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SUMMARY

Plant architectures can be characterized statistically by their spatial density function, which 

specifies the probability of finding a branch at each location in the territory occupied by a plant. 

Using high-precision 3D scanning, we analyzed 557 plant shoot architectures, representing three 

species, grown across three to five environmental conditions, and through 20–30 developmental 

time points. We found two elegant properties in the spatial density functions of these architectures: 

all functions could be nearly modified in one direction without affecting the density in orthogonal 

directions (called “separability”), and all functions shared the same underlying shape, aside from 

stretching and compression (called “self-similarity”). Surprisingly, despite their striking visual 

diversity, we discovered that all architectures could be described as variations on a single 

underlying function: a Gaussian density function truncated at roughly two SDs. We also observed 

systematic variation in the spatial density functions across species, growth conditions, and time, 

which suggests functional specialization despite following the same general design form.

In Brief

Conn et al. analyze 557 3D plant shoot architectures and discover that the distribution of branches 

in space is well approximated by a truncated 3D Gaussian density function. This result highlights 

a new principle guiding growth and adaptation of plants, and it raises new questions about the 

molecular mechanisms driving pattern formation.
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INTRODUCTION

One central challenge in plant biology is to identify general principles guiding growth and 

adaptation of plant architectures [1]. Plant architectures are highly complex, developing 

meticulously over time and constantly adjusting to challenges from the environment [2]. 

These adjustments include modulation of growth rates, the size and number of branching 

elements and leaves, and flowering times [3, 4]. Growth strategies also vary across species in 

terms of the number of seed leaves generated, the presence of secondary growth, and leaf 

patterning [5].

Over the last several decades, many principles describing plant form have been discovered 

[6], including phyllotaxis (spatial arrangement of leaves) [7], bifurcation planarity [8], 

fractal branching [9–11], and allometric scaling of several other plant properties, including 

plant height, stem diameter, and leaf biomass [12–15]. These insights have led to many 

models of plant architectures, including Lindenmayer systems [16] and its many variants 

[17–19], the metabolic theory of ecology [20], and functional-structural models [21–25], 

used to simulate how different physiological or ecological factors influence plant structure. 

These models have had wide applications in agriculture [26], plant engineering [27, 28], and 

computer graphics [16, 29].

Here, we study the spatial density function of plant architectures and ask, for each point in 

the 3D territory or volumetric space occupied by a plant (defined as the convex hull of the 

cloud points representing the plant’s architecture), what is the probability of finding a branch 

at that point? The spatial density function characterizes how plants distribute branches in 

space and can reveal growth strategies that may not be apparent by eye. Indeed, it is not 

clear a priori how many different forms of the density function are used. For example, the 

functional form may be class specific (monocots versus dicots), species specific, or even 

condition specific; the form may even depend on growth and developmental timing. 

Understanding which forms are used and in what context may help guide plant biologists 

studying similarities and differences in the biological mechanisms that produce these 

structures, including how they may have evolved.

Our goals here are to characterize plant spatial density functions using statistical moments, 

to test these functions for two mathematical properties (separability and self-similarity), and 

to determine the form of the density function. “Separability” means that branch density is 

independent in the X, Y, and Z directions. “Self-similarity” means that architectures of 

different sizes have the same underlying shape, modulo compression and stretching along 

one or more directions. The form of the function is not designed to be used to reconstruct an 

individual plant’s architecture but rather to highlight statistical properties shared by a large 

collection of architectures.

Compared to prior work, we offer the following contributions:

(1) Analysis of an extensive dataset of 557 juvenile plant 3D architectures from 

three species, scanned across various growth conditions for the same species, 

and several early developmental time points for the same individual plant.
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(2) Quantification of separability and self-similarity of plant spatial density 

functions. Whereas fractal branching has long been appreciated by mathematical 

biologists [9–11], there has been little formal analysis of the degree to which this 

property applies to a population of whole-plant architectures and how it varies 

across environmental conditions and through development. Moreover, our 

quantification is done using a statistical test [30], which critically does not rely 

on template matching or a priori assumptions about the number of functional 

forms for architectures. Prior work has also quantified the degree of self-

nestedness for trees based on measures of graph compression [31, 32], though 

no claim is made by these works to general validity across all plants.

(3) Derivation of a single functional form to describe all plant spatial density 

functions. We applied the methodology developed by Snider et al. [30] and 

discovered that all density functions can be approximated by a 3D Gaussian 

truncated at a boundary of roughly two SDs from the center. This means that 

only four parameters are needed to specify statistically any architecture’s size 

and shape: its total branch length and the SDs of the Gaussian in the three 

orthogonal directions. This provides a very simple and compact description of a 

large diversity of architectures.

We conclude by discussing potential benefits and limitations of these properties, 

implications for studying their molecular basis, and their analogs in branching dendritic and 

axonal morphologies in the brain.

RESULTS

Generating a Diverse Dataset of Plant Architectures

We performed 3D laser scanning of plant shoot architectures across three species (tomato, 

tobacco, and sorghum), three to five growth conditions (ambient light, shade, high heat, high 

light, and drought), and through 20–30 days of development. Overall, we performed 557 

scans (311 tomato, 105 tobacco, and 141 sorghum) summed across species, conditions, and 

time points (STAR Methods).

From each scan, we extracted the 3D coordinates of each branch point for the dicots (tomato 

and tobacco) and each leaf point for the monocot (sorghum; Figures 1A–1C). These points 

were used as input to the analysis described in the next section. We observed a wide range of 

architectures, with the number of branch points, the number of leaves, and the territory 

volume occupied by the plants varying by several orders of magnitude (Table 1). Thus, this 

dataset represents a good benchmark for testing the generality of any property of plant 

architectures.

Our goal here is to provide a compact, statistical description of the spatial density function 

of a large collection of plant architectures. We analyze “skeletonized” plant architectures, 

evaluating their spatial density function based only on length measurements. Overall, we 

discovered a universal property shared by all plants studied here; their spatial density 

functions can be described using a single functional form: a truncated 3D Gaussian (Figure 
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1D). This, as opposed to having several different functional forms for different species, 

condition, or time points, was an unexpected finding that we substantiate in detail below.

Using Moments to Describe Plant Architectures

To characterize how the branches of a plant are distributed in space, we study the plant’s 

spatial density function (Figure 1D).

This function describes the density of points in the volumetric territory occupied by the 

plant, and it determines what architectures can possibly be formed. General properties of 

architectures can be understood by comparing this function across plants. For tomato and 

tobacco, we study the spatial density function of only branches (leaves and the hypocotyl are 

ignored). For sorghum, we study the spatial density function of the leaves, which represent 

the full architecture, because there are technically no branches.

One conventional approach to compute the spatial density function would be to place a 

regular k×k×k grid over the plant and to count the density (sum) of points in each 3D voxel. 

This approach, however, suffers from two limitations. First, grid counting defines density as 

a local property of the architecture (the total sum of points in each voxel), which can be 

highly sensitive to noise. Second, grid counting requires an arbitrary selection of the value of 

k. Large values of k will not provide sufficient spatial resolution, and small values will result 

in very sparse functions.

To overcome these limitations, we follow the approach developed by Snider et al. [30] and 

define the spatial density function by its statistical “moments” [33]. Knowing all of the 

moments of a probability distribution is exactly equal to knowing the function that generates 

the distribution, with the resolution of the description increasing with the number of 

moments calculated (ranging from 0 to N; it is impossible in practice to compute all of the 

moments because of their magnitude; in this study, we could only reasonably compute up to 

the 20th moment, which was roughly 10250). For a probability distribution, lower-order 

moments correspond to common named properties of distributions [34], including the mean 

(first moment), variance (second moment), skewness (third moment), and kurtosis (fourth 

moment). Similarly, for a density function, lower-order moments correspond to the total 

mass (zeroth moment) and the center of mass (first moment divided by the total mass), etc. 

In general, higher-order moments capture finer details of the architecture, including 

nonlinearities in branching patterns and the shape of individual branches. Unlike grid counts, 

moments are global parameters, where each moment calculated depends on the entire 

structure of the architecture.

To calculate plant moments, we start with the skeletonized architecture, with nodes 

corresponding to branch points (for the dicots) or leaf points (for the monocot), and with 

edges between pairs of successive points selected along the manually traced architecture. 

Each edge is split into ten equal-length segments to increase spatial resolution. For each 

segment i, we store two quantities: its length wi and its position pi = (xi, yi, zi, defined as the 

mid-point of its two end points. Let n equal the total number of segments over all edges of 

the plant. Then, the total length of the plant (i.e., its zeroth moment, denoted m0) is the sum 

of the lengths of all its segments:
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m0 = ∑
i = 1

n

wi .

Let k equal the moment order. Following standard probability theory, the kth “product 

moment,” mk, is defined as

mk = ∑
i = 1

n

(xi − x)k(yi − y)k(zi − z)kwi, (1)

where x denotes the center of mass of the plant in the x direction (i.e., the mean of the x 
coordinates of each segment).

Our first goal is to use these moments to test for the following two properties:

1. Separability: Are all density functions independent in the x, y, and z directions? 

For example, if a plant is separable, then any growth in the north-south direction 

would not necessitate a change in growth in the other two orthogonal directions. 

On the other hand, if the plant is not separable, then any change in the north-

south direction would force a corresponding change in at least one other 

orthogonal direction.

2. Self-similarity: Do all density functions have the same shape, modulo stretching 

and compression? For example, if both a small plant and a large plant have the 

same density function, then if they were both scaled to be of the same size, their 

architectures would exactly overlap. On the other hand, if the two plants have 

different density functions, they would not well superimpose. The term “self-

similarity” is commonly associated with being fractal, i.e., having the property 

that if a single structure is magnified, then it looks similar at all scales. Our 

definition of self-similarity considers not a single structure but rather a 

population of structures and asks whether all of them can be viewed as variations 

(via stretching or compression) of a single form.

Testing for Separability

Theory—Separability means that the density function can change in one direction without 

affecting the shape of the function in orthogonal directions. Mathematically, a function of 

three independent variables is defined to be separable if it can be expressed as a product of 

three functions, each depending on only one of the variables (STAR Methods).

To test whether a plant spatial density function is separable, we need to determine whether 

its product moment can be decomposed into the product of individual components for each 

direction (called “separated moments”). A separated moment is equivalent to projecting the 

3D density function onto a chosen direction and calculating moments in that direction. The 
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other two directions do provide information about the total length of the segment (w); 

however, they do not provide any information about the shape of the function in that 

direction. In other words, the density function can be translated or rotated in the other two 

directions without changing the moments in the chosen direction. For each k, the equations 

for calculating the separated moments mk,x, mk,y, mk,z are described in the STAR Methods.

To test separability, we need to test whether mk = mk,xmk,ymk,z for all moment orders, k. If 

the function is exactly separable, then the slope of the plot of mk versus mk,xmk,ymk,z will 

equal exactly 1. The difference between 1 and the actual slope indicates how far the function 

is from exact separability. Because higher-order moments can be gigantic (m20 is almost 

10250 for the largest plant), we plot all moments on a log-log scale.

Analysis—We used our benchmark dataset to quantify separability for all 557 

architectures. All plants analyzed together (i.e., one slope for all plants) achieved near-exact 

separability, with a slope of 0:959 ± 0:002 (Figure 2A). The observed departure from exact 

separability (0.959 versus 1.00) is what would be expected by a Gaussian function that is 

truncated at two SDs (STAR Methods; Figure S1A). That is, the plant spatial density 

function must be truncated at some boundary. Assuming plants have a spherical boundary, 

such truncation destroys true separability, and thus, plants cannot be exactly separable. 

However, the departure from true separability that we observed for plants is consistent with 

the separability of a truncated Gaussian function. An untruncated Gaussian function is well 

known to be exactly separable.

Separability slightly increased when analyzed independently in each pairwise direction: 

separability in (x, y) was 0:971 ± 0:002; in (x, z) was 0:962 ± 0:002; and in (y, z) was 0:976 

± 0:001. This suggests that the density function is only ≈1% more coupled in three 

dimensions than in two dimensions.

To test the robustness of this observation, we calculated the separability for each plant 

separately (i.e., 557 slopes, one per plant). This produced a similar mean slope of 0:946 

± 0:044 (Figure 2B). When slopes were grouped by species (Figures S1B–S1D) and 

conditions (Figures S1E–S1I), we observed a similar range of separability. For example, 

tobacco plants across all conditions had a separability of 0:949 ± 0:038, whereas plants 

grown in shade (across all species) had a separability of 0:946 ± 0:050. Thus, separability 

does not appear to be a species- or condition-specific property. Separability was also time 

invariant; the analysis above included both young plants, with only one or two branches and 

leaves, and more mature plants, with numerous leaves and branches (Table 1).

Overall, this suggests that plant architectures have highly, though not exactly, decoupled 

density functions and that separability is maintained even in early development.

Testing for Self-Similarity

Theory—Self-similarity means that different plant spatial density functions can be 

“morphed” into one another by expansion or contraction along orthogonal spatial 

dimensions. Mathematically, a function f(x) is defined to be self-similar if the relationship 

between x and f(x) can be described by a power function [35, 36], such as f(x) = cxk, where 
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c and k are constants. In our case, the function f(x) represents the spatial density function of 

a plant (approximated via its moments) with size x. To measure size, we used the SD σxyz of 

the architecture in all directions (STAR Methods; Figure 3A).

There is a two-step procedure to quantify the degree to which plant spatial density functions 

are self-similar. The first step is to plot mk/m0 versus σxyz for each architecture and for 

various values of k. The term mk/m0 corresponds to the function f(x) normalized to unit 

length, and σxyz equals the size of the architecture. If, for each value of k, there is a linear 

relationship between the two on a log-log plot (with a different slope for each k), then the 

architectures share the same self-similar function. The second step is to plot the slope of the 

lines generated in the first step versus the moment order (k). The difference between the 

slope of this line and 1 denotes the degree of self-similarity. See Snider et al. [30] for a 

formal derivation of why each moment order k has a slope of k for a self-similar function.

Even if plants are self-similar, however, they may belong to different classes of self-similar 

functions. Such functions can include a uniform, a Gaussian, or an exponential spatial 

density. The assignment of architectures to classes may also be species or condition specific. 

This test can determine the number of classes of self-similar functions required to describe 

the plant architectures because architectures from one class will fall on one line and 

architectures for another class will fall on a second line for the same moment order. Thus, 

this test determines the degree to which architectures are self-similar and the number of 

classes of architectures. Our dataset includes architectures that vary in size by four orders of 

magnitude (Table 1), which represents a broad scale to test this theory.

Analysis—Following the first test for self-similarity described above, we plotted 

log(mk=m0)versus log(σxyz) for k = 0, 2, …, 20 for all 557 architectures Figure 3B). We 

computed a least-squares regression line for each moment order, each line closely 

approximated the data (R2 > 0:99 for all 11 regression lines), even as moment values ranged 

over 250 orders of magnitude. Thus, the first test passes.

For the second test, we plotted the slopes of the lines calculated in the first test versus k, the 

moment order (Figure 3C). The slope of the line was 1:014 ± 0:001, which is very close to 1, 

as would be required by true self-similarity.

To again determine the robustness of this observation, we repeated the first and second tests 

of self-similarity on architectures grouped by each species and environmental condition 

separately (Figures S2 and S3). All three species exhibited close self-similarity (slopes of 

1.013, 1.011, and 1.009, respectively, for tomato, tobacco, and sorghum). When grouped by 

condition, we observed a similar range of slopes: 1.001 for drought; 1.011 for high light; 

1.011 for control; 1.013 for shade; and 1.021 for high heat. We also performed the two tests 

of self-similarity using both odd and even moments together and observed no change in our 

conclusions (Figures S3I and S3J).

Together, these tests show that plant shoot architectures deviate only 1% or 2% from true 

self-similarity. Moreover, these architectures share a single density function because all 

architectures lie on a single set of lines, one for each moment order.
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Deriving a Functional Form of Plant Architectures

The results from the self-similarity test (Figure 3) suggest that a single self-similar function 

can describe the density of all of the plant architectures. But this does not specify the actual 

form of the density function. Going from the moments of a function to the exact function 

itself is a notoriously difficult problem that theoretically requires computing an infinite 

number of moments [37]. Whereas some methods have been proposed to approximate a 

function’s form from its moments, these require additional assumptions (e.g., maximum 

entropy [38], space filling [39], and mass minimization) that may not always hold invariant.

Here, we seek to find a simple function with few parameters that provides an adequate 

statistical description of plant spatial density functions. There are an infinite number of self-

similar functions, and for each, the “slope of the slopes” (Figure 3C) will be 1; the 

remaining parameter of the line (the intercepts) encodes the functional form of the function 

because different self-similar functions must have different intercepts. Thus, to determine a 

functional form from the first 20 moments, we compared the intercepts of the lines in Figure 

3B with those intercepts produced by two common density functions: a 3D uniform density 

(constant density inside a spherical boundary and zero density outside) and a 3D Gaussian 

density truncated at a spherical boundary. We chose a Gaussian density because it is the only 

3D function that is spherically symmetric and separable in Cartesian coordinates [33], and at 

least some plants have approximately spherically symmetric densities. For both functions, 

the boundary corresponds to the edge of the territory occupied by the plant in physical 

space.

Unexpectedly, we found that all architectures can be described by a single density function: 

a 3D Gaussian truncated at roughly two SDs from the center of mass (Figure 4A). This 

means that only four parameters are needed to specify how plant architectures distribute 

branches in space: the center of mass and the SDs in the three orthogonal directions. We can 

test the goodness of fit of this function by comparing the plant’s intercepts versus the 

intercepts of a uniform density function and versus a Gaussian density truncated at one 

additional SD. Both of these result in a poor fit (Figure 4A); for the latter, this suggests that 

a relatively small change in the density function (one additional SD) is significant. We also 

observed species-specific differences in the best truncation parameter, but in all cases, the 

functional form did not change (Figures 4B–4D). Figure 1D illustrates a few example spatial 

density functions for plants.

Overall, we derived a compact, statistical description of all 557 architectures. The plant 

moments are consistent with a truncated 3D Gaussian density function. This description is 

almost as simple as it can possibly be.

Deviation in Growth Strategies across Time, Conditions, and Species

Despite the overall similarity in the shape of the plant spatial density functions, there were 

architectures scattered above and below the regression lines for each moment order (Figure 

3B). Is this noise, or are there systematic differences in this scatter?

To explore this, we focused on scatter for the total length of the plant (m0) plotted versus the 

volume of the plant σxyz. Because these showed a linear relationship on a log-log plot 

Conn et al. Page 8

Curr Biol. Author manuscript; available in PMC 2018 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figures 5A and 5B), these two variables were related as Volume ∝ Lengthα, indicating that, 

as total length increases, the volumetric territory occupied by the plant increases in 

accordance with a power law [12]. However, plants that lie below the log-log regression line 

have a shorter total length for the same volume occupied and vice versa. This means that 

branch density (length per unit volume) is systematically lower for plants below the line 

versus for those above the line.

First, we sought differences in the length-to-volume relationship across species and 

conditions. For tomato plants grown in drought conditions, 81.5% of the plants lay below the 

line, whereas for tobacco in high heat, 78.6% of plants lay above the line (Figures 5C and 

5D; p < 0.05 for both). Figure S4 shows visually how much less volume tobacco grown in 

high heat occupies compared to tobacco grown in control conditions. This difference has a 

known biological basis [40, 41]: in high heat, tobacco leaves curl upward to reduce moisture 

loss through evaporation—a classical stress response—and the leaves bunch together, 

occupying less volume. This strategy increases self-shading and reduces leaf surface area 

exposed to light, effectively acting as a cooling effect. We also characterized how plant 

volume scales with a higher-order moment (m10) and found similar differences in the same 

species-condition pairs (Figure S5), suggesting that these differences extend beyond just 

simple length-to-volume measurements.

Second, we sought systematic differences in the length-to-volume relationship across time 

and found that young tomato and tobacco plants occupy more volume than young sorghum 

plants for the same length (STAR Methods).

Overall, these results further challenge previous hypotheses that branching architectures of 

plants are always volume filling [39]. Variation in length-to-volume relationships represents 

one type of “knob” that plants can use to tune their architectures to specific environmental 

challenges, while still obeying the same general growth rule. Moreover, whereas length-to-

volume relationships have long been studied in the literature, characterizing these 

differences as they vary across environmental conditions for the same species, and across 

time for the same plant, is to our knowledge novel.

DISCUSSION

We studied the probabilistic shape of plant architectures and found that all architectures 

share two fundamental properties: their spatial density functions are nearly separable and 

self-similar. Separability means that spatial density functions are decoupled across the x, y, 

and z directions. This suggests that the same growth logic can be applied without needing to 

“rewrite the code” in each direction separately. This may be desirable because the optimal 

growth direction is highly unpredictable and dependent on light or competition that can 

come from any direction. Self-similarity means that different plant spatial density functions 

can be morphed into one another by stretching or compressing along orthogonal directions. 

Together, these two properties suggest a type of biological modularity [42, 43], where 

regulating a few parameters may be sufficient to generate a large diversity of architectures. 

We also found that a single density function, a 3D Gaussian truncated at roughly two SDs, is 

capable of describing a large diversity of architectures.

Conn et al. Page 9

Curr Biol. Author manuscript; available in PMC 2018 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are four ways in which our work may be used in the service of plant biology. First, our 

finding that all plants considered here are statistically similar raises immediate questions 

about the molecular mechanisms that give rise to this simplicity in morphology. Gene 

regulatory networks responsible for pattern formation are often conserved and are capable of 

producing a broad spectrum of patterns by combinatorially modulating the expression of one 

or a few core genes [44–46]. Indeed, most mutations lead to changes in gene expression 

levels, as opposed to the deletion or invention of entirely new genes, and these changes have 

long been viewed as a primary mechanism of evolutionary adaptation [47–50]. From an 

evolutionary perspective, some conservation of structure may be expected—it is unlikely 

that evolution uses growth rules that are unique to every individual species or every different 

condition. However, only developing the machinery to implement a single functional form is 

highly economical and was not an expected result. The mechanism driving this form remains 

a mystery and clearly begs for an explanation by molecular and cell biologists. Second, 

understanding growth is a grand challenge in plant biology [1]; our finding that the 

functional form of the density function is similar in both young and adult plants suggests 

that similar growth strategies may be used throughout development. Whereas the properties 

studied here are not meant to allow for the reconstruction of individual plant architectures, 

they do help explain variance in architectures observed at the population level. Third, these 

properties may provide new evaluation strategies for genome engineering and plant selection 

that are critical for increasing crop yield [27, 28, 51]. Fourth, we used statistical moments to 

describe plant architectures; reverse engineering these moments to actual plant traits could 

provide a new method for understanding and comparing plant forms.

Are there simple models that can generate plant architectures with the described Gaussian 

functional form? For example, Lindenmayer systems provide a class of recursive growth 

rules that naturally give rise to fractal branching. One challenge in these models has been in 

determining the correct branch lengths, which can affect spatial density. We found that the 

distribution of branch lengths, across all plants, was clearly an exponential (Figure S6). The 

simplest way to generate such a distribution would be a Poisson process with a single 

parameter equal to the mean branch length—a constant that is the same across all plants and 

for all branches within a plant. Similar distributions have been found in leaf venation 

networks [52]. These observations provide new constraints that realistic generators of plant 

architectures should satisfy. Generative models may also be useful in quantifying departure 

from true separability. For example, the model could include a parameter that controls the 

amount of separability; synthetic architectures generated from these models could then be 

compared versus actual plant architectures to determine how the observed departure from 

separability observed here (0.959 versus 1.00) manifests in terms of other plant traits.

All rules have exceptions; where may we find exceptions to the statistical properties studied 

here? First, gravity imposes physical limitations on both tree height and tree width [53–55], 

which may alter branching patterns as they approach this physical limitation. Our dataset 

consisted of plants with sizes below these limits, and it would be important to see how these 

statistical properties can be refined to address these physical limitations. Second, our 

analysis studied juvenile plants from three species across multiple conditions. This dataset 

does not encapsulate the entire plant kingdom and all possible growth climates for plants, for 

which there may also be exceptions to these rules. Third, some trees, such as giant sequoias, 
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can elongate vertically roughly 100 m before branching. Such architectures would clearly 

not be separable in the up-down direction. Thus, in our analysis, we removed the part of the 

plant beneath the first branch point. This part of the plant, called the hypocotyl for di-cots, 

may be regulated differently, for example, as is well studied in the shade-avoidance response 

[4]. When analyzing neural branching morphologies, Snider et al. [30] also removed the part 

of the dendrite before the first branch point, because dendrites of some neurons travel a 

millimeter in the brain before branching occurs and synapses form; without removing this 

part, dendrites would also not be separable.

There are also many branching structures in biology where these properties do not hold, 

indicating that these properties are not “inevitable” and may indeed represent selective 

optimization by evolution. For example, both cardiovascular networks and sand dune 

morphologies deviate from strict self-similarity [56, 57]; the former is also better 

characterized by a uniform density rather than a Gaussian [58]. Self-similarity has also been 

questioned in some retinal neurons, where they appear to be space filling rather than fractal 

[59] (though see below); likewise, in the spatial topology of tropical forests, species 

diversity is not self-similar across all spatial scales [60]. There are also many functions for 

which we observe curved lines in the moments versus size plot (Figure 3B), also indicating 

non-self-similarity [30].

On the other hand, there are some branching processes that do display these properties. 

Snider et al. [30] analyzed thousands of dendritic and axonal arbors in the brain across many 

cell types and species; they found that all arbors exhibited near separability and self-

similarity and could be described by a Gaussian density truncated at roughly 1.7 SDs for 3D 

arbors. These properties allow complex arbors to be generated by only varying a few 

parameters, offering a potentially very simple way to form diverse neural circuits [61]. The 

fact that neural and plant branching structures share similar topological properties offers 

another correspondence contributing to the field of plant neurobiology [62, 63].

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Plant 3D architecture data http://plant3d.snl.salk.edu

Plant 3D architecture data http://dx.doi.org/10.17632/9k7zctdyhs.1

Experimental Models: Organisms/Strains

Tomato (Solanum lycopersicum 
cv m82D)

Plant Biology 
Laboratories, Salk 
Institute

N/A

Tobacco (Nicotiana benthamiana) Plant Biology 
Laboratories, Salk 
Institute

N/A

Sorghum (Sorghum bicolor) John Mullet, Texas 
A&M University

N/A

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Code to compute plant moments This paper http://plant3d.snl.salk.edu

3D scanner (Faro Technologies) http://www.faro.com/products/metrology/faroarm-measuring-arm/overview

Other

Plant growth chambers Percival Scientific, IA https://www.percival-scientific.com/

Plant growth chambers Conviron model E8 http://www.conviron.com/products/e8-reach-in-plant-growth-chamber

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Saket Navlakha (navlakha@salk.edu).

METHOD DETAILS

Plant growth experiments—Experiments were performed with 3 species of plants 

(Table S1): tomato (Solanum lycopersicum cv m82D), tobacco (Nicotiana benthamiana), 

and sorghum (Sorghum bicolor 100m). These species were selected because they 

encapsulate two well-known classes of flowering plants (monocots and dicots, which 

produce one and two embryonic leaves, respectively) and because of their overall 

agricultural importance [64]. Each plant was grown in a medium comprised of 2x soil 

(SunGro Propagation mix, USA) to 1x medium vermiculite (SunGro, USA). The soil was 

moistened with water containing 0.12–0.24 oz/gallon fertilizer (Plantex, Canada). All 

seedlings, except for sorghum, were planted in 12-celled planting trays and then transferred 

to plastic pots. Tomatoes were transferred to plastic pots (4in. diameter × 3in. tall) on their 

9th day after planting, and scanning began on their 11th day (which we refer to as scanning 

day 0, or D0). Tobaccos were transferred to plastic pots (4.5in. diameter × 3.75in. tall) on 

their 9th day after planting, and scanning began on their 17th day. Sorghum were directly 

planted in plastic pots (4in. diameter x 3in. tall) and scanning began on their 7th day. All 

plants were given roughly 50mL of water per day in the greenhouse until they were moved 

to different environmental conditions in chambers. All plants were placed in their 

environmental condition 24 hr prior to the first day of scanning (D0).

Experiments for each plant species were performed across 3–5 environmental conditions 

(with 2–5 replicates per species-condition pair), and through 20–30 days of growth (Table 

S1). All plants were grown in chambers on a long-day cycle — 8hr dark (1am-9am), 16hr 

light (9am-1am) — once placed in their environments. All plants received 50mL of water 

every other day (drought condition excluded). Tomato experiments were performed in 

ambient conditions (Percival Scientific, IA; 22°C), shade (22°C, R:FR = 0.7), high-heat 

(35°C), high-light (Conviron model E8; 22°C, PAR = 1140 μmol−2m−1), and drought 

(22°C). Plants in the drought condition were not watered for the entirety of the scanning 

period. Tobacco experiments were performed in ambient, shade, and high-heat (32°C). 

Sorghum experiments were performed in ambient, shade, high-heat (35°C), and high-light. 

These conditions were selected because they represent a range of realistic environments 

regularly faced by many plant species. Scans were performed every 1–3 days. Each plant 
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was scanned at approximately the same time every scanning day. Each scan took roughly 5–

20 min, depending on plant size.

High-resolution 3D plant scanning—A blue-laser scanner (Edge Scan Arm HD, Faro 

Inc.) was used to non-invasively reconstruct plant architectures in 3D. Scanning requires no 

contact with the plant. The output of the scanner is a 3D point cloud representation of the 

plant with unprecedented, micron-level resolution with an error ± 25um. There may be some 

loss in precision toward the boundary of the plant, but all our input points were selected near 

the middle of the structure (e.g., each end-point of a branch was selected near the center of 

its diameter with respect to thickness). Plant moments were all calculated on the order of 

millimeters (the precision of the scanner is in microns), and thus we do not believe the 

precision of the scanner unduly affects our skeletonization and conclusions. Spatial encoders 

in the scanning arm provide automatic 3D registration in X-Y-Z space. This technique 

avoids common issues in imaging-based approaches that require segmentation, alignment, 

and thresholding [65, 66] because scanning only captures plant material, without any 

background. The accuracy of scanning-based measurements have been well-validated 

compared to reference measurements [67, 68], justifying their use here.

Accompanying software (Polyworks 2016, USA) was used to produce a triangulation mesh 

of the point cloud. To produce the most accurate representation of the plant, each plant was 

scanned from two sides — at 0° and after turning the plant 180° — and then automatically 

aligned.

Selecting input points for moments calculation, and pre-processing—From 

each scan, input points were selected corresponding to all branch points, including branch 

terminal points where leaves or leaflets emerge (for dicots). Sorghum do not have branches 

and instead have long grassy leaves; hence points were selected on the stalk, excluding the 

coleoptile, and at two locations per leaf: the highest point of the leaf in the up-down (y) 

direction, and the mid-point between the highest point of the leaf and base of the leaf (where 

the leaf branches from the stem).

In order to compare many plants, two adjustments to the moments are needed: a scaling of 

the density function so all plants are of the same size, and an orientation of the axes so all 

plants are aligned. For the former, we normalize by m0 to scale each architecture to unit 

length. For the latter, we rotate the architecture so its co-variance across all pairs of 

directions is zero. We computed separability without orienting the axes and found that 

separability was not promoted due to this registration (from 0.959 with orientation to 0.976 

without orientation). Thus, we do not believe separability is an artifact induced by 

registration.

For 2D architectures (e.g., some maize or vine plants), moments must be calculated in 2D, 

as opposed to 3D; otherwise, all of the moments will be 0.

Definition of separability and separated moments—Formally, a function P(x, y, z) 

of three variables is separable if it can be rewritten as:
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P(x, y, z) = p1(x)p2(y)p3(z),

for some functions p1, p2, p3 over the domain of P. An example of a function that is 

separable is P(x, y, z) = xysin(z), which can be written as a product of p1(x) = x, p2 (y) = y, 

p3(z) = sin(z). On the other hand, P(x, y, z) = sin(xyz) is not separable.

For each k, the separated moments are defined as:

mk, x = ∑
i = 1

n

(xi − x)kwi

mk, y = ∑
i = 1

n

(yi − y)kwi

mk, z = ∑
i = 1

n

(zi − z)kwi .

(2)

For example, m4,y is the 4th moment in only the y-direction, and m2,z is the 2nd moment 

(variance) in only the z-direction. If the density function is not separable, then m4,y would 

also depend on the values of the function in at least one other direction, x or z.

Each separated moment in Equation 2 is normalized by m0
2/3 so that when computing the 

product of separated moments, the total length wi is only factored in once, allowing for an 

equal comparison to the product moment, mk in Equation 1. We calculate product and 

separated moments for even values of k and thus leave out the absolute value sign.

Measure of architecture size using moments—To measure size, we used the 

standard deviation of the architecture in all directions. This denotes the amount the 

architecture spreads around the center of mass. Recall that the 2nd moment m2 corresponds 

to the variance; thus, the standard deviation equals:

σxyz =
m2
m0

=
∑i (xi − x)2(yi − y)2(zi − z)2wi

∑iwi
,

where we normalize by the total length (m0) to scale to unit length. This is a typical measure 

of size that is computable using only the moments themselves, and no other quantity. This 

measure is also proportional to another common measure of size, the convex hull volume 
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(i.e., the smallest convex polytope that encloses all the scanned cloud points representing the 

plant), justifying its use as a measure of size (Figure 3A).

Note that the convex hull would not be sufficient to specify the functional form of the 

architecture: the same convex hull could represent either a uniform or a Gaussian spatial 

density, and there would be no way to distinguish these from the convex hull alone.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data were quantified using statistical moments as described in Results and Method 

Details. We used n = 557 architectures. All regression lines were computed using least-

squares. Error bars correspond to 99% confidence interval computed using bootstrapping, or 

least-squares fit error, as noted. Other technical details are described in Results, Figures 2, 3, 

and 4, and below.

Quantifying departure from true separability—We found that all plants analyzed 

together achieved a separability of 0.959; however, it is difficult to appreciate how close to 

true separability this may be without providing some frame of reference. Here, we ask: at 

how many standard deviations would a true Gaussian density function need to be truncated 

in order to exhibit the same departure from exact separability that we observed for the actual 

plant architectures? In the main text, we found that the spatial density function of all plants 

can be described by a Gaussian density truncated at two standard deviations from the center. 

Here, we test if a Gaussian truncated at two standard deviations exhibits a similar departure 

from exact separability as observed by the plants. The key point here is that the amount the 

function is truncated in one direction depends on the amount of truncation in another 

direction, which makes the function non-separable. This would occur, for example, when the 

truncation is spherical for 3D data (circular for 2D).

Snider et al. (2010) provided a test to compute separability using truncated product and 

separated moments for Gaussian density functions. Figure S1A shows that the observed 

departure for plants is very similar to that which would be expected by a Gaussian truncated 

at two standard deviations from the center. Each colored line in Figure S1A corresponds to a 

true Gaussian function truncated at a different number of standard deviations (as annotated; 

1, 2, 3, 4, 6, 8, 10). For a Gaussian truncated very far from the center (8 or 10 standard 

deviations, the purple and pink lines), the log of the separability is close to 0 = log (1), 

indicating very little departure from exact separability. Superimposed on this plot are black 

dots corresponding to the plants’ separability, calculated for each moment order separately 

(in the main text, we combined all moment orders together).

We find that the separability expected by a Gaussian truncated at two standard deviations 

closely overlaps with the plant data. Thus, the observed departure from exact separability 

can be largely attributed to the fact that plant territories are truncated Gaussians.

Quantifying length-to-volume differences across time—We sought systematic 

differences in the length-to-volume relationship across time. As expected, there was roughly 

an even split between architectures lying above (280) and below (277) the regression line. 

However, the 35 architectures lying furthest below the regression line were all tomato or 
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tobacco plants that were less than 6 days into their development. Tomato and tobacco are 

both dicots, producing two embryonic leaves (cotyledons) that are used to capture resources 

for initial growth. The cotyledons fan-out opposite from each other, occupying a relatively 

large volume for its small initial total length. Sorghum, on the other hand, is a monocot 

which only produces one lengthy, grass-like cotyledon (scutellum); this occupies less 

volume and thus sorghum plants lie closer to or above the regression line. The scatter 

observed thus represents a systematic trade-off in length-to-volume ratios employed in early 

development compared to later time-points.

DATA AND SOFTWARE AVAILABILITY

All data for the 557 3D plant architectures are available to download at Mendeley Data 

(http://dx.doi.org/10.17632/9k7zctdyhs.1). Code for computing moments, and visualizations 

of all plant architectures, are available at: http://plant3d.snl.salk.edu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We analyzed 557 3D plant architectures to study how branches distribute in 

space

• Branch density was separable, self-similar, and described by a truncated 

Gaussian

• These three properties are shared by dendritic and axonal morphologies in the 

brain
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Figure 1. 3D Plant Scans and Illustrative Spatial Density Functions
(A–C) Example scans of three plants on their 20th developmental day: (A) tomato; (B) 

sorghum; and (C) tobacco. Grey dots correspond to the mid-points of edges at the shown (x, 

y, z) location and are used to compute the spatial density function for each plant. Only 

visible points are shown.

(D) Illustrations of Gaussian spatial density functions in different conditions and time points. 

Our analysis focuses on the branching architecture above the hypocotyl. The brown cloud 

denotes the spatial density of the branching architecture. The higher the brown intensity of a 

point, the higher the probability of finding a branch at that point. The length-to-width ratio 
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of the ellipse reflects differences in density in each direction. The distribution curves on top 

of the ellipses show examples of the Gaussian density function along one direction.

See also Figure S4.
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Figure 2. Separability of Plant Architectures
(A) Log-log plot of the product moments (mk) versus the product of the separated moments 

(mk,xmk,ymk,z) for even values of k between 0 and 20. There is one dot per moment order 

per plant scan (557 architectures×11 moment orders = 6127 total dots). The blue line shows 

the least-squares fit to the data with slope of 0:959 ± 0:002, computed using all values of k 

plotted together. The red line indicates exact separability with a slope of 1. Plant 

architectures are nearly, but not exactly, separable.

(B) Frequency histogram of the separability slope calculated for each individual plant over 

all its moment orders (i.e., 557 slopes; one slope calculated per plant). The average slope 

was 0.946 with SD of 0.044.

See also Figure S1.
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Figure 3. Self-Similarity of Plant Architectures
(A) Log-log plot showing the high correlation of plant architecture size, measured using the 

convex hull volume (y axis) versus the SDs in the three directions (x axis). Correlation 

coefficient of the red regression line is shown in the legend.

(B) First step of the self-similarity test, plotting log(mk=m0) (y axis) versus log(sxyz) (x axis) 

for all 557 plant architectures for k = 0, 2,…, 20. Each architecture contributes one dot per k. 

Straight lines depict least-squares fit to the data for each k.

(C) Second step of the self-similarity test, plotting the slopes of the regression lines in (B) 

for each moment order. For each moment order, error bars correspond to 99% confidence 

intervals, computed using bootstrapping, for each corresponding regression line in (B). Most 

confidence intervals are less than the diameter of the plotting symbol. Error in the legend 

indicates the least-squares error of the regression line in (C).

See also Figure S2.
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Figure 4. Plant Gaussian Spatial Density Functions
Plots of the intercepts of the self-similarity lines in Figure 3B versus moment order for (A) 

all plants together, (B) tomato only, (C) tobacco only, and (D) sorghum only. Each panel 

depicts the intercepts of the plants (solid brown line) with those of a closely matched 

function (solid black line), as well as a uniform density, and a Gaussian with a larger SD. 

Error bars denote 99% confidence intervals. Intercepts for the uniform and Gaussian 

densities for various truncations were computed analytically [30]. Intercepts for k = 0 and k 

= 2 are both equal to log(1) = 0 due to normalization to unit length and unit variance. See 

also Figure S3.
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Figure 5. Length versus Volume Comparison
(A and B) Log-log plots of total length (y axis) versus total volume (x axis) of the 

architecture, grouped by (A) species and (B) condition. Regression line is shown in black. 

Analysis includes all plants day 8 and higher.

(C–E) Histograms showing the number of plants in three different species-condition pairs—

(C) tomato drought, (D) tobacco high-heat, and (E) sorghum control—that lie above or 

below the regression line, shown as to the right or left, respectively, of the red line. For 

example, 78.6% of tobacco plants grown in high heat lie significantly above the regression 

line, i.e., they occupy a smaller volume for the same length compared to the average. 

Sorghum plants are split evenly above and below the regression line.

See also Figure S5.
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Table 1.

Architecture Statistics for Our Benchmark Dataset

Species Environment Time No. Branch Points No. Leaves Log(Volume) (mm3)

Tomato ambient D00 2.00 ± 0.00 2.00 ± 0.00 3.14 ± 0.03

Tomato ambient D10 7.00 ± 0.24 9.00 ± 0.37 4.77 ± 0.01

Tomato ambient D20 16.20 ± 0.36 17.00 ± 0.35 5.75 ± 0.02

Tomato shade D00 2.00 ± 0.00 2.00 ± 0.00 3.21 ± 0.03

Tomato shade D10 5.33 ± 0.00 2.00 ± 0.00 4.53 ± 0.05

Tomato shade D20 11.50 ± 0.35 13.5 ± 1.06 5.34 ± 0.15

Tomato high heat D00 2.00 ± 0.00 2.00 ± 0.00 3.16 ± 0.04

Tomato high heat D10 2.00 ± 0.00 4.67 ± 0.38 3.71 ± 0.04

Tomato high heat D20 3.00 ± 0.00 6.00 ± 0.00 4.11 ± 0.06

Tomato high light D00 2.00 ± 0.00 2.00 ± 0.00 3.15 ± 0.02

Tomato high light D10 8.67 ± 0.38 10.33 ± 0.38 4.79 ± 0.02

Tomato high light D20 19.33 ± 1.02 20.66 ± 0.84 5.82 ± 0.01

Tomato drought D00 2.00 ± 0.00 2.00 ± 0.00 3.07 ± 0.04

Tomato drought D10 6.00 ± 0.33 8.00 ± 0.00 4.44 ± 0.03

Tomato drought D20 11.67 ± 0.69 12.67 ± 0.69 5.12 ± 0.04

Tobacco ambient D00 2.33± 0.19 3.33 ± 0.19 2.79 ± 0.01

Tobacco ambient D10 5.67 ± 0.19 6.67 ± 0.19 4.29 ± 0.04

Tobacco ambient D20 8.67 ± 0.19 9.67 ± 0.19 5.51 ± 0.07

Tobacco shade D00 2.00 ± 0.00 3.00 ± 0.00 2.78 ± 0.02

Tobacco shade D10 5.00 ± 0.00 6.00 ± 0.00 4.09 ± 0.03

Tobacco shade D20 7.00 ± 0.00 8.00 ± 0.00 4.82 ± 0.01

Tobacco high heat D00 2.00 ± 0.00 3.00 ± 0.00 2.81 ± 0.02

Tobacco high heat D10 7.00 ± 0.00 8.00 ± 0.00 4.23 ± 0.06

Tobacco high heat D20 11.00± 0.00 12.00 ± 0.00 5.27 ± 0.02

Sorghum ambient D00 2.00 ± 0.00 1.33 ± 0.19 2.22 ± 0.06

Sorghum ambient D10 6.33 ± 0.19 3.33 ± 0.19 5.34 ± 0.03

Sorghum ambient D20 10.33 ± 0.38 5.67 ± 0.19 6.04 ± 0.05

Sorghum shade D00 2.00 ± 0.00 1.00 ± 0.00 2.18± 0.03

Sorghum shade D10 6.00 ± 0.00 3.00 ± 0.00 5.15± 0.02

Sorghum shade D20 7.33± 0.51 4.00 ± 0.33 5.62 ± 0.09

Sorghum high heat D00 2.00 ± 0.00 1.00 ± 0.00 2.39 ± 0.01

Sorghum high heat D10 7.00 ± 0.67 4.00 ± 0.33 5.39 ± 0.01

Sorghum high heat D20 10.00 ± 0.58 5.67 ± 0.19 5.56 ± 0.03

Sorghum high light D00 2.00 ± 0.00 1.00 ± 0.00 2.42 ± 0.07

Sorghum high light D10 8.00 ± 0.00 4.00 ± 0.00 5.38 ± 0.04

Sorghum high light D20 11.33 ± 0.38 5.67 ± 0.19 6.03 ± 0.04

For each species and environment, example architectural features are listed for three time points: D00 (the first day of scanning), D10, and D20. For 
each row, we show the average number of branch points and leaves and the total volume occupied by the plant. The number of leaves includes 
leaflets and cotyledons. The volume is expressed as the log10 of the convex hull of the cloud points for the scanned plant. All error values represent 

SE across two to five replicates. See also Figure S6 and Table S1.
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