L T

/

1\

=y

Check for
updates

Convolutional neural networks automate detection
for tracking of submicron-scale particles in 2D and 3D
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Particle tracking is a powerful biophysical tool that requires con-
version of large video files into position time series, i.e., traces of
the species of interest for data analysis. Current tracking meth-
ods, based on a limited set of input parameters to identify bright
objects, are ill-equipped to handle the spectrum of spatiotemporal
heterogeneity and poor signal-to-noise ratios typically presented
by submicron species in complex biological environments. Exten-
sive user involvement is frequently necessary to optimize and exe-
cute tracking methods, which is not only inefficient but introduces
user bias. To develop a fully automated tracking method, we
developed a convolutional neural network for particle localiza-
tion from image data, comprising over 6,000 parameters, and used
machine learning techniques to train the network on a diverse
portfolio of video conditions. The neural network tracker pro-
vides unprecedented automation and accuracy, with exceptionally
low false positive and false negative rates on both 2D and 3D
simulated videos and 2D experimental videos of difficult-to-track
species.

particle tracking | machine learning | artificial neural network |
bioimaging | quantitative biology

I n particle tracking experiments, high-fidelity tracking of
an ensemble of species recorded by high-resolution video
microscopy can reveal critical information about species trans-
port within cells or mechanical and structural properties of
the surrounding environment. For instance, particle tracking
has been extensively used to measure the real-time penetration
of pathogens across physiological barriers (1, 2), to facilitate
the development of nanoparticle systems for transmucosal drug
delivery (3, 4), to explore dynamics and organization of domains
of chromosomal DNA in the nucleus of living cells (5, 6), and to
characterize the microscale and mesoscale rheology of complex
fluids via engineered probes (7-18).

There has been significant progress toward the goal of fully
automated tracking, and dozens of methods are currently avail-
able that can automatically process videos, given a predefined
set of adjustable parameters (19, 20). The extraction of individ-
ual traces from raw videos is generally divided into two steps:
(i) identifying the precise locations of particle centers from each
frame of the video and (if) linking these particle centers across
sequential frames into tracks or paths. Previous methods for par-
ticle tracking have focused more on the linking portion of the
particle tracking problem. Much less progress had been made on
localization, in part because of the prevailing view that linking
is more crucial, having the potential to correctly pick the true
positives from a large set of localizations that may contain a siz-
able fraction of false positives. In this paper, we primarily focus
on localization instead of linking. We present a particle track-
ing algorithm, constructed from a neural network localization
algorithm and one of the simplest known linking algorithms,
slightly modified from its most common implementation.

The primary novelty of our method is automation and accu-
racy. Even though many particle tracking methods have been
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developed that can automatically process videos, when pre-
sented with videos containing spatiotemporal heterogeneity (Fig.
1) such as variable background intensity, photobleaching, or
low signal-to-noise ratio (SNR), the set of parameters used
by a given method must be optimized for each set of video
conditions, or even each video, which is highly subjective in
the absence of ground truth. Parameter optimization is time-
consuming and requires substantial user guidance. Furthermore,
when applied to experimental videos, user input is still fre-
quently needed to remove phantom traces (false positives) or
add missing traces (false negatives) (SI Appendix, Fig. S1 A and
B) Thus, instead of providing full automation, current software
is perhaps better characterized as facilitating supervised par-
ticle tracking, requiring substantial human interaction that is
time-consuming and costly. More importantly, the results can be
highly variable, even for the same input video (see SI Appendix,
Fig. S1 C-E).

A major difficulty for optimizing tracking methods for spe-
cific experimental conditions is access to “ground truth,” which
can be highly subjective and labor intensive to obtain. One
approach for applying a tracking method to experimental videos
is to tune parameter values by hand, while qualitatively assess-
ing error across a range of videos. This procedure is laborious
and subjective. A better approach, using quantitative optimiza-
tion, is to generate simulated videos—for which ground truth is
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Fig. 1. Sample frames from experimental videos, highlighting some of the challenging conditions for particle tracking. (Left to Right) Fifty-nanometer
particles captured at low SNR and 200-nm particles with diffraction disc patterns, variable background intensity, and ellipsoid PSF shapes from 1—2 um

Salmonella.

known—that match, as closely as possible, the observed exper-
imental conditions. Then, a given tracking method suitable for
those conditions can be applied to the simulated videos, and the
error can be quantitatively assessed. By quantifying the tracking
error, the parameters in the tracking method can be system-
atically optimized to minimize the tracking error over a large
number of videos. Finally, once the parameters have been opti-
mized on simulated data, the same parameters can be used (after
fine-tuning parameters and adding or removing traces to ensure
accuracy) to analyze experimental videos.

To overcome the need to optimize parameters for each video
condition, we take the aforementioned methodology to the next
logical step: Instead of optimizing for specific microscopy condi-
tions, we compile a large portfolio of simulations that encom-
passes the wide spectrum of potential variations encountered
in particle tracking experiments. Existing methods are designed
with as few parameters as possible, to make the software sim-
ple to use, and a single set of parameters for specific microscopy
conditions (SNR, size, shape, etc.) can usually be found that
identifies objects of interest. Nevertheless, a limited parame-
ter space compromises the ability to optimize the method for
a large portfolio of conditions. An alternative approach is to
construct an algorithm with thousands of parameters, and use
machine learning to optimize the algorithm to perform well
under all conditions represented in the portfolio. Here, we adapt
an existing neural network imaging framework, called a con-
volutional neural network (CNN), to the challenge of particle
identification.

CNNs have become the state of the art for object recogni-
tion in computer vision, outperforming other methods for many
imaging tasks (21, 22). A CNN is a type of feed-forward artifi-
cial neural network designed to process information in a layered
network of connections. The linking stage of particle tracking
is sometimes viewed as the most critical for accuracy. Here, we
develop an approach for particle identification, while using one
of the simplest particle linking strategies, namely, adaptive linear
assignment (23). We rigorously test the accuracy of our method,
and find substantial improvement (in terms of false positives and
false negatives) over several existing methods, suggesting that
particle identification is the most critical component of a particle
tracking algorithm, particularly for automation.

A number of research groups are beginning to apply machine
learning to particle tracking (24-26), primarily involving “hand-
crafted” features that, in essence, serve as a set of filter banks
for making statistical measurements of an image, such as mean
intensity, SD, and cross-correlation. These features are used
as inputs for a support vector machine, which is then trained
using machine learning methods. The use of handcrafted fea-
tures substantially reduces the number of parameters that must
be trained.

Newby et al.

In contrast, we have developed our network to be trained end
to end, or pixels to pixels, so that the input is the raw imaging
data, and the output is a probabilistic classification of particle
versus background at every pixel. Importantly, we have designed
our network to be “recurrent” in time so that past and future
observations are used to predict particle locations.

In this paper, we construct a CNN, comprising a three-layer
architecture over 6,000 tunable parameters, for particle local-
ization. All of the neural network’s tunable parameters are
optimized using machine learning techniques, which means there
are never any parameters that the user needs to adjust for par-
ticle localization. The result is a highly optimized network that
can perform under a wide range of conditions without any user
supervision. To demonstrate accuracy, we test the neural net-
work tracker (NN) on a large set of challenging videos that span a
wide range of conditions, including variable background, particle
motion, particle size, and low SNR.

Materials and Methods

To train the network on a wide range of video conditions, we developed
video simulation software that accounts for a large range of conditions
found in particle tracking videos (Fig. 1). The primary advance is to include
simulations of how particles moving in three dimensions appear in a 2D
image slice captured by the camera.

A standard camera produces images that are typically single channel
(gray scale), and the image data are collected into 4D (three space and
one time dimension) arrays of 16-bit integers. The resolution in the (x, y)
plane is dictated by the camera and can be in the megapixel range. The res-
olution in the z coordinate is much smaller, since each z-axis slice imaged
by the camera requires a piezoelectric motor to move the lense relative to
the sample. A good piezoelectric motor is capable of moving between z-
axis slices within a few milliseconds, which means that there is a tradeoff
between more z slices and the overall frame rate. For particle tracking, a
typical video includes 10 to 50 z slices per volume. The length of the video
refers to the number of time points, i.e., the number of volumes collected.
Video length is often limited by photobleaching, which slowly lowers the
SNR as the video progresses.

To simulate a particle tracking video, we must first specify how particles
appear in an image. We refer to the pixel intensities captured by a micro-
scope and camera resulting from a particle centered at a given position
(x, ¥, 2) as the observed point spread function (PSF), denoted by v (x, y, 2),
where i,j, and k are the pixel indices. The PSF becomes dimmer and less
focused as the particle moves away from the plane of focus (z=0). Away
from the plane of focus, the PSF also develops disc patterns caused by
diffraction, which can be worsened by spherical aberration. While deconvo-
lution can mitigate the disc patterns appearing in the PSF, the precise shape
of the PSF must be known or unpredictable artifacts may be introduced into
the image.

The shape of the PSF depends on several parameters that vary depending
on the microscope and camera, including emitted light wavelength, numer-
ical aperture, pixel size, and the separation between z-axis slices. While
physical models based on optical physics that expose these parameters have
been developed for colloidal spheres (27), it is not practical for the purpose
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of automated particle tracking within complex biological environments. In
practice, there are many additional factors that affect the PSF, such as the
refractive index of the glass slide, of the lens oil (if oil-immersion objec-
tive is used), and of the medium containing the particles being imaged. The
latter presents the greatest difficulty, since biological specimens are often
heterogeneous and their optical properties are difficult to predict. The PSF
can also be affected by particle velocity, depending on the duration of the
exposure interval used by the camera. This makes machine learning partic-
ularly appealing, because we can simply randomize the shape of the PSF
to cover a wide range of conditions, and the resulting CNN is capable of
automatically “deconvolving” PSFs without the need to know any of the
aforementioned parameters.

Low SNR is an additional challenge for tracking of submicron-size par-
ticles. High-performance digital cameras are used to record images at a
sufficiently high frame rate to resolve statistical features of particle motion.
Particles with a hydrodynamic radius in the range of 10 nm to 100 nm move
quickly, requiring a small exposure time to minimize dynamic localization
error (motion blur) (28). Smaller particles also emit less light for the cam-
era to collect. To train the neural network to perform in these conditions,
we add Poisson shot noise with random intensity to the training videos.
We also add slowly varying random background patterns (S/ Appendix and
Fig. 2).

An Artificial Neural Network for Particle Localization. The “neurons” of the
artificial neural network are arranged in layers, which operate on mul-
tidimensional arrays of data. Each layer output is 3D, with two spatial
dimensions and an additional “feature” dimension (Fig. 2). Each feature
within a layer is tuned to respond to specific patterns, and the ensemble of
features is sampled as input to the next layer to form features that recognize
more-complex patterns. For example, the lowest layer comprises features
that detect edges of varying orientation, and the second-layer features are
tuned to recognize curved lines and circular shapes.

Each neuron in the network processes information from spatially local
inputs (either pixels of the input image or lower-layer neurons). This enables
a neuron to see a local patch of the input image. The size of the image patch
that affects the input to a given neuron is called its receptive field. The rela-
tionship of the input and output, denoted by /;; and Oj;, for each neuron is
given by 0;; =F(3Z, » Wy i s ;1o — b), where the kernel weights w;; and
output bias b are trainable parameters. Each layer has its own set of biases,
one for each feature, and each feature has its own set of kernel weights,
one for each feature in the layer directly below. The nonlinearity F(:) is a
prespecified function that determines the degree of “activation” or output;
we use F(u) =log(e" + 1). Inserting nonlinearity in between each layer of
neurons is necessary for CNNs to robustly approximate nonlinear functions.

Fig. 2. The CNN. Diagram of the layered connectivity of the artificial neural
network.
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The most common choice is called the rectified linear unit [F(u > 0) = u and
F(u < 0) = 0]. Instead, we use a function with a similar shape that is also con-
tinuously differentiable, which helps minimize training iterations where the
model is stuck in local minima (29).

The neural network comprises three layers: 12 features in layer one, 32
features in layer two, and the final two output features in layer three. The
output of the neural net, denoted by gjj, can be interpreted as the prob-
ability of a particle centered at pixel (i, j, k). We refer to these as detection
probabilities.

While it is possible to construct a network that takes 3D image data as
input, it is not computationally efficient. Instead, the network is designed to
process a single 2D image slice at a time (so that it can also be applied to the
large set of existing 2D imaging data) while still maintaining the ability to
perform 3D tracking. Constructing 3D output gy is achieved by applying the
network to each z-axis slice of the input image, the same way a microscope
obtains 3D images by sequentially capturing each z-axis slice. Two- or three-
dimensional paths can then be reconstructed from the network output as
described in Particle Path Linking.

We designed our network to be recurrent in time so that past and future
observations are used to predict particle locations. In particular, we use the
forward-backward algorithm (30) to improve accuracy. Because detections
include information from the past and future, the detection probabilities
are reduced when a particle is not detected in the previous frame (the par-
ticle just appeared in the current frame) or is not detected in the following
frame (the particle is about to leave the plane of focus). In Particle Path
Linking, we show how the detection probabilities can be used by the linking
algorithm to improve its performance.

Optimizing the Neural Network Parameters. The values of the trainable
parameters in the network, including the kernel weights and biases, are
optimized through the process of learning. Using known physical models
of particle motion and imaging, we simulate random particle paths and
image frames that cover a wide range of conditions, including particle PSF
shape, variable background, particle number, particle mobility, and SNR.
The ground truth for each image consists of a binary image with pixels
values pjx =1 if ||(j, i, k) —xn|| <2, and pj =0 otherwise. Each training
image is processed by the neural net, and the corresponding output is
compared with the ground truth using the cross-entropy error H[p, q] = —
u ik [Pii 1og ik + (1 — pjix) log(1 — gjik)], where N is the total number of
pixels in the image. Further details can be found in S/ Appendix.

Particle Path Linking. The dynamics of particle motion can vary depending
on the properties of the surrounding fluid and the presence of active forces
(e.g., flagellar-mediated swimming of bacteria and molecular motor cargo
transport). To reconstruct accurate paths from a wide range of movement
characteristics, we develop a minimal model. A minimal assumption for
tracking is that the observation sequence approximates continuous motion
of an object. To accurately capture continuous motion sampled at discrete
time intervals, dictated by the camera frame rate, the particle motion must
be sufficiently small between image frames. Hence, we assume only that
particles move within a Gaussian range from one frame to the next. Further
details can be found in S/ Appendix.

Performance Evaluation and Comparison with Existing Software. We consider
the primary goal for a high-fidelity tracker to be accuracy (i.e., minimize
false positives and localization error), followed by the secondary goal
of maximizing data extraction (i.e., minimize false negatives and maxi-
mize path length). To gauge accuracy, particle positions were matched to
ground truth using optimal linear assignment. The algorithm finds the
closest match between tracked and ground truth particle positions that
are within a preset distance of five pixels; this is well above the subpixel
error threshold of one pixel, but sufficiently small to ensure one-to-one
matching. Tracked particles that did not match any ground truth par-
ticles were deemed false positives, and ground truth particles that did
not match a tracked particle were deemed false negatives. To assess the
performance of the NN, we analyzed the same videos using three dif-
ferent leading tracking software programs that are publicly available:
Mosaic (Mos), an Image) plug-in capable of automated tracking in two
and three dimensions (31); Icy, an open source bioimaging platform with
preinstalled plugins capable of automated tracking in two and three dimen-
sions (32, 33); and Video Spot Tracker (VST), a stand-alone application
capable of 2D particle tracking, developed by the Center for Computer-
Integrated Systems for Microscopy and Manipulation at University of North
Carolina at Chapel Hill. VST also has a convenient graphic user interface
that allows a user to add or eliminate paths (because human-assisted
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tracking is time-consuming, 100 2D videos were randomly selected from the
500-video set).

For the sake of visual illustration, we supplement our quantitative testing
with a small sample of real and synthetic videos with localization indicators
(see Movies S1 and S2). In each video, red diamond centers indicate each
localization from the neural network.

Performance on Simulated 2D and 3D Videos. Because manual tracking by
humans is subjective, our first standard for evaluating the performance of
the NN and other publicly available software is to test on simulated videos,
for which the ground truth particle paths are known. The test included 500
2D videos and 50 3D videos, generated using the video simulation method-
ology described in Materials and Methods and S/ Appendix. Each 2D video
contained 100 simulated particle paths for 50 frames at 512 x 512 resolution
(see SI Appendix, Fig. S2). Each 3D video contained 20 evenly spaced z-axis
image slices of a 512 x 512 x 120 pixel region containing 300 particles. The
conditions for each video were randomized, including variable background
intensity, PSF radius (called particle radius for convenience), diffusivity, and
SNR. Note that SNR is defined as the mean pixel intensity contributed by the
particle PSFs divided by the SD of the background pixel intensities.

To assess the robustness of each tracking method/software program, we
used the same set of tracker parameters for all videos (see S/ Appendix for
further details). Scatter plots of the 2D test video results for NN, Mosaic,
and Icy are shown in Fig. 3. For Mosaic, the false positive rate was generally
quite low (~2%) when SNR > 3, but showed a marked increase to >20%
for SNR < 3 (Fig. 3A). The average false negative rates were in excess of
50% across most SNR > 3 (Fig. 3B). In comparison, Icy possessed higher false
positive rates than Mosaic at high SNR and lower false positive rates when
SNR decreases below 2.5, with a consistent ~5% false positive rate across all
SNR values (Fig. 3A). The false negative rates for Icy were greater than for
Mosaic at high SNR, and exceeded ~40% for all SNR tested (Fig. 3B).

All three methods showed some minor sensitivity, in the false positive
rate and localization error, to the PSF radius (Fig. 3 £ and G). (Note that
the high sensitivity Mosaic displayed to changes in SNR made the trend
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for PSF radius difficult to discern.) Mosaic and Icy showed much higher
sensitivity, in the false negative rate, to PSF radius, each extracting nearly
fourfold more particles as the PSF radius decreased from eight to two
pixels (Fig. 3F).

One common method to analyze and compare particle tracking data is
the ensemble mean squared displacement (MSD) calculated from particle
traces. Since the simulated paths in the 2D and 3D test videos were all Brow-
nian motion (with randomized diffusivity), we have that (\x(t)|2) =4Dt,
where D is the diffusivity. To make a simple MSD comparison for Brown-
ian paths, we computed estimated diffusivities using the MSD at the path
duration 1 < T <50, with D~ (|x(T)|2)/(4T). (See below and S/ Appendix,
Fig. S4 for an MSD analysis on experimental videos of particle motion in
mucus.) When estimating diffusivities, Icy exhibited increased false posi-
tive rates with faster-moving particles (Fig. 3D), likely due to the linker
compensating for errors made by the detection algorithm. In other words,
while the linker was able to correctly connect less-mobile particles with-
out confusing them with nearby false detections, when the diffusivity
rose, the particle displacements tended to be larger than the distance to
the nearest false detection. Consequently, when D > 2, the increased false
positives along with increased increment displacements caused Icy to under-
estimate the diffusivity (Fig. 3H), because paths increasingly incorporated
false positives.

In contrast to Mosaic and Icy, the NN possessed a far lower mean false
positive rate of ~0.5% across all SNR values tested (Fig. 3A). The NN was
able to achieve this level of accuracy while extracting a large number of
paths, with <20% false negative rate for all SNR > 2.5 and only a modest
increase in the false negative rate at lower SNR (Fig. 3B). Importantly, the NN
performed well under low-SNR conditions by making fewer predictions, and
the number of predictions made per frame is generally in reasonable agree-
ment with the theoretical maximum (Fig. 3C). Since the neural network was
trained to recognize a wide range of PSFs, it also maintained excellent per-
formance (< 1% false positive, <20% false negative) across the range of PSF
radius (Fig. 3F). The NN possessed localization error that was as good as that
of Mosaic and lvy, less than one pixel on average and never more than two
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Performance analysis for randomized 2D and 3D synthetic test videos. (A-C) Two-dimensional test results showing the (A) percentage of false

positives, (B) percentage of false negatives, and (C) predictions per frame vs. SNR. Mosaic shows a sharp rise in false positives for SNR < 2 (in A), due to
substantially more predictions than actual particles (in C). Conversely, the neural net (NN) and Icy showed no increase in false positives at low SNR. (E-G)
Results showing the (E) percentage of false positives, (F) percentage of false negatives, and (G) localization error vs. the PSF radius. (D and H) Results showing
the (D) percentage of false positives and (H) measured diffusivity vs. the ground truth particle diffusivity. (/-L) Violin plots showing the performance on 2D
and 3D test videos for each of the four methods: the NN, Mos, Icy, and VST. The solid black lines show the mean, and the thickness of the filled regions
shows the shape of the histogram obtained from 500 (50) randomized 2D (3D) test videos. Note that the VST results only included 100 test videos.
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pixels, even though true positives were allowed to be as far as five pixels
apart (Fig. 3G).

When analyzing 3D videos, Mosaic and Icy were able to maintain false
positive rates (~5 to 8%) roughly comparable to their rates when analyzing
2D videos (Fig. 3/). Surprisingly, analyzing 3D videos with the NN resulted
in an even lower false positive rate than for 2D videos, with ~0.2% false
positives. All three methods capable of 3D tracking exhibited substantial
improvements in reducing false negatives, reducing localization error, and
increasing path duration (Fig. 3 J and L). Strikingly, the neural network was
able to correctly identify an average of ~95% of the simulated particles in
a 3D video, i.e., <5% false negatives, with the lowest localization error as
well as the longest average path duration among the three methods.

Performance on Experimental 2D Videos. Finally, we sought to evaluate the
performance and rigor of the NN on experimentally derived rather than sim-
ulated videos, since the former can include spatiotemporal variations and
features that might not be captured in simulated videos. Because analysis
from the particle traces can directly influence interpretations of impor-
tant biological phenomenon, the common practice is for the end user to
supervise and visually inspect all traces to eliminate false positives and min-
imize false negatives. Against such rigorously verified tracking, the NN was
able to produce particle paths with comparable MSDs across different time
scales, alpha values, a low false positive rate, greater number of traces (i.e.,
decrease in false negatives), and comparable path length (see S/ Appendix,
Fig. S4). Most importantly, these videos were processed in less than one-
20th of the time it took to manually verify them, generally taking 30 s to
60 s to process a video, compared with 10 min to 20 min to verify accuracy.

Discussion

The principal benefit of the trained CNN is robustness to chang-
ing conditions. For example, the net tracker was capable, without
any modifications, of tracking Salmonella (Fig. 1, Right and
Movie S1), which are large enough to resolve and appear as
rod-shaped in images. Even though the neural net was trained
on rotationally symmetric particle shapes, rod-shaped cells were
still recognized with strong confidence sufficient for high-fidelity
tracking. Large polydisperse particles are also readily tracked,
provided their PSF shape does not deviate too far from the rota-
tionally symmetric training data. Our neural network does not
recognize long filaments such as microtubules; such applications
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will require significant, targeted advances customized to the
specific application. Another example of the robustness of the
network is its ability to ignore background objects and effectively
suppress false positives. The neural network does not recognize
large bright objects that sometimes appear in videos (see Movie
S1), even though it was trained on images containing slowly
varying background intensity.

The particle localization method used the neural network
output instead of computing the centroid position from the
raw image data (as is typically done), and the resulting local-
ization accuracy was comparable to other methods. However,
some applications such as microrheology may require additional
accuracy. Several high-quality localization algorithms have been
developed that potentially might, given a local region of interest
(provided by the neural network) in the raw image, estimate the
particle center with more accuracy (34). One alternative to par-
ticle tracking microrheology is differential dynamic microscopy,
which uses scattering methods to estimate dynamic parameters
from microscopy videos (35).

Finally, tools based on machine learning for computer vision
are advancing rapidly. Applications of neural network-based
segmentation to medical imaging are already under develop-
ment (36-38). One recent study has used a pixels-to-pixels—type
CNN to process raw stochastic optical reconstruction microscopy
(STORM) data into superresolution images (39). The potential
for this technology to address outstanding bioimaging problems
is becoming clear, particularly for image segmentation, which is
an active research area in machine learning (22, 40-45).
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