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Abstract

We evaluated the in vitro activity of apramycin against clinical strains of vancomycin-intermediate 

and methicillin-resistant and -suseptible Staphylococcus aureus. Apramycin demonstrated an 

MIC50/MIC90 of 8/16 µg/mL. No strains had an MIC above the epidemiological cutoff value of 32 

µg/mL, suggesting apramycin resistance mechanisms are rare in this strain population. The 

mounting evidence for broad-spectrum in vitro activity of apramycin against S. aureus and other 

bacterial species suggests that further exploration of apramycin or derivatives as repurposed 

human therapeutics is warranted.
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1. Introduction

Staphylococcus aureus is both a human skin commensal and an opportunistic pathogen. It is 

the leading cause of bacteremia and infective endocarditis, as well skin and soft tissue, 

osteoarticular, and surgical site infections (Akhi, et al., 2017; Deleo, et al., 2010; Tong, et 

al., 2015). Strains resistant to methicillin and by proxy, all β-lactams (so called methicillin 

resistant S. aureus or MRSA), are common in the United States (Tong, et al., 2015). 

Vancomycin is the first-line treatment for methicillin-resistant S. aureus (MRSA) infection. 

However, limitations of vancomycin include relatively lower bactericidal activity compared 

with β-lactams; nephrotoxicity, associated with high dosages and underlying risk factors; 
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and a requirement for routine monitoring of drug levels to ensure adequate dosing 

(Hazlewood, et al., 2010). Furthermore, vancomycin tolerant and heteroresistant populations 

may emerge during treatment (Bamberger & Boyd, 2005; Dombrowski & Winston, 2008; 

Hawkins, et al., 2007; Lodise, et al., 2008; Steinkraus, et al., 2007).

Therefore, additional treatment options for S. aureus would be welcome, especially for those 

strains with resistance to newer agents such as daptomycin and linezolid. minoglycosides are 

not currently used to treat S. aureus infections as single agents. In particular, renal and 

ototoxic side effects are of significant concern (Jose, et al., 2010; Matt, et al., 2012). 

Therefore aminoglycoside therapy is generally reserved for treatment of Gram-negative 

infection, where pharmacodynamic considerations are considered more favorable (Tam, et 

al., 2006). Currently, gentamicin treamtent of S. aureus is advocated only in low dose 

(1mg/kg q8 h or 3–5mg/kg q 24h) in combination with vancomycin or a β-lactam and 

rifampin, during therapy of staphylococcal endocarditis where prosthetic material is present 

and in combination with daptomycin for persistent bactermia (Liu, et al., 2011). However, 

the relative benefit of gentamicin adjunctive therapy versus risk of kidney damage has been a 

subject of extensive debate (Bruss, 2009; Buchholtz, et al., 2009; Buchholtz, et al., 2011; 

Cosgrove, et al., 2009; Frippiat, et al., 2009). Therefore, a non-toxic aminoglycoside with 

predictable activity against S. aureus would therefore be especially welcome.

Apramycin is a structurally unique aminoglycoside used in veterinary medicine and is 

characterized by a bicyclic sugar moiety and a 4-monosubsituted 2-deoxystreptamine ring 

(Meyer, et al., 2014). In contrast to aminoglycosides currently used in human therapy, 

apramycin appears highly selective for bacterial ribosomes and on this basis thought devoid 

of significant ototoxic and renal toxic side effects (Matt, et al., 2012). Previous data from our 

group and others have shown broad-spectrum in vitro activity of apramycin against 

carbapenem-resistant Enterobacteriaceae and multidrug-resistant Acinetobacter baumannii 
and Pseudomonas aeruginosa (Kang, et al., 2017; Livermore, et al., 2011; K.P. Smith & J.E. 

Kirby, 2016a, 2016b). Furthermore, we recently demonstrated potent in vivo bactericidal 

activity against Acinetobacter baumannii in a murine thigh infection model (Kang, et al., 

2018).

However, activity spectrum data for S. aureus is limited. Therefore, the goal of this study 

was to explore in vitro activity of apramycin against contemporary clinical isolates of S. 
aureus.

2. Materials and Methods

2.1 Bacterial Strains and Antimicrobials

We evaluated a collection of 109 strains of S. aureus for their susceptibility to apramycin. 

Fourteen S. aureus strains obtained from the FDA-CDC Antimicrobial Resistance Isolate 

Bank (https://www.cdc.gov/drugresistance/resistance-bank/) were part of the vancomycin 

intermediate S. aureus panel with vancomycin MIC values of 4–8 µg/mL. 95 additional 

strains of de-identified S. aureus clinical isolates were obtained from the Beth Israel 

Deaconess Medical Center (Boston, MA) clinical microbiology laboratory. Our strain 

collection was comprised of 38.5% methicillin-resistant S. aureus (MRSA), 48.6% 
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methicillin-suseptible S. aureus (MSSA) and 12.9% vancomycin-intermediate S. aureus 
(VISA). All strains were stored frozen at −80°C in a stock solution of 50% glycerol and 

50% cation-adjusted Mueller-Hinton broth (BD Diagnostics, Franklin Lakes, NJ) until use in 

experiments.

Apramycin sulfate was obtained from Alfa Aesar (Tewksbury, MA) and was dissolved in 

deionized water at 32 mg/ml and stored at −20°C in aliquots that were used only once. For 

synergy studies, apramycin, gentamicin, daptomycin, and vancomycin were dissolved at 

100, 100, 10, and 10 mg/ml in water supplemented with 0.3% polysorbate 20 (P-20; Sigma–

Aldrich), respectively. Linezolid was dissolved at 30 mg/ml in DMSO (Signma-Aldrich). 

Solvents used reflect requirements for liquid handling by the HP D300 Digital Dispensing 

System (HP Inc, Palo Alto, CA) (Brennan-Krohn, et al., 2017; K. P. Smith & J. E. Kirby, 

2016).

2.2 Suseptibility Testing

The Clinical Laboratory and Standards Institute (CLSI) broth microdilution reference 

method was used for MIC testing of apramycin (CLSI, 2015). MIC panels were created by 

serial dilution of stock apramycin with cation-adjusted Mueller-Hinton broth in round 

bottom, 96-well plates (Evergreen Scientific, Los Angeles, CA). Dilutions were prepared at 

2× the final concentration in volumes of 50 µL with final concentrations ranging from 1–256 

µg/mL after an equal volume of bacterial inoculum (5 × 105 cfu/ml final concentration) was 

added. Stock solutions were quality controlled against S. aureus ATCC 29213 on three 

separate days. All MIC values for ATCC 29213 were consistently 4 µg/ml, which was in the 

middle of the 2–8 µg/mL acceptable quality control range suggested by CLSI. Bacterial 

inocula were prepared by passaging previously frozen bacterial strains on trypticase soy agar 

containing 5% sheep’s blood at 37°C. Isolated colonies were then suspended in cation-

adjusted Mueller-Hinton broth for a final inoculum concentration of 5×105 CFU/mL. After 

inoculation, broth microdilution plates were incubated at 35°C in ambient air for 16–20 

hours. Each experiment also included both a positive (S. aureus ATCC 25923) and a 

negative control to which no organisms were added. S. aureus 25923 always showed an MIC 

of 4 or 8 µg/ml supporting consistency of assay readout.

2.3 MIC Interpretation

The MIC of each strain from our collection was determined in duplicate on separate days. If 

duplicate MICs were within one doubling dilution of each other but were not the same, the 

higher MIC was used. If duplicate MICs were not within one doubling dilution of each 

other, a third replicate was performed, and the MIC was defined as the modal MIC of the 

three replicates. Categorical breakpoints for apramycin are not available either from the 

CLSI or the European Committee for Antimicrobial Susceptibility Testing and, therefore, 

categorical intepretation was not performed.

2.4 Time-Kill Studies

Time-kill studies were performed according to CLSI guidelines (Clinical and Laboratory 

Standards Institute, 1999). To prepare a starting inoculum for the time-kill studies, 100 µL of 

a 0.5 McFarland suspension of colonies from an overnight plate was added to 5 mL of 
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CAMHB and incubated on a shaker in ambient air at 35°C until it reached log phase growth. 

The log phase culture was then adjusted to a turbidity of 1.0 McFarland in CAMHB, and 

100 µL of this suspension was added to 10 mL volumes of antimicrobial solutions in cation-

adjusted Mueller-Hinton broth (BD Diagnostics, Franklin Lakes, NJ) at time 0. Antibiotic 

concentrations selected were based on multiples of each isolate’s MIC as determined 

through broth microdilution assays. A growth control and a negative control were run in 

parallel with each experiment. Cultures were incubated on a shaker in ambient air at 35°C.

Aliquots from the culture were removed at 0, 1, 2, 4, 6, and 24 hours. A serial 10-fold 

dilution in 0.9% sodium chloride was prepared and a 10 µL drop from each dilution was 

transferred to a Mueller Hinton plate (Thermo Fisher, Waltham, MA) (Chen, et al., 2003; 

Herigstad, et al., 2001; Naghili, et al., 2013) and incubated overnight in ambient air at 35°C. 

Colonies within each drop were counted. For drops containing 3 to 30 colonies, the cell 

density of the sample was calculated; if more than one dilution for a given sample had a 

countable number of colonies, the cell density of the two dilutions was averaged. If no drops 

had a countable number of colonies, the two drops above and below the countable range 

were averaged. The limit of detection was 300 CFU mL−1. Bactericidal activity was defined 

as a reduction of ≥3 log10 CFU mL−1 at 24 hours compared to the starting inoculum (Leber, 

2016; Pillai, et al., 2005).

2.5 Synergy studies

Checkboard synergy arrays consisting of orthogonal two-fold serial dilutions of antibiotic 

combinations were set up using the HPD300 as previously described (Brennan-Krohn, et al., 

2017). Combinatorial fractional inhibitory concentrations ≤ 0.5 were considered synergistic; 

> 0.5 and < 4 were considered indifferent; and ≥ 4 were considered antagonistic (Odds, 

2003).

2.6 Statistical Analysis

R was used to plot MIC distributions and for statistical analysis (RStudio, 2017; Team, 

2017). P < 0.05 was considered to be statistically significant.

3. Results

The S. aureus collection had a narrow apramycin MIC range of 4 to 32 µg/mL (see Fig. 1). 

The MIC50 and the MIC90 were 8 µg/mL and 16 µg/mL, respectively. Based on the visual 

inspection method, an apramycin epidemiological cutoff value of 32 µg/mL was assigned 

(Turnbridge & Patterson, 2007). A chi-square test of independence detected no significant 

relationship between MSSA, MRSA and VISA strain phenotype and apramycin MIC 

distribution (P = 0.17).

Apramycin exposure led to rapid rapid killing of clinical MSSA strain S27 and MRSA strain 

S19 at 1×–4× the broth microdilution MIC in time-kill experiments. However, regrowth was 

observed bewteen 6 and 24 hours (Fig. 2). In contrast, VISA strain, FDA-CDC AR Bank 

#226, showed bacteriostatic activity at 1×–4× the broth microdilution MIC at all time points 

examined.
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During checkerboard synergy testing of the same strains use for time-kill studies, both 

apramycin and gentamicin demonstrated indifference when tested in combination with 

vancomycin, daptomycin, and linezolid.

4. Discussion

In our examination of human clinical isolates of S. aureus, we observed a very narrow 

distribution of MIC values. No isolate had an MIC above an epidemiological cutoff value of 

32 µg/mL, suggesting near to complete absence of apramycin modifying enzymes in our 

geographic region and in the smaller number of FDA-CDC VISA strains examined. This 

observation contrasted with a low prevalence of apramycin resistance in MRSA strains 

isolated from dairy cattle with mastitis and from diseased swine (Fessler, et al., 2011; 

Kadlec, et al., 2009). It is possible that selective pressure led to somewhat increased 

prevalence of apramycin resistance in these veterinary isolates. In the current study, we also 

found that apramycin demonstrated rapid, early, time-kill properties against MSSA and 

MRSA isolates with later regrowth, similar to previous reports for gentamicin (Schafer, et 

al., 2006), with static activity against a VISA isolate.

Apramycin is currently used as an orally administered, non-absorbable antibiotic to treat 

diarrheal diseases in poultry and livestock, as well as an intravenous treatment for 

pneumonia in calves and mastitis in cows and sheep (Livermore, et al., 2011; Ziv, et al., 

1985; Ziv, et al., 1995). S. aureus is the most frequently isolated pathogen in bovine mastitis 

specimens (Bradley, et al., 2007), suggesting potential therapeutic efficacy against one type 

of S. aureus infection in large mammals. In addition, efficacy of apramycin against a single 

MRSA strain was demonstrated in an immunocompromised murine septicemia model 

(Meyer, et al., 2014). Here, apramycin decreased bacterial burden in a dose-dependent 

manner by 2- to 3-log10 in the blood and up to 4-log10 in the kidneys. Therefore, there is 

evidence supporting therapeutic effect of apramycin aginst Staphylococcal aureus infection.

Notably, aminoglycosides are not used currently as single agents for treatment of S. aureus 
infections in humans based on limiting toxicities. Further, risk-benefit of short term use in 

combination with vancomycin and other agents for treat of persistent bacteremia and 

prosthetic valve endocarditis, although recommended by some guidelines (Liu, et al., 2011) 

has been a matter of debate (Deresinski, 2009). It is possible that apramycin, based on a 

putatively more compelling side effect profile, may offer an alternative treatment for S. 
aureus infections as a single agent or in combination. However, basic pharmacokinetic and 

pharmacodynamic parameters still need to be defined in humans. Therefore use of 

apramycin for treatment of human Staphylococcus aureus infection as yet remains 

speculative.

Conclusions

In this study, we found that apramycin shows consistent in vitro activity against 

contemporary S. aureus strains including MSSA, MRSA and VISA. Furtheremore, 

apramycin demonstrated rapid bactericidal activity against MSSA and MRSA. Ultimate 

utility against human S. aureus infection will depend on pharmacokinetic and 
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pharmacodynamic parameters that have yet to be fully established in animal models and 

investigated in humans. Nevertheless, the broad-spectrum in vitro activity of apramycin 

against multidrug-resistant S. aureus strains in combination with prior descriptions of 

activity against carbapenem-resistant Enterobacteriaceae, and multidrug-resistant 

Acinetobacter baumannii and Pseudomonas aeruginosa, suggests that further exploration of 

apramycin and/or derivatives as repurposed human therapeutics may be warranted.
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Highlights

1. Apramycin is an aminoglycoside approved for veterinary use

2. Activity against highly drug resistant S. aureus was studied

3. Frank apramycin resistance was not found in MSSA, MRSA and VISA 

strains studied

4. Apramycin could potentially be repurposed against highly drug-resistant 

pathogens
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Figure 1. Apramycin MIC distribution for S. aureus clinical isolates
MSSA (methicillin-susceptible S. aureus); MRSA (methicillin-resistant S. aureus); VISA 

(vancomycin-intermediate S. aureus).
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Figure 2. Time-kill experiments
Macrobroth time-kill analysis was performed against representative MSSA, MRSA, and 

VISA strains. Data points plotted at 102 cfu indicate no growth and correspond to the assay 

detection limit. Panel titles list the broth microdilution MIC associated with each isolate.

Truelson et al. Page 11

Diagn Microbiol Infect Dis. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Bacterial Strains and Antimicrobials
	2.2 Suseptibility Testing
	2.3 MIC Interpretation
	2.4 Time-Kill Studies
	2.5 Synergy studies
	2.6 Statistical Analysis

	3. Results
	4. Discussion
	Conclusions
	References
	Figure 1
	Figure 2

