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Abstract

Outcome-dependent sampling (ODS) scheme is a cost-effective way to conduct a study. For a
study with continuous primary outcome, an ODS scheme can be implemented where the expensive
exposure is only measured on a simple random sample and supplemental samples selected from 2
tails of the primary outcome variable. With the tremendous cost invested in collecting the primary
exposure information, investigators often would like to use the available data to study the
relationship between a secondary outcome and the obtained exposure variable. This is referred as
secondary analysis. Secondary analysis in ODS designs can be tricky, as the ODS sample is not a
random sample from the general population. In this article, we use the inverse probability
weighted and augmented inverse probability weighted estimating equations to analyze the
secondary outcome for data obtained from the ODS design. We do not make any parametric
assumptions on the primary and secondary outcome and only specify the form of the regression
mean models, thus allow an arbitrary error distribution. Our approach is robust to second- and
higher-order moment misspecification. It also leads to more precise estimates of the parameters by
effectively using all the available participants. Through simulation studies, we show that the
proposed estimator is consistent and asymptotically normal. Data from the Collaborative Perinatal
Project are analyzed to illustrate our method.
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1| INTRODUCTION

In many epidemiology studies, the primary outcome variable is easy to obtain, while some
exposure variables are expensive or difficult to measure. This motivates statisticians to
develop outcome-dependent sampling (ODS) designs, in which the selection probability
depends on the primary outcome variable. The main idea of such ODS designs is to
concentrate resources on those participants that are more informative in explaining the
outcome/exposure relationship. The case-control design has been widely used for studies
with a binary primary outcome.! Prentice? proposed a case-cohort study design for failure
time regression analysis. Zhou et al3 considers an ODS design for data with a continuous
primary outcome: In their design, in addition to a simple random sample (SRS) from the full
cohort, 2 supplemental SRSs are drawn from 2 tails of the outcome distribution. The initial
SRS from the entire cohort provides information about the overall population, and
supplemental samples allow investigators to oversample those participants that are more
informative about the exposure-response relationship. One example of such ODS design is
the Collaborative Perinatal Project (CPP).34 The main purpose of CPP is to study the
relationship between in utero exposure to polychlorinated biphenyls (PCBs) and multiple
neurological outcomes, including children’s 1Q performance. As PCB level is expensive to
ascertain, an ODS scheme is adopted: An SRS is taken, and 2 supplemental samples are
chosen from 2 tails of the 1Q distribution. Related works on ODS to evaluate the association
between expensive exposure and the primary outcome variable include Zhou et al 31011
Weaver and Zhou,®> Wang and Zhou,58 Song et al,” and Qin and Zhou.®

In any real studies, it is typical that there are more than 1 endpoint of interest. As such,
investigators would like to reuse the ODS data to study the association between a secondary
outcome and the obtained exposure variable. For example, in the CPP data, investigators are
also interested in examining the relationship between PCB level and children’s birth weight.
Many prior studies have tried to assess the association between these 2 measures, and yet so
far have failed to reach a consistent conclusion.12-18 With CPP data collected in the first
place using an ODS design to evaluate children’s 1Q and PCB level, we are interested in
adding some evidence to this research problem by developing a valid and precise method for
secondary analysis under ODS designs.

In this paper, we develop a method for conducting secondary analysis under continuous
outcome ODS design described by Zhou et al.3 As the data obtained from ODS design is not
a random sample of the overall population, performing secondary analysis is not
straightforward. Ignoring the biased sampling nature of the data could yield an invalid
estimate of the true parameters in the general population. The analysis restricted to the
participants in the SRS portion is clearly inefficient as it underuses the available data. A
significant amount of work was done on secondary analysis in case-control data. This
includes the likelihood-based methods, 192 inverse probability weighting (IPW),22:23 and
estimating equation.24:25 However, to the best of our knowledge, there has been no research
conducted on the secondary regression analysis in the continuous outcome ODS design
framework.
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We propose estimating equation approaches to analyze a secondary outcome for data
obtained from an ODS design with a continuous primary outcome. The advantage of our
approach is that no additional model assumptions are specified. The augmented estimating
equation utilizes the available information in the full cohort, and hence increases estimation
precision. In addition, our method is computationally stable and fast. The organization of the
paper is as follows. In Section 2, we present some notations, data structure and our model
under ODS designs. In Section 3, we propose two estimating equations, IPW estimating
equation and augmented IPW estimating equation. We give the corresponding asymptotic
properties in Section 4. In Section 5, we present the simulation results that compare our
proposed estimator to other competing estimators. In Section 6, we apply our methods to
CPP data to study the relationship between children’s birth weight and maternal PCB level.
We conclude this paper by a brief discussion in Section 7.

2 | DATA STRUCTURE AND MODEL

To fix notation, let Y7 be the primary continuous outcome variable that the ODS sampling
scheme is based on. Let X be the expensive exposure, which is only observed for some
participants, and Zbe the vector of other covariates that are easy to obtain. Furthermore, let
Y, denote a continuous secondary response. Our interest lies in inference of the secondary
response Y5 with respect to X adjusting for other covariates Zfor data obtained from
continuous outcome ODS design.

We partition the domain of Y; into a union of 3 mutually exclusive intervals: AjUAUA3 =
(-0, alU(a, bJU(b, +00). We assume that the underlying data {( Y1, Y2, X 2), /=1, ..., N}
are independent and identically distributed random vectors, with A/ be the size of the full
cohort. The ODS design proposed by Zhou et al® can be regarded as a 2-phase design: In the
first phase, information on primary outcome, secondary outcome, and inexpensive covariates
are observed for each member of the full cohort. That is, we observe {( Y1) Y2i Z), /=1,
..., N}. In the second phase, the expensive exposure X'is measured on an SRS of size
from the full cohort and 2 supplemental SRSs drawn from 2 tails of the distribution of Y3,
ie, supplemental sample of size /7 from { Y1€A} and supplemental sample of size /3 from
{Y1EA3}. Let W, V4, V3 be the index set of SRS, supplemental sample taken from { Y7 <
a}, and supplemental sample taken from { Y7 > b}, respectively. That is to say, we observe
{X; i € VoUWU 3} in the second phase. Here, the sample sizes m, m, and 175 are fixed by
design. Note that we use fixed-size sampling (sampling without replacement) for both the
initial SRS and the supplemental samples. When stratum sizes (ie, number of participants in
Ajp and Ag) are very large, it is equivalent to independent Bernoulli sampling, as the stratum
specific sampling probabilities are effectively fixed.

Let V= WhU WU V3, and let iy be the size of V. Then, n,= my+ m + m. Using terminology
from measurement error literature, these 77, 0bservations are called validation sample. In
addition, we let ng=N-ny. We refer to the ng observations as the nonvalidation sample

because expensive exposure X is not measured for these individuals. Let v represent the
index set of the nonvalidation sample, and r;be the indicator variable of observing X for
participant / then V={/: /=1} and V = {i:r, = 0}.
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The data structure for the ODS design can be summarized as the following:

First phase :
Second phase : {SRS}

Yli’YZi’Zi}’ i=1,-N;
X.} i€V

1
X|Y,eAl} ievy @)

{supplemental sample 1}

—_— —— = ——

{supplemental sample 2} Xl.| Y, € A3}, i€V;.

Let tq,=E( Y1/ X Z) and 1p;= E( Y| X}, Z)) denote the conditional expectation of Y;;
and Y5,given the covariates, respectively. In most problems, we are interested in estimating
the regression coefficients (8, y) from the following 2 models:
= (/‘u) _ E(Y,,|X,.2)
i ki) T\ E(Yy]X,. Z))

31_1(/;0 + 51X+ BrZ)
& (ro+nXi+n2) |

@

where g1(-) and g»(-) are specified link functions, such as g(x) = x for linear regression.
Without loss of generality, we use the identity link g;(X) = go(x) = xto illustrate our ideas
throughout the paper. It is also worth mentioning that no distributional assumptions are made
about yj;and y»;. Since analysis on secondary outcome is our primary goal, we focus on
developing an inference procedure for (g, 71, »2).

3 | ESTIMATING EQUATION APPROACH

3.1 | Inverse probability weighted estimating equation

Let £= (B, y). Since we do not make any parametric assumptions about Y; and Y5, no
likelihood-based approaches are available. Let e;= (61, &))" = (Y1;— thi Yoi— Bo) .
Following the ideas from Horvitz and Thompson, Liang and Zeger, and Zhao et al 26-28 we
first propose an IPW estimating equation that uses the validation sample only:

N
SE0m= Y sE0m= Y DI = Y Iplo7le,=0. @)
i=1"1

ieVv iev’'i

where Qis the covariance matrix of (Y3, Y2), ie, Q= Cov(Y3, Y2), r;is the probability of
being selected into the validation sample for each participant /7 and

ou,  (1X;2,00 0

D.=— "
st

1

00 0 1X,Z.
i

The selection probability m;is a function of the observed outcome value Y7, Let Vg 4 be the
index set of the observations in the SRS that belongs to the Ath stratum Ag. That is, Vg =
W1 U V2 U W3 Then, m,can be expressed as follows:
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Pr(i inV jor Vl) ity <a,
n;=Prir,=1|v,)) = Pr(i in V. 2) ifa<y <b,

orV

Pr(iin Vo.a 3) ity > b.

For complex sampling designs, such as the ODS design described in this paper, it is difficult
to express rz;in explicit forms. We cannot directly solve Equation 3 as the covariance matrix
@, and the selection probability 7 is unknown. Hence, the general idea is to plug in

consistent estimators of Qand 7 into Sy(& @, ) to get 5, (&) = S, (¢, 0, 7) and then solve the

equation S$y(&) = 0.

Because Y7 and Y5 are observed for each member of the full cohort, a consistent estimator
of the covariance matrix Qis the sample covariance derived from the full cohort. That is,

_121_1< )2 _121_1( —7))(Yy = 7,)
I Ty e I ()

0=

where Y , and 172 are sample means for Y7 and Y5, respectively.

Let Vg, k=1, 2, 3 be the number of observations in the full cohort that belong to the kth
stratum A Similarly, let i, k=1, 2, 3 be the number of observations in the SRS that
belong to stratum A That is, N= Ny+No+ N3, my = 1y 1+ 2+ Mg 3- Then for each
participant, the observed probability of being sampled within its respective strata A, can be
written as

(nO,l +nl)/N1 if Yli <a,

IN ifa<Y1iSb,

7;=1"0,2""2

<n0’3 + n3)/N3 ity >b.

It is straightforward to show that z; is a consistent estimator for ;. Hence, our first proposed
estimator & py Satisfies the following estimating Equation 4 and can be obtained using

Newton-Raphson algorithm.

4)

:l>| ~
II
o

N
§,0= Y 5,0= %Df = Y50

ieVv iev

3.2 | Augmented inverse probability weighted estimating equation

The weighted estimating equation 4 described above may not be precise as it uses only the
information contained in the validation sample where the expensive exposure Xis observed.
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Following the ideas from Robins et al,2? an augmented estimating equation can be used. Let
u;be any kernel function, and let A()4;, V> zj) be any function, then

r.
- ;li)h(y 1720 Zi)] =0

is an augmented estimating equation. Any choice of /(-) would lead to a consistent estimate
of the parameters. This comes from the fact that

r r.
i i
E[|I1=—h{y;»» -,z-]=E Wy »Yy.2.)E (l—f)
l( ﬂ'l.) ( 1°72i l) V1Yo ( 172i 1) ri|yli’y2i’zi .

However, an optimal choice of /(-) would improve the estimation precision. From Robins et
al, 2% it is shown that the optimal /(-) should be the conditional expectation of the kernel
function given the observed data, ie, /)1, Yo/ Z) = E(Uirs Voi Z).

Following this line of reasoning, we propose the following augmented IPW (AIPW)
estimating equation based on estimating equation 3:

N N

SE0 M= Y 5E0m =Y

i=1 i=1

i T A1 di 71,11 _
<D0 e+ 1__EXL~|Y1szfZ,-[D"Q e =0.5)

i 7

Notice that the augmented estimating equation 5 incorporates all the information available in
the full cohort, including those observations in the nonvalidation sample. To use estimating
equation 5, one needs to assume a form of the conditional moments, ie, E(X;| Y1, Y2 Z)

and E(Xlz| Y Yo Zl.). As the expensive exposure variable is often on a continuous scale, it is

reasonable to assume that

B(X,[ Y1 Y00 2) = b+ 1Y+ dyY oy + 32

and
Var(X,|¥ .Y, Z) = "
i1 207
Then, the second-order moment can be expressed through the conditional mean and
oy . 2 2
conditional variance as B(X;|Y .Y, Z,) = Var(X,|Y,;, Y, Z) + [B(X,| Y|, Y, Z)*
Let ¢ = (do, #1. ¢, #3). We notice that Sx(&, Q, 7, ¢, %) has several components, in which &

is the parameter of interest and (Q, 7, ¢, o) are nuisance parameters. The following
summarizes the steps on how to conduct the analysis:
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1 Fit a linear regression to obtain parameter estimates for (4, o) based on the SRS
portion of the data.
2. As outlined in Section 3.1, obtain the consistent estimator 0, 7 for Qand 7.
3. Plug (é, 7., 32) into S, to obtain 5,(&) = Sz(é, 0.7, 9. 82). Our second proposed
estimator EAIPW is the solution to the following augmented IPW estimating

equation:

N N

S, =Y 50=)

i=1 i=1

Ti TAa-1 Ti\a TAa-1 1| _
A010 e+ 1=y YZ"ZV[DI.Q e|f=o0.

i i

(6)

Note that how to estimate (Q, r, ¢, o) does not influence the asymptotic distribution of

é Azpw s long as the nuisance parameter estimates are root-/V consistent. In Appendix A, we

use a lemma from Yuan and Jennrich3° to show why this is the case.

4 | ASYMPTOTIC RESULTS

In this section, we will present theorems regarding the consistency and asymptotic normality
for our proposed estimators & pw and ¢ Azpw- Let & be the true values of the parameters of

interest, and let (Qx, 7+, ¢+, ai) denote the true values of the nuisance parameters (@, r, ¢,

o). In addition, we let £, denote the conditional expectation given ¥; € Ay That is, for any
function f.), EJRA Y1, Yo, X, 2] = EA Y1, Yo, X, 2 | Y1EA]. Under regularity conditions
outlined in Appendix A, assuming that my/ny,—pp>0 and g n,—p=0 for k=1, 3, the
following theorems hold for &, and &, .y,

Theorem 1

& pw @nd & , py, CONVerge in probability to &

Theorem 2
Let 6 denote the nuisance parameters (Q, ), then EIPW has the following asymptotic

distributional properties:

\/@(EIPW - 5*) _D) N(O’ Il_ 1(5*’ 9*) 21 (5*’ 0*)11_ 1(5*’ 9*))’ (7)

where
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as,(£.60)
oel

2s,(£.0)
oe”

9s5(£,0)
T

1/E0) = = pyE p

— Pk

- /’3E3[

and

210 = poEls €05, 0T |+ p B[00 €0 | + p3E5[s, € 005 0) .

Replacing the population quantities with the sample quantities, a consistent estimator for the
asymptotic variance-covariance matrix can be obtained as

IAI_ 1 (EIPW’ é) 21 (EIPW’ é)IAI_ 1 (glPW’ é)

R 05, (E0) A
where 7,(¢,60) = - %Zl oy 1957 and 3", (£,0) = %21 v &S (€0

Theorem 3
Let 7= (Q, m, ¢, o2) denote all the nuisance parameters. & azpw Nas the following asymptotic

distributional properties:

‘/N(EAIPW - 5*) 2’ N(O’ 151(‘5*’ ’7*) Zz(é*’ ’7*)15 : (5*’ ’7*))’ (8)

where 1,(¢,n) = —E ,and X, (&n) = E[sy&msyEn)' |

d
agT 52(5, 1’])

Replacing the population quantities with the sample quantities, a consistent estimator for the
asymptotic variance-covariance matrix can be obtained as:

IAE 1 (gAIPW’ ﬁ) 22 (EAIPW’ ﬁ)IAE 1 (gAIPW’ ﬁ)

where 7, = -+ 3, E()TSZ"@’ mand 25 En =+ 0 s, msy &’

Outline of the proofs are in Appendix A. We will apply a result of Foutz3! to prove the
consistency of our estimator and use Taylor expansion together with Slutsky theorem to
prove asymptotic normality.

5| SIMULATION STUDIES

In this section, we conduct extensive simulation studies to evaluate the finite sample
performance of our proposed estimators. There are 5 competing estimators: (1) & sgg denotes
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the regression estimator based on SRS portion of validation sample. (2) ER denotes the

regression estimator from an SRS of the same size as the validation sample. Notice that this
estimator is not available in practice, because when the existing data are obtained from an
ODS design, it is impossible to obtain a SRS of the same size of the ODS sample. We
include sz in the table for comparison purpose only. (3) E[PW denotes the estimate from our
inverse probability weighted estimating equation proposed in Section 3.1. (4) éAIPW denotes
the estimate from our proposed augmented IPW estimating equation in Section 3.2. (5)
ESPML denotes a semiparametric maximum likelihood estimator similar to Jiang et al.2% In
deriving ESPML, we assume that (Y7, Y?) is bivariate normal and use estimated likelihood

technique to deal with the nuisance functions. The details are shown in Appendix B.

The data are generated from the following models:

Yi=py+BX+pZ+e, (9)
Yo=rg+tr X+rZ+e,

where X~ MO, 1), Z~ Bernoull{0.45) and (e, &) follows a bivariate normal distribution
With var(e) = o3, var(e) = o3, COL€,€) = poy . The true parameter values are o = 1, B = -

0.5 =1 »=-05 01=0p=1,and p=0.8. We allow B; and y1 to take value O or 0.5.

Let 4, and o, be the sample mean and standard deviation for the primary outcome Y
1 1

observed in the full cohort. In continuous outcome ODS design, we first select an SRS of

size m, then a supplemental sample of size r; is chosen from [Y1 <py —acy, randa
1 1

supplemental sample of size 123 chosen from (v, > My, + aayl]. The validation sample has

size my= my + m + 3. We consider the following 2 settings: (1) i = 200, m = 3 = 100. (2)
m =300, m = n3 =50. In addition, we also vary the cutoff points of the strata by considering
different values of &, ie, a= 1 or 1.5.

Tables 1 and 2 show the simulation results based on 1000 independent replications. The full
cohort size is /= 3000. In Table 1, (m, m, m3) = (200, 100, 100). In Table 2, (i, m, ) =
(300, 50, 50). The average of parameter estimates (Mean), empirical variance of parameter
estimates across all simulations (VAR), average of the variance estimator (VAR), and 95%
Cl coverage are reported. In addition, we show the sample relative efficiency of all
estimators relative to EIPW in terms of estimating 1. The sample relative efficiency is

defined as the ratio of empirical variance, ie, SRE , py-. ;py = var(élPW)/var(éAIPW).
From Tables 1 and 2, we have the following observations: (1) All 5 estimators yield virtually

unbiased estimates. (2) £sppy has the most precise estimate. However, as later shown in the
simulation studies, the validity of ESPML depends heavily on the correctness of bivariate
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normal assumption and is hence not robust. (3) AmMong & ¢, & pyy ANA & 4 oy the
augmented estimating equation estimator EAIPW is the most precise in all settings except for
when g1 = y1 = 0, where the performance of E,PW and EA,PW are similar. For example, when

(m, m, ms) = (200, 100, 100), a=1, B1 =0, y1 = 0.5, the empirical variance estimating y1 is
0.0016 for & , ;- Which is smaller than 0.0026 for & .., and 0.0049 for & ... The precision

gain comes from the fact that EIPW and EAIPW use more participants than ESRS. (4) For all

estimators, averages of the variance estimator is very close to the empirical variance (ie,
VAR is close to VAR). (5) The 95% CI coverage is close to 0.95, which implies that the
asymptotic normal approximation works well in these finite sample size settings. (6) When
the cutoff points are further out (ie, 2= 1 versus a = 1.5), the precision gains of E,PW and

EAIPW over ESRS are slightly lower (Table 1). The ODS sample is more enriched with &=1.5.

However, this more enriched study design is offset by the highly variable IPW weighting
distribution that results in precision loss. (7) Comparing the results across Tables 1 and 2 in
terms of estimating y1, we find that, for a given validation sample size (r7,,= 400), when
SRS sample size is larger (ie, rmy = 200 versus m = 300), the variance of EIPW and EAIPW

decreases. However, the variance of & srg Nas a faster decreasing rate. That is, the precision

gains of £, and & , .., OVer & ¢ is smaller when the SRS sample size is larger.

We investigate the scenario where the error term e is not normally distributed. The
simulation set up is the same as Table 1 except for the error term. We assume that e~ MO,
1), e is a gamma distribution with shape parameter 2, rate parameter 1, then normalized to
have mean 0 and variance 1. This error term is right skewed. From Table 3, we see that our
proposed estimators are more robust to model misspecification than ESPML. When true y; =

0.5, the 95% CI coverage rate is poor for ESPML. ESPML also has larger empirical variance
than &y, and & ,,y, @ it misspecified the distribution of Y. Another limitation of £, is

that it is subject to “curse of dimensionality” as nonparametric method is used to estimate
the nuisance function. Therefore, the method cannot be directly applied when the dimension
of Zis relatively high, ie, > 3. In addition, the method does not have a natural extension
when Zhas both discrete and continuous components.

We further investigate the performance of our proposed estimators in estimating 4 under
different combinations of the SRS sample and supplemental samples. The simulation set up
is as follows: a=1.0,y=1,,=0.5,8=-0.5,%9=1,91 =05, =-05,01 = 0» = 1,0=0.8.
The full cohort has size A=3000. We fix the validation sample to have size 17,,=400 and vary
(o, m, ). Figure 1 shows the sample relative efficiency of & , .., and & g relative to &,

over a wide range of proportion of the SRS sample in the validation sample (/). We
confirm that when SRS size is larger, there is larger precision gain of EA,PW over E[PW‘

while the precision gain of & .., and & , ;py,, OVer & g is smaller.
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We also evaluate the precision gain of our proposed estimators for different values of p,
where p is the correlation coefficient between 2 error terms eand ein (9). Figure 2 shows
the corresponding sample relative efficiency. When correlation changes from 0 to 1, the
precision gain of EIPW over ESRS is relatively stable for different p values. On the other hand,

the precision gain of £, .., over &,,,,, is decreasing when y; >0, and increasing when 74<0.

6 | COLLABORATIVE PERINATAL PROJECT DATA

In this section, we applied our method to analyze the CPP data set. The CPP is originally
conducted as a cohort study to evaluate the risk factors for birth defects and other
neurological disorders of childhood.32 The study involved 12 hospitals/universities located
across the United States. In all, 55 908 pregnancies were registered, representing the
experience about 44 000 women. The children born during the study were followed up until
8 years old. One hypothesis is that maternal PCB levels are related to children’s 1Q
performance at 7 years of age.* Because the exposure variable PCB levels are very
expensive to measure, ODS design is conducted on the basis of CPP data. An SRS of 849
individuals is selected, and then 2 supplemental samples are selected based on the children’s
1Q score. One supplemental sample of size 81 is selected from the lower tail of the 1Q
distribution, defined by 1 standard deviation below the mean 1Q score in the CPP population.
The other supplemental sample of size 108 is chosen from 1 standard deviation above the
mean 1Q score.

Many researchers have made efforts to assess whether there is association between PCB
level and child’s birth weight, but the findings from these studies are not consistent. Some
indicate an inverse association,12:16:18 while other indicates a positive association!3 or no
association at all.1*1517 We use our available CPP data to perform the secondary outcome
analysis. In our analysis, we use the Weschler Intelligence Scale for children at 7 years old
(1Q) as the primary outcome, and child’s birth weight (in grams) to be the secondary
outcome. Other confounding variables include parent’s education level (EDU), social
economic status of the child’s family (SES), race ethnicity of the child (RACE), and gender
of the child (GENDER).

Table 4 shows the parameter estimates, standard error, and 95% Cls for the secondary
outcome model, which regresses birth weight over PCB level adjusting for other covariates.
Simple random sample denotes the regression analysis based on the SRS portion of the data.
Inverse probability weighted denotes the inverse probability weighted estimating equation
we proposed in Section 3.1, which uses the validation sample only. Augmented IPW denotes
the augmented inverse probability weighted estimating equation proposed in Section 3.2.
The semiparametric maximum likelihood estimator is excluded from the analysis, as it does
not have a natural extension when the covariates contain both discrete and continuous
components.

All 3 analyses confirm that maternal PCB concentration is not significantly associated with
child’s birth weight. However, the proposed IPW and AIPW estimator provide more precise
estimates of the effects, evidenced by the reduced standard error and narrower CI. For

example, the standard error for the PCB effect is 8.41 for IPW and 8.46 for AIPW, which is
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smaller than 9.20 for the standard regression analysis based on the SRS portion of the data.
All 3 analyses confirm that being White has a positive impact on child’s birth weight, while
AIPW analysis shows that social economic status has a positive impact on birth weight. In
addition, girls have lower birth weight compared with boys as we expected. Note that there
seems to be some difference between AIPW and IPW estimator for the EDU effect. We
conducted additional simulation studies to show that such difference is merely due to
sampling variability, and the observed difference is not that large if we take into account of
the magnitude of the standard error. The details are shown in the Supporting Information.

7 | DISCUSSION

Investigators would all like to use the availability of expensive exposure that is already
measured in a previous study. Most studies have multiple endpoints beside the primary
outcome. This means that we often need to reuse the already collected data to analyze a
secondary outcome in relation to the expensive exposure. However, when the original data
are collected via an outcome-dependent fashion, secondary outcome analysis can be
challenging as the ODS sample is no longer an SRS of the general population. As more
studies are conducted using ODS designs, there is ever increasing needs for performing
secondary analysis correctly and precisely for data from these studies. Our research is
intended to fill these gaps and is the first attempt to develop precise inference procedure for
a secondary outcome under the continuous outcome ODS design. We proposed IPW and
AIPW estimating equations, in which only the form of the regressions are specified. Our
proposed approach has the advantage of making no parametric distribution assumptions on
(Y1, Y») and thus is robust to model misspecification. Yet our proposed estimators are able
to improve estimation precision relative to the naive analysis using SRS sample only.

Recall that ris the indicator variable of being selected into the validation sample. The
expensive exposure X and rare conditionally independent given Y7. This means that in the
Step 1 of AIPW analysis, we could actually use the whole validation sample (7,
participants) to estimate the nuisance parameters (¢, o2). As we mentioned before, how to
estimate the nuisance parameter (¢, o2) does not influence the asymptotic distribution of

é Azpw &S long as the nuisance parameter estimates are consistent. However, in small sample

scenarios, there could be some difference. For instance, when full cohort has size 3000, (1,
m, m) = (50, 175, 175), the proposed estimator EAIPW could have some bias (mean of

parameter estimates is 0.515 while the true value for 4 is 0.5), if we only used SRS (50
participants) to estimate the nuisance parameters. On the other hand, the bias is reduced to
0.07, if we use the validation sample (400 participants) to estimate the nuisance parameters
and then solve the AIPW estimating equation. When SRS sample size is larger, such as (,
m, ng) = (200, 100, 100), the results between these 2 approaches are almost identical.

We found that our proposed estimators have the same asymptotic variance regardless of
whether we are using fixed-size sampling (sampling without replacement) or independent
Bernoulli sampling in choosing the initial SRS and the supplemental samples. This is
because even though (r3, ---, rp) are correlated under fixed-size sampling, it can be proved
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r. r.
that cov| -D; 0" e, ”—JDJTQ‘le]. = 0 for different participants 7and j. For case-cohort design,
i J

the difference between 2 subcohort sampling methods have been studied.33:34 They found
that the variance under fixed-size SRS is always smaller than or equal to the variance under
Bernoulli sampling. There is equivalence when the corresponding covariance parts equal to

0 (see the comparison between ¥, and £ in Kulich and Lin33).

In our paper, when we implemented our AIPW estimator, we specified the form of the
conditional moments, £(X| Y1, Ya, 2 and (X2 | Y1, Y>, 2) using a linear regression
model. In practice, the expensive exposure X might be discrete, then a generalized linear
model could be adopted. We could also use some nonparametric techniques to estimate these
conditional moments. Interest rises to see if there exists any difference between parametric
and non-parametric methods. In addition, we used the observed selection probability z; in

both IPW and AIPW estimators. In some ODS designs, the true selection probability is
known based on the design structure and can be calculated. It would be interesting to see
whether using the true probability or observed probability makes any difference in statistical
efficiency. Furthermore, we are looking for a flexible parametric family to jointly model the
primary and secondary outcome. Copula seems to be a natural way to achieve the goal. This
is another possible area of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

PROOFS

We provide the outline of the proofs for the augmented IPW estimator & Azpw- The proof for
E,PW follows the similar arguments and thus omitted here. Let 7= (Q, 7, ¢, %) denote all
the nuisance parameters. We make the following regularity conditions:

1 The parameter space of & E, is a compact subspace of R, and that the true
underlying value &« lies in the interior of the parameter space; the covariate
space, 2 is a compact subset of R; and the covariate space, Z, is a compact
subset of R7 for some ¢= 1.
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2. For all (Y1, Y2, X 2), $(&, n) is continuous for all £ € E; the partial derivatives
9s5(&,m)
2

B o for /=1, ..., p, exist and are continuous for all £ € E.
i

3. Interchanges of differentiation and integration are valid for s;(&, ) and its first-
order partial derivatives with respect to &.

4, The following expected value matrix is finite and negative definite at (&, 7«):

E|

d
—=55(&,1)
ol 2

9s5(&.1)
> The supremum of 2 in the neighborhood of &+is bounded by a function g
(24

T
that has finite expectation. (Outline of the proof for consistency):

By law of larger numbers, it is straightforward to show that

1

N. s2i(§*’ '7*) ﬁ) E[SZ(é*’ ’7*)] =0asN—oo. (Al)

M=

1

Using the fact that 7 = (Q, 70, 82) is a consistent estimator of 7+, and §,.(¢) = s,,(&,7), it can

be shown that

1
N.
4

M=

N
~ 1
5,4(&,) - i Z SolEr ) LoasNo>w. (A2
1 i=1

Combining (A1) and (A2), we know that

Furthermore, using Assumptions 1-3 and consistency of 7, we can show that

05,) _ 0Sy(em.)
aeT ae”

1
N

20 as N> oo. (A3)

holds uniformly for &in parameter space. Also, by law of large numbers,

AN (S N
1 2( ’7*) ! as N—>oo. (Ad)

p
N T - N Z syl&n,) = E
o i=1

d
a_gTSZ(Zj’ n*)
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Combining (A3) and (A4), we have

195, »
N %T

d
_— 5’
(3§TA2( ’7*)

as N — 0.

uniformly for £ € E. From Assumption 4, we know that £

iTs2(§, 77)] is negative definite
3

and hence invertible at (&, 7«). Hence, we can apply a result of Foutz3! that uses the inverse
function theorem to prove that our proposed estimator is a consistent and unique solution to
the estimating equations.

(outline of the proof for asymptotic normality):

Let us denote

Using lemma 2 from Yuan and Jennrich,30 we have

VN| 8ol ) = S:(Em)| = ANWN(E = &)+ BN GG =) (A9)

Let Aand Bbe the limit of Ay and By, respectively. By law of large numbers, we know that

N os. (cf N )
1 d P 25 e
AN = Ni;l 667521(5*,11*) E 0§T =~ 12(4’:*”’*)
N Isy(e,m,)
1 0 2
By = NZ 7Ts2i(6*'7*) L ; ==
i=10n on

That is, A=~ /(& 7<) and B= 0. Rearrange (A5) and using the fact that s,(.7) = 0, we

have

1

_AN\/N(%\ - 5*) = WSZ(g*’ ’7*) + B\/N(ﬁ - ’7*) + (BN - B)W(ﬁ - ’7*>~

B=0, /N(i —n,) is bounded in probability. Hence, we know that

2 1
_AN‘/N(§ - 5*) = WSZ(g*’ '7*) + op(l).

By the proposition in appendix 1 of Kulich and Lin,33
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_AN‘/N<E - ;’:*) 2 N(O’ 22(5*’ n*))’

where (€, n) = A[5(& n)so(E, ). Then, using Slutsky theorem, we know that

WN(E-2) N0 ) Talean )i (En,)-

Notice that B=0 implies that the asymptotic distribution of ;; does not influence the
asymptotic distribution of & as long as # is root-/V consistent.

APPENDIX B: BRIEF DESCRIPTION OF THE ESTIMATED LIKELIHOOD
APPROACH
To develop the semiparametric maximum likelihood estimator ESPML, we need to assume

that (Y3, Y>) is bivariate normal. That is,

Yii=Pot B X+ Pzt e
Y2i =7 +]/1Xl.+ }/221. +e

where (g; &) follows a bivariate normal distribution with var(e;) = o'%, var(e;) = a%, cove;, &)
= po10y.

For a participant in Wvalidation sample), the contribution to the likelihood is (Y1, Y2, X, Z).
For a participant in V (nonvalidation sample), the contribution is (Y7, Y>, 2). Hence, the
likelihood corresponding to (1) is proportional to

L@ =TI rdvypvalxp2)x H /fé
ievV

X|Z("|Zj)’

where 7 Y1, Y2 | X, 2) is the density function of a bivariate normal distribution and Gx A'|)
represents the conditional distribution function of X given Z The log-likelihood is

1= X tosf ¥y, VylX, 7))+ .Z_logl/;fé(YU, Yzj‘x,Zj)dGXIZ(x‘Zj)].
ievV jev

Notice that Gz is a nuisance function. Using ideas from Weaver and Zhou,® we propose to
work with the following estimated log-likelihood function:

GE Z 1°gf§(Y YoilX;2) log‘/fé 2/‘ XIZ(X‘Z/)]’

jeEV

where we nonparametrically estimate Gz using the SRS sample. For discrete Z, let
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éX|Y(x|z): > (X, sxz,=2) 1(z,=2).
i€V, i€V,

For continuous Z, we use the kernel method, ie,

Gy Zwl= X I(X;<xKp(z;=2)) 3 Kplz,~z).
i€V, i€V,

where Ki() = |HY2K(H12.) is a kernel with a bandwidth matrix /. Then, the proposed
semiparametric maximum likelihood estimator ESPML is the solution to the following

estimating equation:

1018 _
voae =0
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Sample relative efficiencies (SRES) comparing & , ,py, aNd & ¢oq 10 &y, in terms of

estimating 1, under different values of p. The sample relative efficiency is defined as
SRE 4 1y ipw = var(E iy )/var(€ 4 py)- AIPW, augmented IPW; IPW, inverse probability

weighted
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TABLE 4

Analysis for a secondary outcome: child’s birth weight in CPP study

Variables SRS IPW AIPW
Int Estimate 3208.14 3209.44 3089.24
SE 86.54 79.49 21.97
95% CI  (3038.52, 3377.76)  (3053.64, 3365.24)  (3046.18, 3132.30)
PCB Estimate -0.67 -5.44 -5.49
SE 9.20 8.41 8.46
95% ClI (~18.70, 17.36) (-21.92, 11.04) (-22.07, 11.09)
EDU Estimate -8.97 -8.81 1.70
SE 9.10 8.39 1.36
95% ClI (-26.81, 8.87) (~25.25, 7.63) (-0.97, 4.37)
SES Estimate 13.94 16.06 13.58
SE 10.77 10.33 2.16
95% ClI (-7.17, 35.05) (-4.19, 36.31) (9.35, 17.81)
RACE Estimate 204.10 206.16 189.84
(WHITE =1) SE 38.13 37.93 6.29
95% Cl  (129.37, 278.83) (131.82, 280.50) (177.51, 202.17)
GENDER Estimate -147.69 -145.65 -119.25
(FEMALE =1) SE 34.72 31.96 5.33

95% CI

(-215.74, -79.64)

(~208.29, -83.01)

(~129.70, ~108.80)

The response variable is child’s birth weight in grams. The expensive exposure is mother’s polychlorinated biphenyl (PCB) level. Other
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confounding variables include: parent’s education level (EDU), social economic status of the child’s family (SES), race ethnicity of the child
(RACE), and gender of the child (GENDER). The results under simple random sample (SRS) are the regression analysis using the SRS portion of

the outcome-dependent sampling sample. Inverse probability weighted (IPW) is the inverse probability weighted estimating equation, and
augmented IPW (AIPW) is the augmented inverse probability weighted estimating equation we proposed. SE, standard error.
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