TABLE 2.
α | β1 | γ1 | Methods |
|
|
|||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | VAR |
|
Mean | VAR |
|
SRE | ||||||
1.0 | 0 | 0 | ξSRS | 0.000 | 0.0034 | 0.0034 | −0.001 | 0.0036 | 0.0034 | 0.69 | ||
ξR | 0.000 | 0.0024 | 0.0025 | 0.000 | 0.0025 | 0.0025 | 1.00 | |||||
ξIPW | 0.001 | 0.0021 | 0.0020 | 0.000 | 0.0025 | 0.0023 | 1.00 | |||||
ξAIPW | 0.001 | 0.0021 | 0.0020 | 0.000 | 0.0025 | 0.0023 | 1.00 | |||||
ξSPML | 0.001 | 0.0018 | 0.0018 | 0.000 | 0.0021 | 0.0021 | 1.19 | |||||
0.5 | ξSRS | −0.004 | 0.0034 | 0.0034 | 0.496 | 0.0034 | 0.0034 | 0.65 | ||||
ξR | −0.001 | 0.0023 | 0.0025 | 0.500 | 0.0024 | 0.0025 | 0.92 | |||||
ξIPW | −0.001 | 0.0020 | 0.0020 | 0.498 | 0.0022 | 0.0023 | 1.00 | |||||
ξAIPW | −0.001 | 0.0013 | 0.0014 | 0.500 | 0.0014 | 0.0014 | 1.57 | |||||
ξSPML | 0.001 | 0.0012 | 0.0012 | 0.498 | 0.0013 | 0.0014 | 1.69 | |||||
0.5 | 0 | ξSRS | 0.501 | 0.0032 | 0.0034 | 0.001 | 0.0034 | 0.0034 | 0.62 | |||
ξR | 0.499 | 0.0024 | 0.0025 | 0.000 | 0.0025 | 0.0025 | 0.84 | |||||
ξIPW | 0.502 | 0.0018 | 0.0022 | 0.001 | 0.0021 | 0.0024 | 1.00 | |||||
ξAIPW | 0.502 | 0.0014 | 0.0015 | 0.000 | 0.0016 | 0.0015 | 1.31 | |||||
ξSPML | 0.500 | 0.0014 | 0.0015 | 0.001 | 0.0014 | 0.0014 | 1.50 | |||||
0.5 | ξSRS | 0.500 | 0.0032 | 0.0034 | 0.498 | 0.0032 | 0.0033 | 0.66 | ||||
ξR | 0.499 | 0.0025 | 0.0025 | 0.499 | 0.0025 | 0.0025 | 0.84 | |||||
ξIPW | 0.502 | 0.0018 | 0.0022 | 0.501 | 0.0021 | 0.0024 | 1.00 | |||||
ξAIPW | 0.503 | 0.0017 | 0.0017 | 0.502 | 0.0019 | 0.0018 | 1.11 | |||||
ξSPML | 0.500 | 0.0016 | 0.0016 | 0.499 | 0.0016 | 0.0018 | 1.31 | |||||
1.5 | 0.5 | 0 | ξSRS | 0.500 | 0.0036 | 0.0034 | 0.001 | 0.0035 | 0.0034 | 0.74 | ||
ξR | 0.498 | 0.0025 | 0.0025 | −0.001 | 0.0026 | 0.0025 | 1.00 | |||||
ξIPW | 0.501 | 0.0023 | 0.0022 | 0.000 | 0.0026 | 0.0024 | 1.00 | |||||
ξAIPW | 0.502 | 0.0018 | 0.0016 | 0.000 | 0.0018 | 0.0017 | 1.44 | |||||
ξSPML | 0.500 | 0.0014 | 0.0014 | 0.002 | 0.0014 | 0.0014 | 1.86 | |||||
0.5 | ξSRS | 0.499 | 0.0035 | 0.0034 | 0.499 | 0.0034 | 0.0034 | 0.68 | ||||
ξR | 0.502 | 0.0026 | 0.0025 | 0.501 | 0.0027 | 0.0025 | 0.85 | |||||
ξIPW | 0.500 | 0.0021 | 0.0022 | 0.500 | 0.0023 | 0.0024 | 1.00 | |||||
ξAIPW | 0.501 | 0.0018 | 0.0018 | 0.501 | 0.0019 | 0.0019 | 1.21 | |||||
ξSPML | 0.499 | 0.0014 | 0.0015 | 0.499 | 0.0017 | 0.0017 | 1.35 |
Abbreviation: SRE, sample relative efficiency. Results are based on the model Y1=β0+β1X+β2Z+e, Y2=γ0+γ1X+γ2Z+ε, where X~N(0, 1), Z~Bernoulli(0.45) and (e, ε) follow a bivariate normal distribution with , , cov(e,ε)=ρσ1σ2; the true parameter values are β0=1, β2=−0.5, γ0=1, γ2=−0.5, σ1=σ2=1, ρ=0.8. The cutoff points for the outcome-dependent sampling design are and ξSRS denotes the regression estimator based on simple random sample (SRS) portion of the validation sample. ξR denotes the regression estimator from an SRS of the same size as the validation sample. ξIPW denotes the estimate from our inverse probability weighted (IPW) estimating equation. ξAIPW denotes the estimate from augmented IPW (AIPW) estimating equation. ξSPMI is a semiparametric maximum likelihood (SPML) estimator similar to Jiang et al,20 which models (Y1, Y2) parametrically using a bivariate normal distribution.