideal gene set for studying the interplay between
natural selection and elevated mutation rates.
Transcription affects the mutation rates of transcribed genes (9)

through the unwinding and separation of cDNA strands (10).
During transcription, a nascent RNA strand forms a hybrid DNA–
RNA complex with a template DNA strand. While the comple-
mentary tract of nontemplate DNA is temporarily isolated, it is
chemically reactive and thus accessible by potential mutagens (10).
Transcription can lead to the formation of noncanonical DNA
structures, which can hinder repair pathways and promote errors by
the polymerase (11). The RNA strand can also reanneal to the tem-
plate DNA strand, prolonging isolation and increasing vulnerability to
mutations (12, 13). Furthermore, if transcription and DNA repli-
cation occur concomitantly at a particular locus, collisions between

RNA polymerase and the DNA replication fork may also damage
DNA (9, 11, 14). In human cancer cells, increased transcription and
replication induce torsional stress and collisions (11).
Several cellular agents have also been shown to cause damage in

highly expressed genes (15). Among the most notable sources of
mutation associated with transcription is activation-induced cyti-
dine deaminase (AID) (16). AID accompanies RNA polymerase
II and deaminates cytosine nucleotides. To resolve the resulting
base-pair mismatch, the opposing guanine is converted to adenine
and uracil to thymine, resulting in excess C→T mutations on the
nontemplate strand and excess G→A mutations on the template
strand (9, 17). AID is a member of the APOBEC (apolipoprotein
B mRNA editing catalytic polypeptide-like) gene family, many of
which are involved in double-stranded break repair in transcription
(9). Some members of the APOBEC family act strongly at short
genes, suggesting increased activity at tRNA loci (18, 19). For
example, APOBEC3B causes 1,000-fold more DNA damage at
tRNA loci than at other genomic regions in yeast (19). AID also
acts on highly transcribed genes in immune B cells, causing tran-
sition mutations and double-stranded breaks (9). Due to the strong
association of the APOBEC family with transcription, relative
excesses of C→T and G→Amutations are a signature of TAM (9).
To conserve mature tRNA sequence identity in the presence of

an elevated mutation rate, tRNA genes should experience strong
purifying selection. tRNA transcription requires sequence-specific
binding of transcription factors to the internal box A and box B
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promoter elements (20). Once transcribed, precursor tRNAs must
fold properly to undergo maturation, which can be disrupted by
sequence-altering mutations. The unique structure of tRNAs
dictates processing by RNases, addition of modifications, accurate
recognition by aminoacyl tRNA synthetases, incorporation into
the translating ribosome, and accurate positioning of the antico-
don relative to mRNA codons (21, 22). Because of the need to
maintain sequence specificity, DNAs encoding the mature por-
tions of tRNAs are well conserved (21). Therefore, we expect that
a large proportion of mutations arising in tRNA genes will be
deleterious and will quickly be purged by natural selection.
While most human tRNA genes do not have external promoters

(20, 21), tRNA transcripts include leader and trailer sequences
extending roughly two to five nucleotides upstream and 5–15 nu-
cleotides downstream of the annotated mature tRNA gene, based
on the position of the genomically encoded poly(T) transcription
termination sequence. Aside from the termination sequence, these
flanking sequences appear to have limited sequence-specific
functionality in most cases (23–26). Very early in maturation, all
tRNA flanking sequences are removed by RNase P (22–24) and
RNase Z (22, 27). Because these flanking genomic sequences are
frequently unwound and therefore vulnerable to TAM, we expect
that these regions will experience mutation rates similar to those
of tRNAs. Whereas tRNA genes should experience purifying se-
lection, the flanking regions should be neutral or under weak se-
lection. Here we investigate the patterns of conservation, divergence,
and within-species variation of cytosolic tRNAs in humans and other
model organisms to elucidate the forces shaping the evolution of this
essential RNA gene family.

Results and Discussion
Flanking Regions of tRNA Genes Are Highly Variable Despite Strong
Conservation of Mature tRNA Sequences. To estimate evolutionary
conservation, we examined PhyloP, which measures the conser-
vation of each human genomic position across 100 vertebrate
species (28), by position within each tRNA locus (Methods).
Positive PhyloP scores indicate strong conservation, and negative
scores indicate accelerated evolution. To study the effects of
evolution on a shorter timescale, we also estimated sequence di-
vergence between human and Macaca mulatta at each tRNA lo-
cus. Mature tRNA sequences are highly conserved across all
positions, based on both average PhyloP score (Fig. 1A and
Dataset S1) (28) and M. mulatta alignment (Fig. 1B). However,
the inner 5′ flanking region (20 bases upstream of the tRNA; see
Methods) is roughly four times more divergent than the untran-
scribed reference regions. We also find increased rates of di-
vergence in the inner 3′ flanking region, which is roughly three
times more divergent than the reference regions (Fig. 1B). Both
the outer 5′ flank (21–40 bases upstream of the tRNA) and the
outer 3′ flank (11–40 bases downstream of the tRNA) are also
roughly 1.5 times more divergent than the reference regions. For
tRNAs that contain introns (2), we find that intronic variation
correlates with flanking variation (SI Appendix, Fig. S1). Fur-
thermore, intergenic regions within clusters of active tRNAs show
similar patterns in their PhyloP scores (SI Appendix, Fig. S2).
We also studied population-level variation at low-frequency

SNPs (minor allele frequency <0.05) for each tRNA locus. Low-
frequency SNPs are evolutionarily young and are less affected by
selection (29). Consistent with our divergence analyses, we find that
low-frequency SNPs are more common across both the tRNA gene
sequence and flanking regions than in untranscribed reference re-
gions (Fig. 1C). Although the inner flanking regions are most
polymorphic, the mature tRNA sequences have about twice as
many low-frequency SNPs as reference regions. Overall, our results
are consistent on multiple timescales, indicating that tRNAs and
flanking sequences are prone to mutation. Indeed, of the 247 sites
in the genome that have the lowest possible PhyloP scores, −20 (28,
30), 14 are 10–15 bases upstream of the start of an active tRNA gene,

indicating disproportionate enrichment (hypergeometric test, P <
1.65e-48) and that tRNA flanking regions are among the least con-
served in the genome. Nonetheless, mature tRNA gene sequences
are strongly conserved by purifying selection, which purges mutations.

Transcription Is Correlated with Variation in tRNA and Flanking
Regions. We hypothesized that, if transcription-associated muta-
genesis drives variation among tRNA loci, highly active tRNA genes
would show the greatest mutation rates. Because tRNA transcript
abundance measures are often not attributable to individual loci due
to identical gene copies and difficulty sequencing full-length tRNAs,
we estimated relative transcriptional activity based on chromatin
state data from the Epigenomic Roadmap Project (31). Based on
these data, we classified human tRNA genes as “active” if they are
located in expressed regions in several cell lines and otherwise as
“inactive” (Methods and Fig. 2). In some cases, multiple cell lines
correspond to a single tissue or organ, so tissue-specific tRNAs [e.g.,
the brain-specific arginine tRNA in mouse (6)] are considered active.
We find that active tRNA genes are significantly more con-

served than inactive tRNA loci (Mann–Whitney U test, P < 8.40e-
53), and the flanking regions of active tRNAs are significantly
more divergent than the flanking regions of inactive tRNAs (P <
7.98e-61). The peak measure of divergence between human and
M. mulatta tRNA genes in the inner 5′ flanking regions is roughly
five times greater in active tRNAs than in inactive tRNAs (Fig. 2 E
and F). Active tRNAs in human populations also have significantly
more low-frequency SNPs per site than inactive tRNAs across the
entire locus, including the tRNA and flanking regions (P < 3.72e-
36) (SI Appendix, Fig. S3). Inactive tRNAs are still significantly
more conserved (P < 2.02e-12) and polymorphic (P < 0.007) than
the untranscribed reference regions, and their flanks are signifi-
cantly more divergent than the reference regions (P < 1.36e-16).
That the peak in both divergence and polymorphism in all species

is consistently 12–15 nucleotides upstream of the mature tRNA
sequence is curious. At the most divergent position, 55% of all
tRNA loci differ between human and M. mulatta, and 15% of hu-
man tRNA loci have a low-frequency SNP (Fig. 1). Furthermore,
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Fig. 1. There is a strong pattern of variation in regions flanking human tRNA
genes by three measures: relative to vertebrates, by comparison with Rhesus
macaque alone, and within the human population. (A) The average PhyloP
score (comparing humans to 100 vertebrate species) is plotted for each position
within the tRNA and flanking region across all human tRNAs. (B) Divergence
between the human and M. mulatta tRNA genes and their flanking regions.
(C) Frequency of low-frequency SNPs (minor allele frequency ≤0.05) across all
human tRNAs. The acceptor stem (gray), D-stem (red), anticodon stem (green),
and T-stem (blue) are highlighted within the tRNA both in the linear plots and
in the 2D structure legend to the right (2, 61). Nucleotide numbering below the
plots is relative to mature tRNA boundaries, with inner and outer flanks de-
marcated by a shift in mutation rate (Methods). Dotted lines surrounding plots
depict 95% CIs calculated by nonparametric bootstrapping by tRNA loci.
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virtually all active tRNA loci differ at this nucleotide between
human andM. mulatta, and 25% have a low-frequency SNP at this
site (SI Appendix, Fig. S3B). This implies that this region either
does not face uniform selective pressures or is not uniformly vul-
nerable to TAM. While distant flanking sequences can affect
tRNA expression in yeast (32), few studies have shown that
flanking regions affect expression in higher eukaryotes (33).
Transcription initiation is long relative to elongation (34, 35),
which may lead to prolonged isolation of the nontemplate DNA
strand at the initiation site and increased vulnerability to TAM. A
poised initiation complex might also increase the likelihood of
collisions between Pol3 and the replication fork (14). Thus, fre-
quent initiation at highly transcribed tRNA loci may contribute to
the nonuniform pattern of variation.
This may also explain the increased variation in the outer 3′

flank relative to the outer 5′ flank, as positioning of downstream
transcription termination sites varies among tRNA genes (2, 36),
whereas transcription start site positions are more consistent.
While most tRNAs do not have clear TATA boxes, the TATA-
binding protein (TBP) still binds to the DNA duplex ∼25 nucle-
otides upstream of the tRNA (37), which coincides with a de-
crease in variability. Furthermore, while both flanking regions for
many other Pol3-transcribed genes are divergent, the 5′ flanking
regions are generally more divergent than the 3′ flanking regions,
suggesting that the underlying mechanism is not tRNA-specific
(Dataset S1). However, additional studies are necessary to sup-
port the assertion that this pattern is due to transcription.
Two orthogonal analyses strengthen the observed correlations

between gene expression and variation at tRNA loci. First, we find
a significant correlation between the TBP intensity peaks (38–40)
and conservation of the mature tRNA sequence (Spearman’s
rho = 0.64, P < 2.2e-16) across all human tRNAs and the opposite
relationship in the flanking regions (Spearman’s rho = −0.64, P <
2.2e-16) (Fig. 2). TBP ChIP-sequencing (ChIP-seq) data directly
reflect transcriptional activity for each locus, as its occupancy is
significantly correlated with and required for transcription (20,
41–45). Second, mature tRNA sequence read counts are strongly
correlated with tRNA conservation (Spearman’s rho = 0.18, P <
0.001) and flanking region divergence (Spearman’s rho = −0.61,
P < 2.2e-16) (Fig. 2 and SI Appendix, Fig. S4). These read counts
were collected from a single HEK cell line by Zheng et al. (46)

using DM-tRNA-seq, a specialized tRNA-sequencing method.
These correlations are consistent with the idea that more highly
transcribed tRNAs vary more in their flanking regions.

Patterns of Divergence and Conservation Can Be Leveraged to Predict
tRNA Gene Expression. Regardless of how tRNA expression is
measured, we find highly significant correlations between gene ex-
pression and tRNA sequence conservation. The consistency of these
correlations across methods of measurement and across species
indicates that it may be possible to predict relative tRNA with DNA
sequence conservation patterns and other correlates of tRNA
transcriptional activity (e.g., tRNAscan-SE bit scores). Indeed, active
and inactive tRNAs are largely distinguishable using only flank and
gene PhyloP data (SI Appendix, Fig. S5). As sequencing technology
becomes more accessible, predicting tRNA gene-expression levels
through analysis of DNA data is enticing. Such a model could make
future tRNA gene annotation more detailed and cost-effective.

Variation Patterns Observed at tRNAs Are Not Observed in Most
Other Gene Families. Applicability of this proposed tool is likely
best suited for tRNAs, other Pol3 genes, and unique classes of
highly expressed protein-coding genes such as histones. Among
the histone protein-coding genes less than 1,000 nucleotides in
length, the average PhyloP score per nucleotide across the cod-
ing sequence and flanking regions is 3.449 and −2.052, re-
spectively, comparable to tRNA loci (SI Appendix, Fig. S6). In
contrast, most genes transcribed by RNA Pol2 do not appear to
be good targets (Dataset S1). For example, ribosomal proteins
are very highly transcribed (47) and have well-conserved exons,
but their introns and flanking regions are not as divergent as
tRNA flanking regions (28, 48). tRNAs are likely ideal for
studying TAM because they have predictable transcript start and
end sites, internal promoters, and high transcription rates.

Patterns of Low-Frequency SNPs Are Consistent with TAM. In TAM,
repair pathways activated in response to deaminations lead to excess
conversions between guanine and adenine and between thymine and
cytosine on the coding strand (9, 17). Across all tRNA loci, we found
that the most common low-frequency SNPs are C→T and G→A and
that these mutations are significantly more common in both tRNA
genes and flanking regions than in untranscribed reference regions
(Fisher’s exact test, P < 0.05 for all comparisons) (Fig. 3). Removal
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H

B

D Fig. 2. tRNA expression is significantly correlated to
both tRNA conservation and flanking region di-
vergence. (A and B) TBP peak value (expression) is
plotted versus PhyloP score (conservation) for each
mature tRNA (A) and adjacent inner 5′ flanking re-
gion (B). (C and D) Log of the HEK293T cell DM-tRNA-
seq read count (expression) (46) is plotted versus
PhyloP score (conservation) for each gene encoding a
unique mature tRNA sequence (C) and the corre-
sponding inner 5′ flanking region (D). Both TBP oc-
cupancy and transcript abundance are greater for
highly conserved mature tRNA loci (A and C) and
those with the most divergent flanks (B and D). (E
and F) Plotted as in Fig. 1, human tRNA loci that are
separated into active (E) versus inactive (F) groups
show the characteristic differences seen in A–D. (G
and H) Mouse tRNA loci split into active (G) versus
inactive (H) groups show a pattern strikingly similar
to that seen in human (A–F).
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of CpG sites (49) does not significantly affect these results. The
relative excesses of these SNPs are much more pronounced in active
tRNA loci than in inactive tRNA loci (SI Appendix, Fig. S7 A and B).
These results suggest that deamination of the noncoding strand due
to TAM and the DNA repair mechanisms acting in response to
deamination is especially common at these loci (9, 17, 19).
It is difficult to discern whether this increased prevalence is

due to TAM or selection to preserve the structural integrity of
the tRNA. To preserve tRNA secondary structure, we expect
transition mutations (e.g., A–U to G–U base pairs, C–G to U–G
base pairs) to be more common than transversions, as they
should disrupt stem helices less often. However, the mutational
skew expected of regions affected by TAM is stronger in regions
flanking tRNAs. Transcription initiation is relatively long com-
pared with elongation (34, 35), which might contribute to in-
creased mutagenesis by APOBEC enzymes or more collisions
(14) or double-stranded breaks. However, divergence at tRNA
flanking regions is correlated with divergence at introns in both
human (Spearman’s rank, rho = 0.734, P < 5.58e-6) (SI Appen-
dix, Fig. S1B) and mouse (rho = 0.733, P < 5.24e-4) (SI Appendix,
Fig. S1D), indicating similar mutation rates across tRNA loci.
Our results therefore suggest that TAM drives the excess of
transitions among low-frequency SNPs across tRNA loci.

tRNA Flanking Region Variation in Other Model Organisms Is Consistent
with Variation Observed in Humans. To confirm that our results are
not restricted to humans, we also analyzed tRNAs inMus musculus,
Drosophila melanogaster, and Arabidopsis thaliana. We find similar
patterns of sequence conservation of tRNA loci in each when
measuring PhyloP or divergence to outgroups (SI Appendix, Fig.
S8). The 5′ flanks are consistently more divergent than the 3′ flanks,
and the most divergent sites are roughly 10–15 bases upstream of

the tRNA in all species. We also used ChIP data across nine mouse
tissues to classify mouse tRNAs based on their expression (50).
Active mouse tRNAs are more strongly conserved than their in-
active counterparts (Mann–Whitney U test, P < 1.81e-19), and their
flanks are more divergent (P < 7.04e-22) (Fig. 2 G and H), con-
sistent with our results from the human data (Fig. 2 E and F). Active
mouse tRNAs also have more low-frequency SNPs in their flanking
regions than inactive mouse tRNAs (P < 2.23e-4) (SI Appendix, Fig.
S9). Such consistency suggests that a shared underlying molecular
mechanism drives these patterns of sequence variation.
Low-frequency SNPs in the tRNA gene sequences also follow

qualitative patterns similar to those in the human data. We ob-
serve excess transitions in all species studied (SI Appendix, Fig.
S10), and active mouse tRNAs show a greater excess of low-
frequency transitions than do inactive mouse tRNAs (SI Appen-
dix, Fig. S7 C and D). However, these patterns vary across species
(Fig. 4 B–D). For example, in mouse, tRNA genes have more low-
frequency SNPs than the untranscribed reference regions (Fig.
4B), but the opposite is true in D. melanogaster (Fig. 4D). Low-
frequency SNPs are thought not to be strongly affected by selec-
tion (29), but selection is more efficient in species with greater
effective populations sizes (Fig. 4A). Effective population size
(51–54) and tRNA copy number vary across species, and be-
cause the sample sizes and data quality differ among population
samples, these differences may be attributable to differences
in the impact of selection or in ascertainment of low-frequency
variation.

Functional tRNA Sequences Experience Strong Purifying Selection in All
Species Studied. Our analysis of the distribution of fitness effects
(DFE) of deleterious mutations demonstrates that tRNAs evolve
under strong purifying selection in all analyzed species. In contrast,
regions flanking tRNAs are inferred to be either neutral or subject
to weak selection (NeS <10, where Ne is the effective population size
and S is the strength of selection) (Fig. 4A). Our estimates of the
proportions of new mutations falling into each NeS range of the
DFE for tRNAs indicate far fewer nearly neutral mutations
(NeS <1) and substantially more strongly deleterious mutations
(NeS >100) in D. melanogaster and A. thaliana than in the human or
mouse populations (Fig. 4A). Given that estimates of effective
population size in humans (7,000) ( 51) and mouse (25,000–
120,000) (52) are substantially lower than in A. thaliana
(300,000) (53) and D. melanogaster (>1,000,000) (54), this dif-
ference in strength of selection may partially reflect differences
in effective population size and might explain the differences in
low-frequency SNPs in tRNA loci across species (Fig. 4 B–D).
In turn, this might indicate that the strength of purifying se-
lection, independent of effective population size, at tRNA loci
is consistent across diverse species.
The strength of selection across species may also reflect the

number of unique tRNA gene sequences in each genome. For
example, roughly half of all human tRNA genes have unique se-
quences, but the majority ofD. melanogaster tRNAs have identical
copies (2). tRNAs with the same anticodon but different sequences
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may have different functions, and this may affect strength of se-
lection at each locus as well. Indeed, a significantly greater pro-
portion of sites are invariant (Fisher’s exact test, P < 7.50e-5) and
fewer sites are divergent (P < 3.85e-8) in active single-copy human
tRNA genes than in active multicopy human tRNA genes. We
observe the same patterns in the inner 5′ (P < 5.87e-5; P < 0.025)
and inner 3′ (P < 8.90e-5; P < 4.04e-4) flanks of active tRNA
genes, suggesting increased transcription of active multicopy
tRNA genes. However, few SNP data are available for multicopy
tRNAs compared with single-copy tRNAs, limiting our ability to
identify consistent differences among tRNA subgroups.

tRNA Loci Contribute Disproportionately to Mutational Load. Our
discovery of a highly elevated mutation rate at tRNA loci suggests
that tRNA genes may contribute disproportionately to mutational
load, the reduction in individual fitness due to deleterious muta-
tions (55, 56). To estimate the relative mutation rates at active
tRNA loci, we calculated the average ratios of θ for the inner 3′ and
5′ flanking regions of active human tRNA genes to the untran-
scribed reference regions using the approach of Messer (Methods)
(29). We estimate θ in the flanking regions instead of the tRNAs
because strong selection can cause underestimation of θ (29), and
our results indicate that active human tRNAs are subject to strong
selection while the flanking regions are likely selectively neutral
(Fig. 4A). We therefore estimate that the mutation rate is between
7.24 (inner 3′; 95% CI 7.12–7.33) and 10.36 (inner 5′; 95% CI
10.16–10.41) times greater at tRNA loci than the genome-wide
average. Given that there are 25,852 base pairs of active human
tRNA sequence, and using 1.45e-8 as the genome-wide mutation
rate (57), we estimate that U (the genome-wide rate of deleterious
mutation per diploid genome) contributed by tRNAs is be-
tween 0.0054 and 0.0078. Since active tRNAs make up only
0.0009% of the human genome (2), this implies that mutations
in tRNAs contribute disproportionately to mutational load.
Our findings highlight that mutations at tRNA loci are likely
an important source of fitness and disease variation in human
populations.

Conclusions
Our findings demonstrate that the exceptional transcription rates
of tRNA genes cause a similarly substantial increase in mutation
rates through TAM. Our results are consistent across a broad
range of taxonomically diverse species, indicating that elevated
mutation rates due to TAM and strong purifying selection are
widespread and may be a good predictor of relative tRNA gene
transcription levels. The conflict between extreme TAM and
consequent strong purifying selection at tRNA loci is potentially
an unappreciated source of genetic disease and may have a pro-
found impact on human fitness that is yet to be fully addressed.

Materials and Methods
Defining tRNA Loci and Flanking Regions. We used tRNA coordinates from
GtRNAdb (2) for the human, M. musculus, D. melanogaster, and A. thaliana
genomes. For each species, we defined untranscribed reference regions
by searching 10 kilobases upstream of each tRNA and selecting a 200-
nucleotide tract. If this tract was within a highly transcribed region of the
genome [based on genome-wide ChIP data (31)], overlapped a conserved
element [defined as a region with a phastCons log odds score greater than
0 (28)], was within 1,000 nucleotides of a known gene (48), or overlapped a
reference region assigned to another tRNA, we selected a different tract
1,000 bases further upstream and repeated the selection until we found an
acceptable region. For the mouse genome, we checked known genes, pre-
viously assigned reference regions, and conserved elements. For the D.
melanogaster and A. thaliana genomes, we began our searches only 1,000
bases upstream of each tRNA and searched for 200-nucleotide tracts that
were at least 100 nucleotides away from any annotated genetic element (58,
59) due to the high functional densities of these species’ genomes.

For each tRNA in all species, we defined the inner 5′ flank as the 20 bases
immediately upstream of the 5′ end of the tRNA gene on the coding strand and
the outer 5′ flank as the 20 bases directly upstream of the inner 5′ flank. The

inner 3′ flank refers to the 10 bases downstream of the tRNA gene, and the
outer 3′ flank refers to the 30 bases downstream of these 10 bases. We
made these decisions based on inflection points in our data, as the flanking
regions up to 20 bases upstream and 10 bases downstream of tRNA genes
have less variation. Transcription usually ends about 10 bases downstream
of tRNA genes (36).

Classifying tRNAs Based on Breadth of Expression. The Roadmap Epigenomics
Consortium compiled genome-wide epigenomic data across 127 human
tissues and cell lines to characterize the chromatin state across the genome
(31). We analyzed the regions surrounding each tRNA in each epigenome
sample and used clustering to classify each genomic region according to its
most common epigenomic state. We classified all human tRNAs based on the
epigenomic state annotation in the genome. In the corresponding model,
regions in state 1 are likely to be transcribed. The 342 tRNAs in state 1 in at
least 4 of the 127 tissues analyzed are active tRNAs, and we consider the
remaining 254 tRNAs to be inactive. To classify mouse tRNAs, we used a 15-
state Hidden Markov Model based on ChIP data in which states 5 and 7
corresponded to regions near active promoters (50). We considered the 272
tRNAs in genomic regions annotated as state 5 or 7 in at least 3% of tissues
as active and the remaining 188 tRNAs as inactive.

Aligning tRNAs.We aligned all tRNAs across all species using covariance models
(60) and assigned coordinates to each position in each tRNA and flank based
on the Sprinzl numbering system (61). We averaged the PhyloP, divergence,
and low-frequency SNP data for all sites assigned to the same Sprinzl co-
ordinate for their respective tRNA loci. Because some tRNAs have variations in
structure (2), this alignment was necessary for positionwise comparisons be-
tween tRNAs. We filtered tRNAs with fewer than 50 aligned bases from our
analyses. If a conserved element (regions with a phastCons log odds score
greater than 0; ref. 28) was present 4–10 bases up- or downstream of a
tRNA, the tRNA was excluded from our analyses, as these regions might
contribute to the secondary structure of mature tRNAs and be subject to
anomalous levels of selection. We also excluded nuclear-encoded mito-
chondrial tRNA genes.

Parsing Variation Data. We analyzed human variation data from the African
superpopulation of 661 humans from phase 3 of the 1000 Genomes Project
(62). We acquired D. melanogaster variation data for the Siavonga, Zambia
populations from the Drosophila Genome Nexus Database (58, 59). We
obtained M. musculus and A. thaliana data from Waterston et al. (63) and
the Arabidopsis Genome Initiative (64), respectively. All nonhuman data
were aligned and genotypes curated as described in ref. 65.

Within each gene, flank, or reference region, we considered positions with
minor allele frequencies between 0 and 0.05 to be low-frequency SNPs.We also
determined the frequency each class of mutations (e.g., A→G) within each
region of each tRNA locus where the identity of each base is defined according
to the coding strand sequence. We found the frequency of divergences and
low-frequency SNPs by position across all tRNAs and flanking regions. For
conservation studies across multiple species, we used the PhyloP track (28)
from the University of California, Santa Cruz (UCSC) Genome Browser (48) and
calculated the average score for each position within the tRNAs and flanking
regions. No PhyloP data were available for A. thaliana (28). For direct com-
parisons between the species of interest and an outgroup, we used the Multiz
track from the UCSC Table Browser (66) and the Stitch MAFs tool from Galaxy
(67) to create sequence alignments. Details are available in SI Appendix.

Transcription Factor Binding. The ENCODE Project Consortium used ChIP-seq data
to identify binding regions for regulatory factors (38–40) including the TBP and
Pol3 transcription factors in the human genome (20). These data were taken
from the UCSC Genome Browser (48). The intensity of a given peak correlates
with a greater frequency of transcription factor binding to that region. For
each human tRNA, we found the strongest TBP peak in the 50 base pairs
immediately upstream of the tRNA across the GM12878, H1-hESC, HeLa-S3,
HepG2, and K562 cell lines. We also calculated the average PhyloP score
across the flanking regions for each tRNA (28) and used Spearman’s rank
correlation test on these data.

Correlating Variation to Cell-Line Read Counts. Zheng et al. (46) used deme-
thylation sequencing to detect tRNAs within HEK293T cells (46, 68). We used
Spearman’s rank correlation tests to correlate mature tRNA transcript read
counts and tRNA and flanking region conservation. Because Zheng et al.
(46) sequenced mature tRNAs, which are often encoded by multiple genes,
we excluded identical genes to control for the correlation between gene
copy number and overall expression (Fig. 2 C and D and refs. 32 and 46).
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Separately, we summed the average PhyloP scores at these loci and corre-
lated the summed scores to total tRNA read counts (SI Appendix, Fig. S4).

Estimating the Distribution of Fitness Effects. We estimated the DFE for each
species using the method of Keightley et al. (69) and the DFE-α software. See
SI Appendix for details.

Estimating the Mutation Rate in Active tRNA Genes. We used the equation
θ(k) = kGk (defined in ref. 29) to estimate the mutation rate at active tRNA
loci. We calculated the ratios of θ in active tRNA flanking regions to θ in the

reference regions for k = 1,2,3 and bootstrapped by tRNA loci to calculate
95% CIs. See SI Appendix for more details.
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