Skip to main content
. Author manuscript; available in PMC: 2019 Jul 10.
Published in final edited form as: Stat Med. 2018 Apr 22;37(15):2321–2337. doi: 10.1002/sim.7672

TABLE 2.

Simulation results based on 1000 simulations with n0 = 300, n1 = n3 = 50, the validation sample size is nV = 400, the full cohort size is N=3000

α β1 γ1 Methods
β^1
γ^1
Mean VAR
VAR^
Mean VAR
VAR^
SRE
1.0 0 0 ξSRS 0.000 0.0034 0.0034 −0.001 0.0036 0.0034 0.69
ξR 0.000 0.0024 0.0025 0.000 0.0025 0.0025 1.00
ξIPW 0.001 0.0021 0.0020 0.000 0.0025 0.0023 1.00
ξAIPW 0.001 0.0021 0.0020 0.000 0.0025 0.0023 1.00
ξSPML 0.001 0.0018 0.0018 0.000 0.0021 0.0021 1.19
0.5 ξSRS −0.004 0.0034 0.0034 0.496 0.0034 0.0034 0.65
ξR −0.001 0.0023 0.0025 0.500 0.0024 0.0025 0.92
ξIPW −0.001 0.0020 0.0020 0.498 0.0022 0.0023 1.00
ξAIPW −0.001 0.0013 0.0014 0.500 0.0014 0.0014 1.57
ξSPML 0.001 0.0012 0.0012 0.498 0.0013 0.0014 1.69
0.5 0 ξSRS 0.501 0.0032 0.0034 0.001 0.0034 0.0034 0.62
ξR 0.499 0.0024 0.0025 0.000 0.0025 0.0025 0.84
ξIPW 0.502 0.0018 0.0022 0.001 0.0021 0.0024 1.00
ξAIPW 0.502 0.0014 0.0015 0.000 0.0016 0.0015 1.31
ξSPML 0.500 0.0014 0.0015 0.001 0.0014 0.0014 1.50
0.5 ξSRS 0.500 0.0032 0.0034 0.498 0.0032 0.0033 0.66
ξR 0.499 0.0025 0.0025 0.499 0.0025 0.0025 0.84
ξIPW 0.502 0.0018 0.0022 0.501 0.0021 0.0024 1.00
ξAIPW 0.503 0.0017 0.0017 0.502 0.0019 0.0018 1.11
ξSPML 0.500 0.0016 0.0016 0.499 0.0016 0.0018 1.31
1.5 0.5 0 ξSRS 0.500 0.0036 0.0034 0.001 0.0035 0.0034 0.74
ξR 0.498 0.0025 0.0025 −0.001 0.0026 0.0025 1.00
ξIPW 0.501 0.0023 0.0022 0.000 0.0026 0.0024 1.00
ξAIPW 0.502 0.0018 0.0016 0.000 0.0018 0.0017 1.44
ξSPML 0.500 0.0014 0.0014 0.002 0.0014 0.0014 1.86
0.5 ξSRS 0.499 0.0035 0.0034 0.499 0.0034 0.0034 0.68
ξR 0.502 0.0026 0.0025 0.501 0.0027 0.0025 0.85
ξIPW 0.500 0.0021 0.0022 0.500 0.0023 0.0024 1.00
ξAIPW 0.501 0.0018 0.0018 0.501 0.0019 0.0019 1.21
ξSPML 0.499 0.0014 0.0015 0.499 0.0017 0.0017 1.35

Abbreviation: SRE, sample relative efficiency. Results are based on the model Y1=β0+β1X+β2Z+e, Y2=γ0+γ1X+γ2Z+ε, where X~N(0, 1), Z~Bernoulli(0.45) and (e, ε) follow a bivariate normal distribution with var(e)=σ12, var(ε)=σ22, cov(e,ε)=ρσ1σ2; the true parameter values are β0=1, β2=−0.5, γ0=1, γ2=−0.5, σ1=σ2=1, ρ=0.8. The cutoff points for the outcome-dependent sampling design are μY1aσY1 and μY1+aσY1 ξSRS denotes the regression estimator based on simple random sample (SRS) portion of the validation sample. ξR denotes the regression estimator from an SRS of the same size as the validation sample. ξIPW denotes the estimate from our inverse probability weighted (IPW) estimating equation. ξAIPW denotes the estimate from augmented IPW (AIPW) estimating equation. ξSPMI is a semiparametric maximum likelihood (SPML) estimator similar to Jiang et al,20 which models (Y1, Y2) parametrically using a bivariate normal distribution.