
Secondary outcome analysis for data from an outcome-
dependent sampling design

Yinghao Pan1, Jianwen Cai1, Matthew P. Longnecker2, and Haibo Zhou1

1Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

2Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle 
Park, NC, USA

Abstract

Outcome-dependent sampling (ODS) scheme is a cost-effective way to conduct a study. For a 

study with continuous primary outcome, an ODS scheme can be implemented where the expensive 

exposure is only measured on a simple random sample and supplemental samples selected from 2 

tails of the primary outcome variable. With the tremendous cost invested in collecting the primary 

exposure information, investigators often would like to use the available data to study the 

relationship between a secondary outcome and the obtained exposure variable. This is referred as 

secondary analysis. Secondary analysis in ODS designs can be tricky, as the ODS sample is not a 

random sample from the general population. In this article, we use the inverse probability 

weighted and augmented inverse probability weighted estimating equations to analyze the 

secondary outcome for data obtained from the ODS design. We do not make any parametric 

assumptions on the primary and secondary outcome and only specify the form of the regression 

mean models, thus allow an arbitrary error distribution. Our approach is robust to second- and 

higher-order moment misspecification. It also leads to more precise estimates of the parameters by 

effectively using all the available participants. Through simulation studies, we show that the 

proposed estimator is consistent and asymptotically normal. Data from the Collaborative Perinatal 

Project are analyzed to illustrate our method.

Keywords

biased sampling; estimating equation; missing data; secondary analysis; semiparametric 
estimation; validation sample

Correspondence Haibo Zhou, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 
zhou@bios.unc.edu. 

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.

CONFLICT OF INTEREST
None declared.

ORCID
Yinghao Pan http://orcid.org/0000-0002-4022-1815

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2019 July 10.

Published in final edited form as:
Stat Med. 2018 July 10; 37(15): 2321–2337. doi:10.1002/sim.7672.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://orcid.org/0000-0002-4022-1815


1 | INTRODUCTION

In many epidemiology studies, the primary outcome variable is easy to obtain, while some 

exposure variables are expensive or difficult to measure. This motivates statisticians to 

develop outcome-dependent sampling (ODS) designs, in which the selection probability 

depends on the primary outcome variable. The main idea of such ODS designs is to 

concentrate resources on those participants that are more informative in explaining the 

outcome/exposure relationship. The case-control design has been widely used for studies 

with a binary primary outcome.1 Prentice2 proposed a case-cohort study design for failure 

time regression analysis. Zhou et al3 considers an ODS design for data with a continuous 

primary outcome: In their design, in addition to a simple random sample (SRS) from the full 

cohort, 2 supplemental SRSs are drawn from 2 tails of the outcome distribution. The initial 

SRS from the entire cohort provides information about the overall population, and 

supplemental samples allow investigators to oversample those participants that are more 

informative about the exposure-response relationship. One example of such ODS design is 

the Collaborative Perinatal Project (CPP).3,4 The main purpose of CPP is to study the 

relationship between in utero exposure to polychlorinated biphenyls (PCBs) and multiple 

neurological outcomes, including children’s IQ performance. As PCB level is expensive to 

ascertain, an ODS scheme is adopted: An SRS is taken, and 2 supplemental samples are 

chosen from 2 tails of the IQ distribution. Related works on ODS to evaluate the association 

between expensive exposure and the primary outcome variable include Zhou et al,3,10,11 

Weaver and Zhou,5 Wang and Zhou,6,8 Song et al,7 and Qin and Zhou.9

In any real studies, it is typical that there are more than 1 endpoint of interest. As such, 

investigators would like to reuse the ODS data to study the association between a secondary 

outcome and the obtained exposure variable. For example, in the CPP data, investigators are 

also interested in examining the relationship between PCB level and children’s birth weight. 

Many prior studies have tried to assess the association between these 2 measures, and yet so 

far have failed to reach a consistent conclusion.12–18 With CPP data collected in the first 

place using an ODS design to evaluate children’s IQ and PCB level, we are interested in 

adding some evidence to this research problem by developing a valid and precise method for 

secondary analysis under ODS designs.

In this paper, we develop a method for conducting secondary analysis under continuous 

outcome ODS design described by Zhou et al.3 As the data obtained from ODS design is not 

a random sample of the overall population, performing secondary analysis is not 

straightforward. Ignoring the biased sampling nature of the data could yield an invalid 

estimate of the true parameters in the general population. The analysis restricted to the 

participants in the SRS portion is clearly inefficient as it underuses the available data. A 

significant amount of work was done on secondary analysis in case-control data. This 

includes the likelihood-based methods,19–21 inverse probability weighting (IPW),22,23 and 

estimating equation.24,25 However, to the best of our knowledge, there has been no research 

conducted on the secondary regression analysis in the continuous outcome ODS design 

framework.
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We propose estimating equation approaches to analyze a secondary outcome for data 

obtained from an ODS design with a continuous primary outcome. The advantage of our 

approach is that no additional model assumptions are specified. The augmented estimating 

equation utilizes the available information in the full cohort, and hence increases estimation 

precision. In addition, our method is computationally stable and fast. The organization of the 

paper is as follows. In Section 2, we present some notations, data structure and our model 

under ODS designs. In Section 3, we propose two estimating equations, IPW estimating 

equation and augmented IPW estimating equation. We give the corresponding asymptotic 

properties in Section 4. In Section 5, we present the simulation results that compare our 

proposed estimator to other competing estimators. In Section 6, we apply our methods to 

CPP data to study the relationship between children’s birth weight and maternal PCB level. 

We conclude this paper by a brief discussion in Section 7.

2 | DATA STRUCTURE AND MODEL

To fix notation, let Y1 be the primary continuous outcome variable that the ODS sampling 

scheme is based on. Let X be the expensive exposure, which is only observed for some 

participants, and Z be the vector of other covariates that are easy to obtain. Furthermore, let 

Y2 denote a continuous secondary response. Our interest lies in inference of the secondary 

response Y2 with respect to X adjusting for other covariates Z for data obtained from 

continuous outcome ODS design.

We partition the domain of Y1 into a union of 3 mutually exclusive intervals: A1∪A2∪A3 = 

(−∞, a]∪(a, b]∪(b, +∞). We assume that the underlying data {(Y1, Y2, X, Z), i = 1, …, N} 

are independent and identically distributed random vectors, with N be the size of the full 

cohort. The ODS design proposed by Zhou et al3 can be regarded as a 2-phase design: In the 

first phase, information on primary outcome, secondary outcome, and inexpensive covariates 

are observed for each member of the full cohort. That is, we observe {(Y1i, Y2i, Zi), i = 1, 

…, N}. In the second phase, the expensive exposure X is measured on an SRS of size n0 

from the full cohort and 2 supplemental SRSs drawn from 2 tails of the distribution of Y1, 

ie, supplemental sample of size n1 from {Y1∈A1} and supplemental sample of size n3 from 

{Y1∈A3}. Let V0, V1, V3 be the index set of SRS, supplemental sample taken from {Y1 ≤ 

a}, and supplemental sample taken from {Y1 > b}, respectively. That is to say, we observe 

{Xi, i ∈ V0∪V1∪V3} in the second phase. Here, the sample sizes n0, n1, and n3 are fixed by 

design. Note that we use fixed-size sampling (sampling without replacement) for both the 

initial SRS and the supplemental samples. When stratum sizes (ie, number of participants in 

A1 and A3) are very large, it is equivalent to independent Bernoulli sampling, as the stratum 

specific sampling probabilities are effectively fixed.

Let V = V0∪V1∪V3, and let nV be the size of V. Then, nV = n0+ n1 + n3. Using terminology 

from measurement error literature, these nV observations are called validation sample. In 

addition, we let nV = N − nV. We refer to the nV observations as the nonvalidation sample 

because expensive exposure X is not measured for these individuals. Let V represent the 

index set of the nonvalidation sample, and ri be the indicator variable of observing X for 

participant i, then V={i : r=1} and V = i:ri = 0 .

Pan et al. Page 3

Stat Med. Author manuscript; available in PMC 2019 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The data structure for the ODS design can be summarized as the following:

First phase :   Y1i, Y2i, Zi , i = 1, ⋯, N;
Second phase : SRS Xi , i ∈ V0;
  supplemental sample 1 Xi Y1i ∈ A1 , i ∈ V1;
  supplemental sample 2 Xi Y1i ∈ A3 , i ∈ V3 .

(1)

Let μ1i = E(Y1i | Xi, Zi) and μ2i = E(Y2i | Xi, Zi) denote the conditional expectation of Y1i 

and Y2i given the covariates, respectively. In most problems, we are interested in estimating 

the regression coefficients (β, γ) from the following 2 models:

μi =
μ1i
μ2i

=
E Y1i Xi, Zi
E Y2i Xi, Zi

=
g1

−1 β0 + β1Xi + β2Zi
g2

−1 γ0 + γ1Xi + γ2Zi
, (2)

where g1(·) and g2(·) are specified link functions, such as g(x) = x for linear regression. 

Without loss of generality, we use the identity link g1(x) = g2(x) = x to illustrate our ideas 

throughout the paper. It is also worth mentioning that no distributional assumptions are made 

about y1i and y2i. Since analysis on secondary outcome is our primary goal, we focus on 

developing an inference procedure for (γ0, γ1, γ2).

3 | ESTIMATING EQUATION APPROACH

3.1 | Inverse probability weighted estimating equation

Let ξ = (β, γ). Since we do not make any parametric assumptions about Y1 and Y2, no 

likelihood-based approaches are available. Let ei = (e1i, e2i)′ = (Y1i − μ1i, Y2i − β2)′. 

Following the ideas from Horvitz and Thompson, Liang and Zeger, and Zhao et al,26–28 we 

first propose an IPW estimating equation that uses the validation sample only:

S1 ξ, Q, π = ∑
i ∈ V

s1i ξ, Q, π = ∑
i ∈ V

1
πi

Di
TQ−1ei = ∑

i = 1

N ri
πi

Di
TQ−1ei = 0, (3)

where Q is the covariance matrix of (Y1, Y2), ie, Q = Cov(Y1, Y2), πi is the probability of 

being selected into the validation sample for each participant i, and

Di =
∂μi

∂ β, γ T =
1 Xi Zi 0 0 0

0 0 0 1 Xi Zi
.

The selection probability πi is a function of the observed outcome value Y1i. Let V0,k be the 

index set of the observations in the SRS that belongs to the kth stratum Ak. That is, V0 = 

V0,1 ∪ V0,2 ∪ V0,3. Then, πi can be expressed as follows:
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πi = Pr ri = 1 Y1i =

Pr i in V0, 1 or V1 if Y1i ≤ a,

Pr i in V0, 2 if a < Y1i ≤ b,

Pr i in V0, 3 or V3 if Y1i > b .

For complex sampling designs, such as the ODS design described in this paper, it is difficult 

to express πi in explicit forms. We cannot directly solve Equation 3 as the covariance matrix 

Q, and the selection probability π is unknown. Hence, the general idea is to plug in 

consistent estimators of Q and π into S1(ξ, Q, π) to get S1 ξ = S1 ξ, Q, π  and then solve the 

equation Ŝ1(ξ) = 0.

Because Y1 and Y2 are observed for each member of the full cohort, a consistent estimator 

of the covariance matrix Q is the sample covariance derived from the full cohort. That is,

Q =

1
N − 1 ∑i = 1

N Y1i − Y1
2 1

N − 1 ∑i = 1
N Y1i − Y1 Y2i − Y2

1
N − 1 ∑i = 1

N Y1i − Y1 Y2i − Y2
1

N − 1 ∑i = 1
N Y2i − Y2

,

where Y1 and Y2 are sample means for Y1 and Y2, respectively.

Let Nk, k = 1, 2, 3 be the number of observations in the full cohort that belong to the kth 

stratum Ak. Similarly, let n0,k, k = 1, 2, 3 be the number of observations in the SRS that 

belong to stratum Ak. That is, N = N1+N2+N3, n0 = n0,1+n0,2+n0,3. Then for each 

participant, the observed probability of being sampled within its respective strata Ak can be 

written as

πi =

n0, 1 + n1 /N1 if Y1i ≤ a,

n0, 2/N2 if a < Y1i ≤ b,

n0, 3 + n3 /N3 if Y1i > b .

It is straightforward to show that πi is a consistent estimator for πi. Hence, our first proposed 

estimator ξ IPW satisfies the following estimating Equation 4 and can be obtained using 

Newton-Raphson algorithm.

S1 ξ = ∑
i ∈ V

s1i ξ = ∑
i ∈ V

1
πi

Di
TQ−1ei = ∑

i = 1

N ri
πi

Di
TQ−1ei = 0. (4)

3.2 | Augmented inverse probability weighted estimating equation

The weighted estimating equation 4 described above may not be precise as it uses only the 

information contained in the validation sample where the expensive exposure X is observed. 
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Following the ideas from Robins et al,29 an augmented estimating equation can be used. Let 

ui be any kernel function, and let h(y1i, y2i, zi) be any function, then

∑
i = 1

N ri
πi

ui + 1 −
ri
πi

h y1i, y2i, zi = 0

is an augmented estimating equation. Any choice of h(·) would lead to a consistent estimate 

of the parameters. This comes from the fact that

E 1 −
ri
πi

h y1i, y2i, zi = Ey1i, y2i, zi
h y1i, y2i, zi E

ri y1i, y2i, zi
1 −

ri
πi

= 0.

However, an optimal choice of h(·) would improve the estimation precision. From Robins et 

al,29 it is shown that the optimal h(·) should be the conditional expectation of the kernel 

function given the observed data, ie, h(y1i, y2i, zi) = E(ui|y1i, y2i, zi).

Following this line of reasoning, we propose the following augmented IPW (AIPW) 

estimating equation based on estimating equation 3:

S2 ξ, Q, π = ∑
i = 1

N
s2i ξ, Q, π = ∑

i = 1

N ri
πi

Di
TQ−1ei + 1 −

ri
πi

E
Xi Y1i, Y2i, Zi

Di
TQ−1ei = 0.(5)

Notice that the augmented estimating equation 5 incorporates all the information available in 

the full cohort, including those observations in the nonvalidation sample. To use estimating 

equation 5, one needs to assume a form of the conditional moments, ie, E(Xi | Y1i, Y2i, Zi) 

and E Xi
2 Y1i, Y2i, Zi . As the expensive exposure variable is often on a continuous scale, it is 

reasonable to assume that

E Xi Y1i, Y2i, Zi = ϕ0 + ϕ1Y1i + ϕ2Y2i + ϕ3Zi

and

Var Xi Y1i, Y2i, Zi = σ2 .

Then, the second-order moment can be expressed through the conditional mean and 

conditional variance as E Xi
2 Y1i, Y2i, Zi = Var Xi Y1i, Y2i, Zi + E Xi Y1i, Y2i, Zi

2.

Let ϕ = (ϕ0, ϕ1, ϕ2, ϕ3). We notice that S2(ξ, Q, π, ϕ, σ2) has several components, in which ξ 
is the parameter of interest and (Q, π, ϕ, σ2) are nuisance parameters. The following 

summarizes the steps on how to conduct the analysis:
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1. Fit a linear regression to obtain parameter estimates for (ϕ, σ2) based on the SRS 

portion of the data.

2. As outlined in Section 3.1, obtain the consistent estimator Q, π for Q and π.

3. Plug Q, π, ϕ, σ2  into S2 to obtain S2 ξ = S2 ξ, Q, π, ϕ, σ2 . Our second proposed 

estimator ξ AIPW is the solution to the following augmented IPW estimating 

equation:

S2 ξ = ∑
i = 1

N
s2i ξ = ∑

i = 1

N ri
πi

Di
TQ−1ei + 1 −

ri
πi

E
Xi Y1i, Y2i, Zi

Di
TQ−1ei = 0.

(6)

Note that how to estimate (Q, π, ϕ, σ2) does not influence the asymptotic distribution of 

ξ AIPW as long as the nuisance parameter estimates are root-N consistent. In Appendix A, we 

use a lemma from Yuan and Jennrich30 to show why this is the case.

4 | ASYMPTOTIC RESULTS

In this section, we will present theorems regarding the consistency and asymptotic normality 

for our proposed estimators ξ IPW and ξ AIPW. Let ξ* be the true values of the parameters of 

interest, and let (Q*, π*, ϕ*, σ∗
2) denote the true values of the nuisance parameters (Q, π, ϕ, 

σ2). In addition, we let Ek denote the conditional expectation given Y1 ∈ Ak. That is, for any 

function f(·), Ek[f(Y1, Y2, X, Z)] = E[f(Y1, Y2, X, Z) | Y1∈Ak]. Under regularity conditions 

outlined in Appendix A, assuming that n0/nV→ρ0>0 and nk/nV→ρk≥0 for k = 1, 3, the 

following theorems hold for ξ IPW and ξ AIPW:

Theorem 1

ξ IPW and ξ AIPW converge in probability to ξ*.

Theorem 2

Let θ denote the nuisance parameters (Q, π), then ξ IPW has the following asymptotic 

distributional properties:

nV ξ IPW − ξ∗
D N 0, I1

−1 ξ∗, θ∗ ∑1 ξ∗, θ∗ I1
−1 ξ∗, θ∗ , (7)

where
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I1 ξ, θ = − ρ0E
∂s1 ξ, θ

∂ξT − ρ1E1
∂s1 ξ, θ

∂ξT − ρ3E3
∂s1 ξ, θ

∂ξT

and

∑1 ξ, θ = ρ0E s1 ξ, θ s1 ξ, θ T + ρ1E1 s1 ξ, θ s1 ξ, θ T + ρ3E3 s1 ξ, θ s1 ξ, θ T .

Replacing the population quantities with the sample quantities, a consistent estimator for the 

asymptotic variance-covariance matrix can be obtained as

I 1
−1 ξ IPW , θ ∑1 ξ IPW , θ I 1

−1 ξ IPW , θ ,

where I 1 ξ, θ = − 1
nV

∑i ∈ V
∂s1i ξ, θ

∂ξT  and ∑ 1 ξ, θ = 1
nV

∑i ∈ V s1i ξ, θ s1i ξ, θ T.

Theorem 3

Let n = (Q, π, ϕ, σ2) denote all the nuisance parameters. ξ AIPW has the following asymptotic 

distributional properties:

N ξ AIPW − ξ∗
D N 0, I2

−1 ξ∗, η∗ ∑2 ξ∗, η∗ I2
−1 ξ∗, η∗ , (8)

where I2 ξ, η = − E ∂
∂ξT s2 ξ, η , and ∑2 ξ, η = E s2 ξ, η s2 ξ, η T .

Replacing the population quantities with the sample quantities, a consistent estimator for the 

asymptotic variance-covariance matrix can be obtained as:

I 2
−1 ξ AIPW , η ∑2 ξ AIPW , η I 2

−1 ξ AIPW , η ,

where I 2 ξ, η = − 1
N ∑i = 1

N ∂
∂ξT s2i ξ, η  and ∑ 2 ξ, η = 1

N ∑i = 1
N s2i ξ, η s2i ξ, η T.

Outline of the proofs are in Appendix A. We will apply a result of Foutz31 to prove the 

consistency of our estimator and use Taylor expansion together with Slutsky theorem to 

prove asymptotic normality.

5 | SIMULATION STUDIES

In this section, we conduct extensive simulation studies to evaluate the finite sample 

performance of our proposed estimators. There are 5 competing estimators: (1) ξSRS denotes 
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the regression estimator based on SRS portion of validation sample. (2) ξ R denotes the 

regression estimator from an SRS of the same size as the validation sample. Notice that this 

estimator is not available in practice, because when the existing data are obtained from an 

ODS design, it is impossible to obtain a SRS of the same size of the ODS sample. We 

include ξ R in the table for comparison purpose only. (3) ξ IPW denotes the estimate from our 

inverse probability weighted estimating equation proposed in Section 3.1. (4) ξ AIPW denotes 

the estimate from our proposed augmented IPW estimating equation in Section 3.2. (5) 

ξSPML denotes a semiparametric maximum likelihood estimator similar to Jiang et al.20 In 

deriving ξSPML, we assume that (Y1, Y2) is bivariate normal and use estimated likelihood 

technique to deal with the nuisance functions. The details are shown in Appendix B.

The data are generated from the following models:

Y1 = β0 + β1X + β2Z + e,
Y2 = γ0 + γ1X + γ2Z + ε,

(9)

where X ~ N(0, 1), Z ~ Bernoulli(0.45) and (e, ε) follows a bivariate normal distribution 

with var e = σ1
2, var ε = σ2

2, cov(e,ε) = ρσ1σ2. The true parameter values are β0 = 1, β2 = − 

0.5, γ0 = 1, γ2 = − 0.5, σ1 = σ2 = 1, and ρ = 0.8. We allow β1 and γ1 to take value 0 or 0.5.

Let μY1
 and σY1

 be the sample mean and standard deviation for the primary outcome Y1 

observed in the full cohort. In continuous outcome ODS design, we first select an SRS of 

size n0, then a supplemental sample of size n1 is chosen from Y1 ≤ μY1
− aσY1

 and a 

supplemental sample of size n3 chosen from Y1 ≥ μY1
+ aσY1

. The validation sample has 

size nV = n0 + n1 + n3. We consider the following 2 settings: (1) n0 = 200, n1 = n3 = 100. (2) 

n0 = 300, n1 = n3 = 50. In addition, we also vary the cutoff points of the strata by considering 

different values of a, ie, a = 1 or 1.5.

Tables 1 and 2 show the simulation results based on 1000 independent replications. The full 

cohort size is N = 3000. In Table 1, (n0, n1, n3) = (200, 100, 100). In Table 2, (n0, n1, n3) = 

(300, 50, 50). The average of parameter estimates (Mean), empirical variance of parameter 

estimates across all simulations (VAR), average of the variance estimator VAR , and 95% 

CI coverage are reported. In addition, we show the sample relative efficiency of all 

estimators relative to ξ IPW in terms of estimating γ1. The sample relative efficiency is 

defined as the ratio of empirical variance, ie, SREAIPE : IPW = var ξ IPW /var ξ AIPW .

From Tables 1 and 2, we have the following observations: (1) All 5 estimators yield virtually 

unbiased estimates. (2) ξSPML has the most precise estimate. However, as later shown in the 

simulation studies, the validity of ξSPML depends heavily on the correctness of bivariate 
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normal assumption and is hence not robust. (3) Among ξSRS, ξ IPW, and ξ AIPW, the 

augmented estimating equation estimator ξ AIPW is the most precise in all settings except for 

when β1 = y1 = 0, where the performance of ξ IPW and ξ AIPW are similar. For example, when 

(n0, n1, n3) = (200, 100, 100), a = 1, β1 = 0, γ1 = 0.5, the empirical variance estimating γ1 is 

0.0016 for ξ AIPW, which is smaller than 0.0026 for ξ IPW and 0.0049 for ξSRS. The precision 

gain comes from the fact that ξ IPW and ξ AIPW use more participants than ξSRS. (4) For all 

estimators, averages of the variance estimator is very close to the empirical variance (ie, 

VAR is close to VAR). (5) The 95% CI coverage is close to 0.95, which implies that the 

asymptotic normal approximation works well in these finite sample size settings. (6) When 

the cutoff points are further out (ie, a = 1 versus a = 1.5), the precision gains of ξ IPW and 

ξ AIPW over ξSRS are slightly lower (Table 1). The ODS sample is more enriched with a=1.5. 

However, this more enriched study design is offset by the highly variable IPW weighting 

distribution that results in precision loss. (7) Comparing the results across Tables 1 and 2 in 

terms of estimating γ1, we find that, for a given validation sample size (nV = 400), when 

SRS sample size is larger (ie, n0 = 200 versus n0 = 300), the variance of ξ IPW and ξ AIPW

decreases. However, the variance of ξSRS has a faster decreasing rate. That is, the precision 

gains of ξ IPW and ξ AIPW over ξSRS is smaller when the SRS sample size is larger.

We investigate the scenario where the error term ε is not normally distributed. The 

simulation set up is the same as Table 1 except for the error term. We assume that e ~ N(0, 

1), ε is a gamma distribution with shape parameter 2, rate parameter 1, then normalized to 

have mean 0 and variance 1. This error term is right skewed. From Table 3, we see that our 

proposed estimators are more robust to model misspecification than ξSPML. When true γ1 = 

0.5, the 95% CI coverage rate is poor for ξSPML. ξSPML also has larger empirical variance 

than ξ IPW and ξ AIPW as it misspecified the distribution of Y2. Another limitation of ξSPML is 

that it is subject to “curse of dimensionality” as nonparametric method is used to estimate 

the nuisance function. Therefore, the method cannot be directly applied when the dimension 

of Z is relatively high, ie, > 3. In addition, the method does not have a natural extension 

when Z has both discrete and continuous components.

We further investigate the performance of our proposed estimators in estimating γ1 under 

different combinations of the SRS sample and supplemental samples. The simulation set up 

is as follows: a = 1.0,β0 = 1,β1 = 0.5,β2 = −0.5,γ0 =1,γ1 = 0.5,γ2 = −0.5,σ1 = σ2 = 1,ρ = 0.8. 

The full cohort has size N=3000. We fix the validation sample to have size nV =400 and vary 

(n0, n1, n3). Figure 1 shows the sample relative efficiency of ξ AIPW and ξSRS relative to ξ IPW

over a wide range of proportion of the SRS sample in the validation sample (n0/nV). We 

confirm that when SRS size is larger, there is larger precision gain of ξ AIPW over ξ IPW, 

while the precision gain of ξ IPW and ξ AIPW over ξSRS is smaller.
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We also evaluate the precision gain of our proposed estimators for different values of ρ, 

where ρ is the correlation coefficient between 2 error terms e and e in (9). Figure 2 shows 

the corresponding sample relative efficiency. When correlation changes from 0 to 1, the 

precision gain of ξ IPW over ξSRS is relatively stable for different ρ values. On the other hand, 

the precision gain of ξ AIPW over ξ IPW is decreasing when γ1 >0, and increasing when γ1<0.

6 | COLLABORATIVE PERINATAL PROJECT DATA

In this section, we applied our method to analyze the CPP data set. The CPP is originally 

conducted as a cohort study to evaluate the risk factors for birth defects and other 

neurological disorders of childhood.32 The study involved 12 hospitals/universities located 

across the United States. In all, 55 908 pregnancies were registered, representing the 

experience about 44 000 women. The children born during the study were followed up until 

8 years old. One hypothesis is that maternal PCB levels are related to children’s IQ 

performance at 7 years of age.4 Because the exposure variable PCB levels are very 

expensive to measure, ODS design is conducted on the basis of CPP data. An SRS of 849 

individuals is selected, and then 2 supplemental samples are selected based on the children’s 

IQ score. One supplemental sample of size 81 is selected from the lower tail of the IQ 

distribution, defined by 1 standard deviation below the mean IQ score in the CPP population. 

The other supplemental sample of size 108 is chosen from 1 standard deviation above the 

mean IQ score.

Many researchers have made efforts to assess whether there is association between PCB 

level and child’s birth weight, but the findings from these studies are not consistent. Some 

indicate an inverse association,12,16,18 while other indicates a positive association13 or no 

association at all.14,15,17 We use our available CPP data to perform the secondary outcome 

analysis. In our analysis, we use the Weschler Intelligence Scale for children at 7 years old 

(IQ) as the primary outcome, and child’s birth weight (in grams) to be the secondary 

outcome. Other confounding variables include parent’s education level (EDU), social 

economic status of the child’s family (SES), race ethnicity of the child (RACE), and gender 

of the child (GENDER).

Table 4 shows the parameter estimates, standard error, and 95% CIs for the secondary 

outcome model, which regresses birth weight over PCB level adjusting for other covariates. 

Simple random sample denotes the regression analysis based on the SRS portion of the data. 

Inverse probability weighted denotes the inverse probability weighted estimating equation 

we proposed in Section 3.1, which uses the validation sample only. Augmented IPW denotes 

the augmented inverse probability weighted estimating equation proposed in Section 3.2. 

The semiparametric maximum likelihood estimator is excluded from the analysis, as it does 

not have a natural extension when the covariates contain both discrete and continuous 

components.

All 3 analyses confirm that maternal PCB concentration is not significantly associated with 

child’s birth weight. However, the proposed IPW and AIPW estimator provide more precise 

estimates of the effects, evidenced by the reduced standard error and narrower CI. For 

example, the standard error for the PCB effect is 8.41 for IPW and 8.46 for AIPW, which is 
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smaller than 9.20 for the standard regression analysis based on the SRS portion of the data. 

All 3 analyses confirm that being White has a positive impact on child’s birth weight, while 

AIPW analysis shows that social economic status has a positive impact on birth weight. In 

addition, girls have lower birth weight compared with boys as we expected. Note that there 

seems to be some difference between AIPW and IPW estimator for the EDU effect. We 

conducted additional simulation studies to show that such difference is merely due to 

sampling variability, and the observed difference is not that large if we take into account of 

the magnitude of the standard error. The details are shown in the Supporting Information.

7 | DISCUSSION

Investigators would all like to use the availability of expensive exposure that is already 

measured in a previous study. Most studies have multiple endpoints beside the primary 

outcome. This means that we often need to reuse the already collected data to analyze a 

secondary outcome in relation to the expensive exposure. However, when the original data 

are collected via an outcome-dependent fashion, secondary outcome analysis can be 

challenging as the ODS sample is no longer an SRS of the general population. As more 

studies are conducted using ODS designs, there is ever increasing needs for performing 

secondary analysis correctly and precisely for data from these studies. Our research is 

intended to fill these gaps and is the first attempt to develop precise inference procedure for 

a secondary outcome under the continuous outcome ODS design. We proposed IPW and 

AIPW estimating equations, in which only the form of the regressions are specified. Our 

proposed approach has the advantage of making no parametric distribution assumptions on 

(Y1, Y2) and thus is robust to model misspecification. Yet our proposed estimators are able 

to improve estimation precision relative to the naive analysis using SRS sample only.

Recall that r is the indicator variable of being selected into the validation sample. The 

expensive exposure X and r are conditionally independent given Y1. This means that in the 

Step 1 of AIPW analysis, we could actually use the whole validation sample (nV 

participants) to estimate the nuisance parameters (ϕ, σ2). As we mentioned before, how to 

estimate the nuisance parameter (ϕ, σ2) does not influence the asymptotic distribution of 

ξ AIPW as long as the nuisance parameter estimates are consistent. However, in small sample 

scenarios, there could be some difference. For instance, when full cohort has size 3000, (n0, 

n1, n3) = (50, 175, 175), the proposed estimator ξ AIPW could have some bias (mean of 

parameter estimates is 0.515 while the true value for γ1 is 0.5), if we only used SRS (50 

participants) to estimate the nuisance parameters. On the other hand, the bias is reduced to 

0.07, if we use the validation sample (400 participants) to estimate the nuisance parameters 

and then solve the AIPW estimating equation. When SRS sample size is larger, such as (n0, 

n1, n3) = (200, 100, 100), the results between these 2 approaches are almost identical.

We found that our proposed estimators have the same asymptotic variance regardless of 

whether we are using fixed-size sampling (sampling without replacement) or independent 

Bernoulli sampling in choosing the initial SRS and the supplemental samples. This is 

because even though (r1, ⋯, rN) are correlated under fixed-size sampling, it can be proved 
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that cov
ri
πi

Di
TQ−1ei,

r j
π j

D j
TQ−1e j = 0 for different participants i and j. For case-cohort design, 

the difference between 2 subcohort sampling methods have been studied.33,34 They found 

that the variance under fixed-size SRS is always smaller than or equal to the variance under 

Bernoulli sampling. There is equivalence when the corresponding covariance parts equal to 

0 (see the comparison between ∑H
∗  and ΣH in Kulich and Lin33).

In our paper, when we implemented our AIPW estimator, we specified the form of the 

conditional moments, E(X | Y1, Y2, Z) and E(X2 | Y1, Y2, Z) using a linear regression 

model. In practice, the expensive exposure X might be discrete, then a generalized linear 

model could be adopted. We could also use some nonparametric techniques to estimate these 

conditional moments. Interest rises to see if there exists any difference between parametric 

and non-parametric methods. In addition, we used the observed selection probability πi in 

both IPW and AIPW estimators. In some ODS designs, the true selection probability is 

known based on the design structure and can be calculated. It would be interesting to see 

whether using the true probability or observed probability makes any difference in statistical 

efficiency. Furthermore, we are looking for a flexible parametric family to jointly model the 

primary and secondary outcome. Copula seems to be a natural way to achieve the goal. This 

is another possible area of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

PROOFS

We provide the outline of the proofs for the augmented IPW estimator ξ AIPW. The proof for 

ξ IPW follows the similar arguments and thus omitted here. Let η = (Q, π, ϕ, σ2) denote all 

the nuisance parameters. We make the following regularity conditions:

1. The parameter space of ξ, Ξ, is a compact subspace of Rp, and that the true 

underlying value ξ* lies in the interior of the parameter space; the covariate 

space, 𝒳 is a compact subset of R; and the covariate space, 𝒵, is a compact 

subset of Rq for some q≥ 1.
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2. For all (Y1, Y2, X, Z), s2(ξ, η) is continuous for all ξ ∈ Ξ; the partial derivatives 
∂s2 ξ, η

∂ξi
, for i = 1, …, p, exist and are continuous for all ξ ∈ Ξ.

3. Interchanges of differentiation and integration are valid for s2(ξ, η) and its first-

order partial derivatives with respect to ξ.

4. The following expected value matrix is finite and negative definite at (ξ*, η*):

E ∂
∂ξT s2 ξ, η .

5.
The supremum of 

∂s2 ξ, η

∂ξT  in the neighborhood of ξ* is bounded by a function g 

that has finite expectation. (Outline of the proof for consistency):

By law of larger numbers, it is straightforward to show that

1
N ∑

i = 1

N
s2i ξ∗, η∗

p E s2 ξ∗, η∗ = 0 as N ∞ . (A1)

Using the fact that η = Q, π, ϕ, σ2  is a consistent estimator of η*, and s2i ξ = s2i ξ, η , it can 

be shown that

1
N ∑

i = 1

N
s2i ξ∗ − 1

N ∑
i = 1

N
s2i ξ∗, η∗

p 0 as N ∞ . (A2)

Combining (A1) and (A2), we know that

1
N S2 ξ∗ = 1

N ∑
i = 1

N
s2i ξ∗

p 0 as N ∞ .

Furthermore, using Assumptions 1-3 and consistency of η, we can show that

1
N

∂S2 ξ

∂ξT −
∂S2 ξ, η∗

∂ξT
p 0 as N ∞ . (A3)

holds uniformly for ξ in parameter space. Also, by law of large numbers,

1
N

∂S2 ξ, η∗
∂ξT = 1

N ∑
i = 1

N
s2i ξ, η∗

p E ∂
∂ξT s2 ξ, η∗ as N ∞ . (A4)

Pan et al. Page 14

Stat Med. Author manuscript; available in PMC 2019 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Combining (A3) and (A4), we have

1
N

∂S2 ξ

∂ξT
p

E ∂
∂ξT s2 ξ, η∗ as N ∞ .

uniformly for ξ ∈ Ξ. From Assumption 4, we know that E ∂
∂ξT s2 ξ, η  is negative definite 

and hence invertible at (ξ*, η*). Hence, we can apply a result of Foutz31 that uses the inverse 

function theorem to prove that our proposed estimator is a consistent and unique solution to 

the estimating equations.

(outline of the proof for asymptotic normality):

Let us denote

AN = 1
N ∑

i = 1

N ∂
∂ξT s2i ξ∗, η∗ , BN = 1

N ∑
i = 1

N ∂
∂ηT s2i ξ ∗ ,η∗ .

Using lemma 2 from Yuan and Jennrich,30 we have

N 1
N S2 ξ , η − 1

N S2 ξ∗, η∗ = AN N ξ − ξ∗ + BN N η − η∗ . (A5)

Let A and B be the limit of AN and BN, respectively. By law of large numbers, we know that

AN = 1
N ∑

i = 1

N ∂
∂ξT s2i ξ∗, η∗

p
E

∂s2 ξ∗, η∗
∂ξT = − I2 ξ∗, η∗

BN = 1
N ∑

i = 1

N ∂
∂ηT s2i ξ∗η∗

p
E

∂s2 ξ∗η∗
∂ηT = 0.

That is, A = −I2(ξ*, η*) and B = 0. Rearrange (A5) and using the fact that S2 ξ , η = 0, we 

have

−AN N ξ − ξ∗ = 1
N

S2 ξ∗, η∗ + B N η − η∗ + BN − B N η − η∗ .

B = 0, N η − η∗  is bounded in probability. Hence, we know that

−AN N ξ − ξ∗ = 1
N

S2 ξ∗, η∗ + op 1 .

By the proposition in appendix 1 of Kulich and Lin,33
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−AN N ξ − ξ∗
D

N 0, ∑2 ξ∗, η∗ ,

where Σ2(ξ, η) = E[s2(ξ, η)s2(ξ, η)T. Then, using Slutsky theorem, we know that

N ξ − ξ∗
D

N 0, I2
−1 ξ∗, η∗ ∑2 ξ∗, η∗ I2

−1 ξ∗, η∗ .

Notice that B=0 implies that the asymptotic distribution of η does not influence the 

asymptotic distribution of ξ  as long as η is root-N consistent.

APPENDIX B: BRIEF DESCRIPTION OF THE ESTIMATED LIKELIHOOD 

APPROACH

To develop the semiparametric maximum likelihood estimator ξSPML, we need to assume 

that (Y1, Y2) is bivariate normal. That is,

Y1i = β0 + β1Xi + β2Zi + ei,
Y2i = γ0 + γ1Xi + γ2Zi + εi,

where (ei, εi) follows a bivariate normal distribution with var ei = σ1
2, var εi = σ2

2, cov(ei, εi) 

= ρσ1σ2.

For a participant in V(validation sample), the contribution to the likelihood is (Y1, Y2, X, Z). 

For a participant in V (nonvalidation sample), the contribution is (Y1, Y2, Z). Hence, the 

likelihood corresponding to (1) is proportional to

L ξ = ∏
i ∈ V

f ξ Y1i, Y2i Xi, Zi × ∏
j ∈ V

∫x
f ξ Y1 j, Y2 j x, Z j dGX Z x Z j ,

where fξ(Y1, Y2 | X, Z) is the density function of a bivariate normal distribution and GX|Z(·|·) 

represents the conditional distribution function of X given Z. The log-likelihood is

l ξ = ∑
i ∈ V

log f ξ Y1i, Y2i Xi, Zi + ∑
j ∈ V

log ∫x
f ξ Y1 j, Y2 j x, Z j dGX Z x Z j .

Notice that GX|Z is a nuisance function. Using ideas from Weaver and Zhou,5 we propose to 

work with the following estimated log-likelihood function:

l ξ = ∑
i ∈ V

log f ξ Y1i, Y2i Xi, Zi + ∑
j ∈ V

log ∫x
f ξ Y1 j, Y2 j x, Z j dGX Z x Z j ,

where we nonparametrically estimate GX|Z using the SRS sample. For discrete Z, let
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GX Y x z = ∑
i ∈ V0

I Xi ≤ x, Zi = z / ∑
i ∈ V0

I Zi = z .

For continuous Z, we use the kernel method, ie,

GX Z x z = ∑
i ∈ V0

I Xi ≤ x KH Zi − z / ∑
i ∈ V0

KH Zi − z ,

where KH(·) = |H|−1/2K(H−1/2·) is a kernel with a bandwidth matrix H. Then, the proposed 

semiparametric maximum likelihood estimator ξSPML is the solution to the following 

estimating equation:

1
N

∂l ξ
∂ξ = 0.
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FIGURE 1. 
Sample relative efficiencies (SREs) comparing ξ AIPW and ξSRS to ξ IPW in terms of 

estimating γ1, under various combinations of simple random sample (SRS) and 

supplemental samples. The SRE is defined as SREAIPW : IPW = var ξ IPW /var ξ AIPW . The X-

axis is the fraction of SRS in the validation sample: n0/nV
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FIGURE 2. 
Sample relative efficiencies (SREs) comparing ξ AIPW and ξSRS to ξ IPW in terms of 

estimating γ1, under different values of ρ. The sample relative efficiency is defined as 

SREAIPW : IPW = var ξ IPW /var ξ AIPW . AIPW, augmented IPW; IPW, inverse probability 

weighted
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TABLE 4

Analysis for a secondary outcome: child’s birth weight in CPP study

Variables SRS IPW AIPW

Int Estimate 3208.14 3209.44 3089.24

SE 86.54 79.49 21.97

95% CI (3038.52, 3377.76) (3053.64, 3365.24) (3046.18, 3132.30)

PCB Estimate −0.67 −5.44 −5.49

SE 9.20 8.41 8.46

95% CI (−18.70, 17.36) (−21.92, 11.04) (−22.07, 11.09)

EDU Estimate −8.97 −8.81 1.70

SE 9.10 8.39 1.36

95% CI (−26.81, 8.87) (−25.25, 7.63) (−0.97, 4.37)

SES Estimate 13.94 16.06 13.58

SE 10.77 10.33 2.16

95% CI (−7.17, 35.05) (−4.19, 36.31) (9.35, 17.81)

RACE Estimate 204.10 206.16 189.84

(WHITE = 1) SE 38.13 37.93 6.29

95% CI (129.37, 278.83) (131.82, 280.50) (177.51, 202.17)

GENDER Estimate −147.69 −145.65 −119.25

(FEMALE = 1) SE 34.72 31.96 5.33

95% CI (−215.74, −79.64) (−208.29, −83.01) (−129.70, −108.80)

The response variable is child’s birth weight in grams. The expensive exposure is mother’s polychlorinated biphenyl (PCB) level. Other 
confounding variables include: parent’s education level (EDU), social economic status of the child’s family (SES), race ethnicity of the child 
(RACE), and gender of the child (GENDER). The results under simple random sample (SRS) are the regression analysis using the SRS portion of 
the outcome-dependent sampling sample. Inverse probability weighted (IPW) is the inverse probability weighted estimating equation, and 
augmented IPW (AIPW) is the augmented inverse probability weighted estimating equation we proposed. SE, standard error.
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