
INTRODUCTION

Fragment of cocaine- and amphetamine-regulated tran-
script (CART) peptide was first discovered by Spiess et al. 
(1981) in the extraction of hypothalamus in 1981. Douglass 
et al. identified increased CART mRNA expression within the 
striatum of psychostimulant-exposed rats (Douglass et al., 
1995; Douglass and Daoud, 1996), suggesting the role of 
CART peptide on the drug abuse. The complete sequences 
of CART gene were available and showed highly conserva-
tion across species (Kuhar et al., 2000; Dallvechia-Adams et 
al., 2002). The CART gene is composed of 3 exons and 2 in-
trons with alternatively splicing in rat and mouse (Kuhar et al., 
2000). And the mouse CART promoter contains series of tran-
scription factor binding site, such as E-box, SP1, overlapped 

STAT/ cyclic adenosine 5’-monophosphate (cAMP) response 
element (CRE)/AP1, SP2 sites (Kuhar et al., 2000), in which 
transcription factors including cAMP response element binding 
protein (CREB), cJUN, SP1 and AP2 may regulate expression 
of CART gene expression (Fig. 1). Surprisingly, expression of 
CART peptide dominates in the mesocorticolimbic dopaminer-
gic (DA) system that extends from the ventral tegmental area 
(VTA) to the nucleus accumbens (NAc) and includes other 
limbic areas (amygdala, hippocampus, and frontal cortex), 
and is also widely distributed in the central nervous system 
(CNS) (Kuhar and Yoho, 1999; Kuhar et al., 2000). Compelling 
evidences also shows that repeated administration of psycho-
stimulants enhances expression of CART peptide (Jaworski 
et al., 2003a; Hubert et al., 2008), which is supported by a 
study in which microinjections of CART peptide into NAc that 
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effectively attenuated the rewarding properties of psychostim-
ulants (Jaworski et al., 2003b; Yoon et al., 2007; Peng et al., 
2014; Fu et al., 2016). These observations suggested CART 
peptide plays a positive role in the regulation of behavioral 
sensitization induced by psychostimulants and led to thorough 
investigations of the modes of action of CART peptide with 
the object of identifying its potential use for the treatment of 
drug addiction. For example, microinjection of CART peptide 
into rat NAc significantly blocked psychostimulant-induced up-
regulation of dopamine receptor (DR) and activation of down-
stream cAMP/protein kinase A (PKA)/cAMP response element 
binding protein (CREB) pathway (Peng et al., 2014; Fu et al., 
2016; Xiong et al., 2018). Psychostimulant-induced Ca2+ influx 
and phosphorylated calcium/calmodulin-dependent protein ki-
nase IIα (pCaMKIIα) expression have also been attenuated 
by CART peptide. In addition, interactions between pCaMKIIα 
and D3R blocked the inhibitory effect of D3R on the cAMP/
PKA/CREB pathway and behavioral sensitization (Xiong et 
al., 2018). Recently, CART peptide has been suggested to 
positively and allosterically modulate γ‑aminobutyric acid B re-
ceptors (GABAB R), based on the observation that it inhibited 
drug-depressed GABAB R-G-protein-coupled inwardly rectify-
ing K+-channel (GIRK) signaling. Thus, it has been suggested 
CART peptide modulates psychostimulant-induced hyperlo-
comotion through DR-related calcium signaling and GABA-
R-associated pathways (Moffett et al., 2011; Upadhya et al., 
2012; Cai et al., 2014; Hu et al., 2015; Fu et al., 2016; Xiong 
et al., 2018). However, our understanding of CART pathways 
in neuronal circuits is lacking.

On the other hand, repeated psychostimulant intake may 
increase the risk of persistent drug-relapse accompanied by 
irritability, anxiety, and dysphoria (Koob and Le Moal, 1997; 
Koob et al., 1998). Furthermore, these addiction-related anx-

ious and aversive emotions can lead to depression-like be-
haviors that may ultimately facilitate suicidal actions possibly 
mediated by GABAergic pathways (Stanek, 2006; Wiehager 
et al., 2009; Yoon et al., 2014). Interestingly, CART peptide 
has been closely linked with corticotropin-releasing factor 
(CRF) in the hypothalamic-pituitary-adrenal (HPA) axis and 
amygdala, the latter of which provides the interface between 
stress and addiction (Koob, 2008a). We hope this review of 
the role of CART in psychostimulants-induced anxiety-like be-
haviors will provide new avenues for the development of effec-
tive drugs for addiction and/or depression disorders based on 
understanding of CART pathways in neuronal circuits.

RELATIONS BETWEEN CART CONTAINING NEURAL 
CIRCUITS AND DEPRESSION

Drug addiction is considered as a psychiatric disorder that 
progresses from impulsivity to compulsivity, during which 
people undergo transformation from sense of pleasure or 
gratification in a positive reinforcement toward relief of anxiety 
or stress in negative reinforcement (Koob et al., 2004; Koob, 
2008a, 2008b). On the other hand, drug cessation triggers pro-
tracted anxiety and depression-like symptoms due to counter-
adaptive processes that include diminished functions of neu-
rotransmitters in the neuro-circuits associated with acute drug 
reinforcing effects, such as, the dopamine signaling pathway. 
Chronic drug exposure results in within-system neuro-adapta-
tions including decreased function of the same neurotransmit-
ter in the same neuro-circuits involved in the acute reinforcing 
effect of the drug, such as the dopamine signaling pathway 
(Koob et al., 2004; Koob, 2008a, 2008b). According to the self-
medication hypothesis, drug-addicted individuals suffer from 
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Fig. 1. Overview of CART gene structure and CART peptide 3D structure. (A) The schematic diagram of CART gene and its proximal pro-
moter transcription factor binding sites. The diagram shown here is based on the genomic structure of mouse CART genes and adapted 
from works of Dominguez et al. The CART gene is composed of 3 exons and 2 introns, in which several transcription binding sites are pre-
sented, and the transcription initiation site is shown as +1. The diagram is not to scale. (B) The 3D structure of human CART peptide chain A, 
extending from residues 76-116 of C-terminal domain. The structure is downloaded from protein data bank (PBD, id: 1hy9).
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deficits in self-esteem and emotion regulation, and cope with 
aversive and painful emotions by binging (Koob et al., 2004; 
Koob, 2008a, 2008b). This dysregulation may be a manifes-
tation of altered information-processing, decision-making and 
behavioral motivation, all of which are associated with func-
tional deficits in brain-stress and anti-stress systems (Koob et 
al., 2004; Koob, 2008a, 2008b). We later discuss the molecu-
lar mechanisms underlying disrupted mood regulation follow-
ing psychostimulant abstinence and the effects of CART pep-
tide on depressive-like emotions induced by drug withdrawal.

The Hypothalamic-Pituitary-Adrenal (HPA) axis
Pathophysiologic studies showed that quantities of CART 

immune-reactivity were synthesized and secreted from the an-
terior pituitary gland (Stanley et al., 2004) and hypothalamus 
(Smith et al., 2004). Stress regulates CART expression via 
CRF and glucocorticoids (Stanley et al., 2004). Conversely, 
the administration of CART peptide up-regulates cirrculating 
levels of ACTH and corticosterone in the HPA axis through 
the CRF-dependent mechanism (Vrang et al., 2000; Smith et 
al., 2004). Furthermore, multiple line of evidence shows that 
CART peptide plays a key role in the HPA-axis associated 
stress response (Vrang et al., 2000; Smith et al., 2004; Stan-
ley et al., 2004; Job et al., 2011).

The HPA axis is composed of three major structures: the 
paraventricular nucleus of the hypothalamus, the anterior 
lobe of the pituitary gland, and the adrenal gland (Turnbull 
and Rivier, 1997; Zuloaga et al., 2015). CRF is synthesized 
and released by the medial parvocellular subdivision of the 
paraventricular nucleus to the portal blood vessels and then 
binds to the CRF 1 receptor on the pituitary corticotrophin to 
induce adrenocorticotropic hormone (ACTH) release into the 
systemic circulation, which in turn stimulates cortical secretion 
of glucocorticoid from the adrenal gland (Herman et al., 2005). 
And the HPA axis is finely tuned by negative feedback from 
glucocorticoid, which activates glucocorticoid receptor within 
the paraventricular nucleus and the hippocampus (Turnbull 
and Rivier, 1997). Acute psychostimulants exposure behaves 
like stressors that can elicit the activation of HPA axis (Char-
toff and Carlezon, 2014), and thus, induce the release of the 
above-mentioned molecules, which then exert immediate or 
delayed effects on the mesocorticolimbic system. However, 
acute withdrawal from chronic psychostimulants induces al-
losteric load in HPA axis, elevates secretion of CRF and 
ACTH, and decreases cortisol levels, which are hallmarks of 
depressive and anxiety spectrum disorders in man (Li et al., 
2013a; Zuloaga et al., 2015). However, in depressed patients, 
regulation of HPA axis is disrupted, which leads to low level of 
cortisol concentration in serum via stress reactivity (Peng et 
al., 2015). Surprisingly, hypercortisolemia is present in about 
40%-60% of depressed adults (Carroll et al., 2007), which 
may explain the cause of disrupted hippocampal integrity and 
impaired memory function in the pathogenesis of depression. 
Several groups have reported intracerebroventricular or intra-
amygdalar injection of CRF1 receptor antagonists could ef-
fectively attenuate the aversive states and anxiogenic effects 
induced by drug abstinence, and thus, inhibit drug self-admin-
istration (George et al., 2007; Specio et al., 2008; Greenwell 
et al., 2009). 

Serotonin (5-HT) neurotransmitter systems
5-HT is a widely distributed neurotransmitter in the CNS, 

and has been linked with arousal, anxiety, aversive affect and 
depressive disorders (Graeff et al., 1996; Pompili et al., 2010). 
The 5-HT pathway originates from the dorsal raphe nucleus 
(DRN) and it extends to the amygdala and frontal cortex to 
facilitate conditioned fear (Graeff et al., 1996). 5-HT synthe-
sis is catalyzed by tyrosine hydroxylase and tryptophan hy-
droxylase, and synthesized 5-HT is stored in the presynaptic 
vesicles, where monoamine oxidase (MAO) metabolites can 
inhibit its release. 5-HT binds to guanine nucleotide triphos-
phate–binding protein–coupled receptors (GPCR) to activate 
(AC)/cAMP/PKA and PI/PLC/DAG/PKC signaling pathways, 
and ultimately promotes the expression of the CREB and in-
duces profound antidepressant effects (Ruhe et al., 2007). 
Therefore, any abnormality that exists within the mechanisms 
of 5-HT secretion, receptor transportation and signal transduc-
tion may result in anxiogenic and depressive-like disorders. 
In particular, withdrawal from cocaine self-administration 
has been associated with a decrease in extracellular 5-HT in 
the NAc sub-regions (Parsons et al., 1996), whereas acute 
withdrawal from ethanol has been shown to increase in the 
sensitivity of 5-HT1A autoreceptor to modulate 5-HT synthesis 
(Esteban et al., 2002). Moreover, 5-HT2C receptor antagonist 
blocked the inhibitory dorsal raphe 5-HT2C receptor, and this 
potentially attenuated cocaine withdrawal exacerbated GABA 
activity, thereby prevented anxiety-like behaviors (Craige et 
al., 2015). 

The serotonergic system interacts with CART system origi-
nated from the lateral hypothalamus to innervate other brain 
areas associated with stress (Ruhe et al., 2007). Light mi-
croscopic studies from Lee and Lee (2014) found reciprocal 
connections between CART-immunoreactive, hypothalamic 
paraventricular nucleus and the serotonergic dorsal raphe 
neurons. Ma et al. (2007) performed a microdialysis approach, 
which can increase 5-HT efflux made by infusions of CART 
peptide into the dorsal raphe nucleus and NAc. In addition, 
activation of 5-HT receptors by 5-HT might enhance dopami-
nergic signaling and further enhance anti-depressant effects. 
Interestingly, some studies also investigated that activation of 
5-HT4 receptor upregulated CART mRNA expression in the 
NAc via cAMP/PKA signaling pathway (Jean et al., 2007; Jean 
et al., 2012) These observations support the protective role of 
CART peptide on the depression-deprived serotonin system 
during drug addiction (Ma et al., 2007). 

GABA-ergic systems 
Immunoblotting results show CART peptide co-localizes with 

GABA in the nerve terminals in the VTA and substantia nigra 
(SN) (Dallvechia-Adams et al., 2002), suggesting the intricate 
relationship between CART peptide and GABA. GABAA R is 
a ligand-gated ion channel mediating fast inhibitory synaptic 
transmission, especially in the dopaminergic brain areas such 
as VTA and substantia nigra compacta (Jiao et al., 2015). 
On the other hand, GABAB R is a G-protein-coupled receptor 
composed of 2 subunits, GABAB1(a,b) and GABAB2, which are 
responsible for agonist or antagonist binding and G-protein ac-
tivation, respectively (Kulik et al., 2003; Pin and Bettler, 2016). 
In addition, presynaptic GABAB R inhibits Ca2+ influx whereas 
postsynaptic GABAB R activates GIRK, which may cause neu-
ron hyperpolarization leading to slow inhibitory post-synaptic 
current (IPSC) and a reduced synaptic activity (Padgett et al., 
2012). It has been reported that withdrawal from chronic mor-
phine exposure increases GABA release in the VTA, resulted in 
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a short-lived (1-3 days) GABAA-mediated inhibition, and up-reg-
ulation of cAMP-dependent proteins (Bonci and Williams, 1996; 
Bonci and Williams, 1997), all of which drive conditioned place 
aversion (Tan et al., 2012) and diminished GABAB-mediated 
inhibition (Bonci and Williams, 1996). Chronic methamphet-
amine and cocaine exposure can depress both GABAA R and 
GABAB R expression, and weaken GABAB R-GIRK signaling 
in VTA GABA neurons including glutamatergic neurons within 
the medial prefrontal cortex (mPFC) (Filip et al., 2015; Jiao et 
al., 2015). Previous studies indicated that injection of GABAB 
R agonist baclofen or GABAB R positive allosteric modulators 
can attenuate self-administration and drug craving in ethanol-
dependent rats and human alcoholics (Addolorato et al., 2006; 
Knapp et al., 2007). Recently, we have shown the modulatory 
effect of intra-accumbally injected CART peptide on metham-
phetamine-induced depression of GABAB R-GIRK signaling 
and concomitant internalization and reduction of membrane 
GABAB R and GIRK receptors in the VTA and mPFC neurons 
(Hu et al., 2015), which suggests the regulatory targets of CART 
peptide are similar to those of the positive allosteric modulator 
GABAB R on GABAB1 R and GABAB2 R in the context of rescue 
from drug-depressed GABAB R-GIRK signaling (Fig. 2).

Glutamatergic pathway
The excitatory neurotransmitter glutamate is essential for 

the excitation propagation and neuronal transmission (Javitt 
et al., 2011). There are two main classes of glutamate recep-
tors, that is, metabotropic glutamate receptors (mGluRs) and 
ionotropic glutamate receptors (iGluRs) (Javitt et al., 2011). 
mGluRs, are classified into group I, II and III subfamilies, and 

are seven transmembrane G-protein-coupled receptors (GP-
CRs) associated with protein kinase B (PKB), nuclear factor 
kappa-light-chain-enhancer of activated B cells (NFκB), CaM 
signaling cascades, or coupled Ca2+, K+ and Na+ channels 
(Javitt et al., 2011). Conversely, iGluRs are composed of N-
methyl-D-aspartate (NMDA), a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and kainate receptors and 
share a voltage-gated ion channel function to enable cation 
influx (Javitt et al., 2011). 

The lateral habenula (LHb) has recently attracted attention 
due to its modulatory role on depressive behaviors and drug 
abuse (Lecca et al., 2014). Anatomical studies indicated that 
LHb, which is positioned near the midline and surrounded by 
the thalamus, receives prominent glutamatergic afferents from 
the lateral hypothalamus, and cortical inputs, for example, 
from the high AMPA-R but low synaptic NMDA-R express-
ing neurons in medial prefrontal cortex (Lecca et al., 2014). 
Investigators have reported that aberrant LHb activity over-
activates βCaMKII and contributes to aversive and depressive 
disorders (Li et al., 2013b), whereas the co-release of GABA 
and glutamate controls LHb activity and can be used to treat 
depression (Shabel et al., 2014). Cui et al. (2018) found the 
upregulation of astroglial Kir4.1 in the LHb depressed neuro-
nal bursts in a rat model of depression, and Yang et al. (2018) 
found LHb burst required both NMDARs and low-voltage-sen-
sitive T-type calcium channels (T-VSCCs) and that blockade 
of NMDAR or T-VSCCs by ketamine (a NMDAR antagonist) in 
the LHb induced a rapid antidepressant effect. 

Previous reports on CART peptide showed similar path-
ways to those associated with glutamate receptors. Intra-ac-
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Fig. 2. Outline of key CART-containing neural circuits underlying the pathogenesis of depression. The role of CART in the brain regions 
such as frontal cortex, striatum, nucleus accumbens, amygdala, and hypothalmus are involved in the development of neuro-pathogenesis. 
DA and CART peptide could increase the hippocampal BDNF secretion, which may rescue the disrupted function of hippocampus. Addition-
ally, GABAergic and glutaminergic pathways are also associated with reward process, anxiety and dysphoria. The stress-depressed interac-
tion between the amygdala and hippocampus was also augmented by CART peptide, which may play an important role in the modulation of 
the anxious and depressive-like behaviors.
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cumbally injected CART peptide decreased the expression of 
αCaMKII (Fu et al., 2016; Xiong et al., 2018), which after Ca2+ 
channel activation couples with NMDAR to enhance neuronal 
excitability (Liu and Murray, 2012). As discussed above, our 
recent experiments showed CART peptide has a significant 
positive effect on GIRK signaling pathways, whereby GIRK 
channels exert modulatory effects on depressive-like behav-
iors (Hu et al., unpublished data). In addition, NMDA receptors 
also activate GIRK channels. Taken together, it is apparent 
more efforts are required to identify the role of CART peptide 
on the depression-related LHb area and to determine whether 
the glutamatergic system is a key target for the inhibitory ef-
fect of CART peptide on rewarding properties and anxiety-like 
behaviors.

CART PEPTIDE AND DEPRESSION THERAPY

Interest in the pathophysiological mechanisms of depres-
sion and treatment strategies is increasing, and in view of the 
many addiction and depression patterns exhibited, the anxio-
lytic effects of CART peptide might be useful in this context. 
Currently, the treatment of depression involves the prolonged 
use of high doses of antidepressants, such as, selective se-
rotonin reuptake inhibitors (SSRIs), serotonin norepinephrine 
reuptake inhibitors (SNRIs) or monoamine oxidase inhibitors 
(MAOIs), or electroconvulsive therapy (ECT) (Kupfer et al., 
2012). Furthermore, evidence indicates the effects of these 
drugs might be augmented by CART peptide (Job et al., 2011; 
Mao, 2011). It has been reported CART peptide levels are 
low in the cerebrospinal fluid of major depression disease 
patients, which suggests a close relationship between CART 
peptide and depression (Yoon et al., 2018), which is sup-
ported by marked reductions of CART-immunoreactive fibers 
in the paraventricular thalamic nucleus and locus coeruleus 
of socially isolated rats (Dandekar et al., 2009; Choudhary 
et al., 2018). Recently, it was reported CART-ergic neurons 
in the lateral hypothalamus innervated neurons of the para-
ventricular nucleus communicated with glutamatergic fibers 
in the NAc shell to modulate psychostimulant-induced reward 
behaviors, whereas intra-paraventricular hypothalamus infu-
sions of CART antibody or intra-accumbal NMDA receptor an-
tagonist (MK-801) injection blunted the modulatory effect of 
CART peptide (Choudhary et al., 2018). We have observed 
pretreatment of basal CaMKIIα-overexpressing NAc neurons 
with CART peptide injection decreased cocaine or amphet-
amine (stress)-enhanced pCaMKIIα expression (Fu et al., 
2016; Xiong et al., 2018) and that these reductions were cou-
pled with the activations of NMDA receptors, which suggests 
the inhibitory and modulatory effects of CART peptide on the 
glutamate receptor-Ca2+/CAM-pCaMKII signaling pathway 
influences learning and memory formation. Furthermore, we 
previously showed CART peptide can promote hippocampal 
neuron survival by upregulating BDNF (Wu et al., 2006; Pae 
et al., 2007). In addition, some reports have demonstrated the 
availability of CART-specific binding sites within brain stress 
regions, suggesting selective CART peptide receptors can in-
duce anxiolytic and antidepressant effects (Nagelova et al., 
2014). These findings and their implications indicate more ef-
forts are required to identify other regions influenced by the 
anxiolytic and antidepressant CART pathways. 

CONCLUSION

Recent experimental findings and reports of associations 
between neural circuits and disrupted neurotransmissions 
and psychostimulant addiction and depression suggest CART 
peptide might be therapeutically useful for the treatment of ad-
diction and depression (Job et al., 2011; Mao et al., 2012). 
Briefly, we summarize the pathways involved in CART pep-
tide-induced amelioration of anxiety-like behaviors during drug 
withdrawal as follows: (1) CRF-dependent up-regulation of a 
disrupted HPA axis, (2) CART-induced increase 5HT efflux in 
the dorsal raphe nucleus and NAc and the subsequent activa-
tions of 5-HT autoreceptors and dopaminergic signaling, and 
(3) CART-induced rescue of the psychostimulant-depressed 
GABA R signaling pathway within the VTA. (4) CART peptide-
induced modulation of glutamate pathways in LHb. 

However, some studies have reported adverse side ef-
fects when CART peptide was used to alleviate anxious and 
depressive-related behaviors (Stanek, 2006; Job et al., 2011; 
Mao et al., 2012). Therefore, we suggest CART related path-
ways should be further investigated to elucidate the molecular 
mechanisms responsible for the anxiolytic and antidepressant 
effects of CART during drug withdrawal. 
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