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Abstract Climate change will impact the dynamics of

invasive alien plant species (IAPS). However, the ability of

IAPS under changing climate to invade mountain

ecosystems, particularly the Himalayan region, is less

known. This study investigates the current and future

habitat of five IAPS of the Himalayan region using MaxEnt

and two representative concentration pathways (RCPs).

Two invasive species, Ageratum conyzoides and

Parthenium hysterophorus, will lose overall suitable area

by 2070, while Ageratina adenophora, Chromolaena

odorata and Lantana camara will gain suitable areas and

all of them will retain most of the current habitat as stable.

The southern Himalayan foothills will mostly conserve

species ecological niches, while suitability of all the five

species will decrease with increasing elevation. Such

invasion dynamics in the Himalayan region could have

impacts on numerous ecosystems and their biota,

ecosystem services and human well-being. Trans-

boundary response strategies suitable to the local context

of the region could buffer some of the likely invasion

impacts.

Keywords Climate change � Himalayas �
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INTRODUCTION

Almost one-sixth of the global land surface is currently

highly vulnerable to invasion from alien species, including

significant areas of developing economies and global

biodiversity hotspots (Early et al. 2016). According to

Masters and Norgrove (2010), Invasive alien plant species

(IAPS) are ‘‘non-indigenous species that adversely affect,

economically, environmentally or ecologically, habitats

where they have been introduced, either accidentally or

deliberately, outside their normal past or present distribu-

tion’’. Approximately, 0.5–0.7% of global tree and shrub

species are currently invasive outside their natural range

(Richardson and Rejmanek 2011). In India, Adhikari et al.

(2015) reported nineteen out of forty-seven existing eco-

regions harbour invasion hotspots. Both climate change

and invasive species are the key drivers of biodiversity

loss, and if acting together, they could exacerbate the

impact on biodiversity and ecosystems as a whole (Mainka

and Howard 2010). Many invasive plant populations, in the

current context of climate change, are developing adapta-

tions that could lead to exponential population growth in

the future (Clements and Ditommaso 2011). IAPS are thus

becoming a serious threat to biodiversity and ecosystems,

and climate change may increase their distribution range.

Species that can withstand a wide range of environ-

mental conditions show a broader physiological niche and

are more likely to be invasive (Higgins and Richardson

2014). Pests and parasites are integral components of a

natural ecosystem that help maintain healthy species pop-

ulations. Torchin and Mitchell (2004) argued that escaping

native natural biological enemies, such as pests from their

area of origin, is one of the key mechanisms that makes

introduced species more prone to proliferate in the novel

environment and facilitate them to become a harsh invader.

Similarly, Maron et al. (2004) found that adaptive evolu-

tion, apart from long-recognized phenotypic plasticity,

facilitates the establishment and expansion of invasive

species into broad environmental conditions of the invaded

range. The high growth rate, wide climatic or
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environmental tolerance, short generation time, consistent

reproduction, small seed size, high dispersal and high

capacity for asexual reproduction are some of the specific

traits of IAPS that undergo evolutionary change when they

invade new areas (Whitney and Gabler 2008). In this

context, four distinct pathways, such as transport, colo-

nization, establishment and landscape spread, are essential

for an invasive species to successfully complete an inva-

sion (Hellmann et al. 2008).

The ongoing biotic invasion is modifying global natural

communities and their ecological characteristics at an

unprecedented rate and is being viewed as a major agent for

human-driven global change, such as atmospheric and land

use changes (Mack et al. 2000; Masters and Norgrove

2010). Disturbances to an ecosystem enhance the diversity

and distribution of non-native plants; however, the strength

of this enhancement relies on the disturbance type, espe-

cially grazing and anthropogenic activities for terrestrial

ecosystems (Jauni et al. 2015). Invasive plants could

directly exert an influence on the survival, productivity and

activity of native biota along with changes in mineral and

nutrient contents in plant tissues, and at the community

level, to species richness, diversity and soil resources

through the interaction between species traits and the biome

invaded (Pysek et al. 2012). A recent study (Ren et al. 2017)

in the Hindu Kush Himalaya (HKH) that overlaps most of

the Himalayas and Tibetan Plateau region revealed a sig-

nificant increasing trend of the annual mean surface air

temperature during the last century. Jayanarayanan et al.

(2017) projected an increment of seasonal warming up to

5.4 �C during the winter and 4.9 �C during the summer

monsoon in the Karakoram and northwestern region of the

Himalaya by the end of this century. Theoretically, greater

expansion of the species adapted to low elevation is

expected in such high elevation regions with the increasing

trend of average temperature, including likely changes in

the dynamism and impacts of hot climate plants such as

invasive species. Dhar and Reshi (2015) observed invasive

species promoting homogenization of the terrestrial

ecosystem in Kashmir in the western Himalaya. Likewise,

Priyanka and Joshi (2013) reported that most of the southern

and western regions of the western Himalaya will be cli-

matically suitable in the future for the spread of Lantana

camara due to increased warming. These invasive species

have been spreading over the protected areas of the region

and creating problems for wildlife habitat and their food

availability (Murphy et al. 2013; Aryal et al. 2017). This

suggests that the Himalayan region is equally vulnerable to

species invasion because of past and future environmental

change, such as increased warming.

Non-native invasive species are abundant at lower and

mid-elevation regions in mountain ecosystems; however, it

is likely that they will spread and become dominant at

higher elevations because of ongoing climate change and

anthropogenic activities (Alexander et al. 2016). An inva-

sion of alien plant species is possible if the population

growth continues in our mountainous areas under a

warming climate (Marini et al. 2012). Haider et al. (2010)

found that both climatic and habitat conditions affect alti-

tudinal distribution of non-native plants, and hence, climate

change can influence the occurrence of these plants directly

and indirectly in such terrain conditions. On the other hand,

it has also been acknowledged that regions at high eleva-

tions are less vulnerable to alien plant invasions with the

existing conditions of energy constraints, low propagule

pressure and disturbance, even if potential increases in

temperature are considered (Marini et al. 2009). For

instance, Zhang et al. (2015) reported a decrease in alien

species richness with increasing elevation in the Tai and

Lao mountain range, and Guo et al. (2017) found similar

results in the high elevation protected areas (PAs) of China,

which could be an influence of lower lethal temperature

and other stressful abiotic environments, for instance, a

lower propagule pressure or a less human mediated land

use system (Lembrechts et al. 2014). It seems that high

elevation landscapes could see more invasions from low-

land invasive plants through likely moderate climate and

increased human activities in the next few decades.

Some modelling studies on invasion potential are

available in the Himalayas (Priyanka and Joshi 2013;

Shrestha et al. 2015). However, there is a lack of a com-

prehensive study focusing on the broad Himalayan region

as a whole on the current potential and future predicted

distribution of major IAPS of the region. As the literature

suggests, such an invasion expansion in mountain ecosys-

tems and along its gradient is important to understand

whether invasion phenomenon will occur in the Himalayan

region considering the fragile ecosystems it has, the bio-

diversity therein and the continuing supplement of

ecosystem services (ES) for human well-being. Invasive

species are largely known to degrade the biota habitat in

ecosystems by outcompeting native species through influ-

ence on availability of resources such as nutrients and

space as well as modification of ecological processes

(Grice 2006). The biodiversity-rich and vulnerable region,

the Himalaya, is no exception from such invasion. There-

fore, this study seeks to use maximum entropy (MaxEnt)

(i) to model the invasion dynamics of five IAPS, viz. A.

adenophora (Crofton weed), A. conyzoides (Billygoat

weed), C. odorata (Siam weed), L. camara (Lantana) and

P. hysterophorus (Famine weed), considering current and

future (2070) time periods under the IPCC’s RCP4.5 and

RCP8.5; (ii) to understand how the five investigated IAPS

respond along the altitudinal gradient of the Himalaya

under future warming scenarios; and (iii) to see how the

five investigated IAPS could affect ongoing conservation
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efforts, such as existing protected areas in the region. A

brief introduction of the five IAPS in Nepal’s context is

provided in Supplementary Information S1.

MATERIALS AND METHODS

The ecological niches of the five IAPS that are found in the

foothills of the Himalayas were modelled using maximum

entropy (MaxEnt). MaxEnt is a robust model for invasive

species modelling with high accuracy estimations of

habitat suitability, even with a limited number of available

field data (West et al. 2016), and it has higher stability

(Duan et al. 2014). Global occurrence data representing

both native and exotic ranges were collected from multiple

sources, such as the Global Biodiversity Information

Facility (GBIF), National Herbarium and Plant Laborato-

ries (KATH), literature and a personal contact. A total of

23,193 occurrence data were used in the model: A. ade-

nophora (2365), A. conyzoides (3005), C. odorata (3623),

L. camara (11 742) and P. hysterophorus (2458). An eco-

logical niche model was first developed for each individual

species at a global scale and then distributions specific to

our study area (Fig. 1) were clipped. The idea was to create

a global robust climatic envelop using the occurrence

records of both native and non-native regions (Supple-

mentary Information S2) and then narrow down a niche

distribution analysis for the Himalayas. An ecological

niche model calibrated on the data of the native region

alone could provide a less reliable outcome on the current

and future spread of invasive species compared to a model

with the distribution data of the entire range (Beaumont

et al. 2009). Similarly, Mainali et al. (2015) argued that

model accuracy improved drastically if the dataset of all

broader geographic space is used in model training rather

than relying on data of a certain restricted region. Saurez-

Mota et al. (2016) also recommended the use of global

distribution records for niche modelling of invasive plants

if the species in the target study region had an incipient

presence or the record evidence was deemed not sufficient.

Henceforth, we used a global dataset of the five IAPS with

the assumption that models capture well the environmental

and other variables of both native and exotic geographic

ranges.

We downloaded 19 grid-based bioclimatic variables

from the Worldclim dataset (www.worldclim.org) at 30 arc

sec (* 1 km2) resolution (Supplementary Information S3).

The use of such fine resolution climate data is appropriate

for regions with complicated topography such as the

Himalayas, where climatic conditions change over a short

distance. Current global land cover data at 300 m spatial

resolution for the study area were obtained from the

European Space Agency (http://due.esrin.esa.int/page_

globcover.php), while elevation data with a similar reso-

lution to that of bioclimatic variables were obtained from

the global multi-resolution terrain elevation data 2010

(http://lta.cr.usgs.gov/GMTED2010). Slope and aspect

rasters of the study area were derived from the elevation

data, while a population density raster (30 arc sec) was

obtained from the Socio-economic Data and Application

Centre (http://sedac.ciesin.columbia.edu/data/set/gpw-v4-

population-density-adjusted-to-2015-unwpp-country-totals).

We analysed a multicollinearity test of climatic (19 bio-

climates), ecological (elevation, slope, aspect, land cover)

and socio-economic (global population density) variables

for each of the five species separately using a Pearson

correlation in IBM SPSS Statistic Software version 21,

removing all the variables with R2 C 0.75 and keeping

Fig. 1 Study area showing the occurrence records of the five IAPS and the elevation gradient in the Himalaya
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variables below this threshold for the MaxEnt analysis.

Strong collinearity between the variables in predictive

modelling could influence the overall model outcome by

placing high emphasis on one or two or more highly cor-

related variables (Baldwin 2009), resulting in misinter-

pretation. In this context, Dormann et al. (2012) viewed

collinearity as a common feature of an ecological data set

and often a problem for parameter estimation by inflating

the variance of regression parameters that could lead to

incorrect detection of relevant predictors in a statistical

model, and therefore one needs to be sure that those

environmental predictive variables are orthogonal or

mutually independent of each other (Cruz-Cardenas et al.

2014). Binary habitat suitability maps for the present and

future (2070) were prepared using the maximum training

sensitivity plus the specificity logistic threshold in ArcGIS

version 10.2 software package. Maximum training sensi-

tivity plus a specificity threshold approach is a more

restrictive and conservative approach to understand habitat

suitability. This threshold approach is one of the best

methods either for presence/absence data or for presence

only data when random points are used (Liu et al. 2005a).

Furthermore, a sound principle of threshold selection is

based on three criteria, viz. objectivity, equality and dis-

criminability, which is fully satisfied by this approach (Liu

et al. 2013).

The MaxEnt model used a 20% random test, five

replications and 1000 maximum iterations, whereas other

parameters remained at default. These parameters are the

software in-built features that a modeller adjusts to cali-

brate the model for achieving a better model output. The

area under the curve (AUC) of the Receiver Operator

Characteristic (ROC) plot that is available within MaxEnt

was used to measure the discrimination ability of the model

i.e. model’s goodness of fit. AUC values range from 0 to 1

and the model with the highest AUC value is considered as

the best performer. Of the total, 80% of the occurrence

records were allocated to train the model, while 20% were

allocated to test the model. The relative contribution of

different bioclimatic predictors to the distribution model

was evaluated through MaxEnt outcome using percent

variable contribution and Jackknife procedures (Elith et al.

2011). The Jackknife procedure identifies the variables

with the greatest influence to the overall model. As per

Phillips et al. (2006), the Jackknife procedure is an in-built

functionality of MaxEnt where each variable is excluded

and a model is reconstructed with the remaining ones after

which a new model is created using each variable in iso-

lation. Data on existing protected areas (PAs) at the global

scale that fell under the definition of the World Database on

Protected Areas (WDPA) of UNEP–WCMC (www.

protectedplanet.net) and classified and mapped accord-

ingly were downloaded and clipped to study area to see

how many PAs are currently and in the future could be

invaded by either one or more of the five IAPS.

The Model for Interdisciplinary Research on Climate

version 5 (MIROC5) of the global climate model (GCM)

was selected to predict the distribution of the five IAPS.

This GCM has better simulation of the mean climate,

variability, and climate change due to anthropogenic

radiative forcing than its past version (for details, please

see Watanabe et al. 2010). Further, Mishra et al. (2014) and

Sharmila et al. (2015) reported that MIROC5 captures

various observed features of future climate very well,

especially for the South Asian region, and some studies (Su

et al. 2015; Aryal et al. 2016) used this GCM to model

species distributions in the high elevation regions, such as

the Himalaya and Tibetan Plateau. As per the IPCC (2013),

RCP4.5 is the medium future emission scenario that peaks

in approximately 2040, with total radiative forcing could

reach almost ? 4.5 W/m2 (* 650 ppm CO2 equivalent) by

the end of twenty first century and stabilizes thereafter.

Similarly, RCP8.5 is an extreme carbon emission scenario

that continues to rise throughout the twenty first century,

with radiative forcing reaching almost ? 8.5 W/m2

(* 935 ppm CO2 equivalent).

After modelling each species separately, we calculated

the likely changes in the suitability areas of each individual

species for the future compared to current time period. We

then overlaid all five species to see which areas would have

impacts from all the five IAPS to show their dynamism in

terms of expansion, reduction and stability under the future

distribution. Likewise, we categorized the study area into

six different elevation belts of 500-m intervals, i.e. B1

(\1500 m), B2 (1500–2000 m), B3 (2000–2500 m), B4

(2500–3000 m), B5 (3000–3500 m) and B6 ([3500 m) to

see how the five IAPS respond to climate change along the

Himalaya gradient. Similarly, we overlaid existing PAs

boundary over the merged IAPS suitability maps to look

into the current and possible future invasion into PAs of the

region. All of the analyses were carried out using spatial

analysis tool available in the Environmental System

Research Institute (ESRI) ArcGIS 10.2 software.

RESULTS

Distribution models

The four predictor variables with the highest contributions

to the model were temperature seasonality (BIO4), annual

mean temperature (BIO1), precipitation of coldest quarter

(BIO19) and minimum temperature of coldest month

(BIO6) for A. adenophora, accounting for 87.4% of the

variance; temperature annual range (BIO7), annual pre-

cipitation (BIO12), annual mean temperature (BIO1) and
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population density for A. conyzoides, accounting for 91.8%

of the variance; temperature annual range (BIO7), annual

precipitation (BIO12), annual mean temperature (BIO1)

and population density for C. odorata, accounting for

87.5% of the variance. Similarly, it was annual mean

temperature (BIO1), temperature annual range (BIO7),

annual precipitation (BIO12) and precipitation of coldest

quarter (BIO19) for L. camara, accounting for 88.9% of the

variance and annual mean temperature (BIO1), isother-

mality (BIO3), population density and precipitation of

driest month (BIO14) for P. hysterophorus, accounting for

80.1% of the variance (Supplementary Information S4).

Overall, BIO1 and BIO12 were common variables for all

five IAPS, while the contribution of population density was

found to be important for A. conyzoides, C. odorata and P.

hysterophorus. The jackknife test also showed that the

above variables are important to the model (Supplementary

Information S5). Some selected response curves of all the

species are presented in Supplementary Information S6,

which showed how each environmental variable used for

each individual species in the model responded to the

predicted suitability of those species, which were found to

be well within the ecological range. Similarly, the highest

training and test area under the ROC curve (AUC) value as

provided by the model for the investigated species were as

follows: A. adenophora (0.920, 0.922), A. conyzoides

(0.879, 0.879), C. odorata (0.866, 0.857), L. camara

(0.749, 0.752) and P. hysterophorus (0.900, 0.899).

Current and future projection

The model shows that the suitable habitat of all the five

IAPS will change both under RCP4.5 and RCP8.5 by 2070

compared to current distribution (Fig. 1, Table 1). Overall,

three species, viz. A. adenophora, C. odorata and L.

camara, will see increased suitable area under both RCP’s

by 2070, while A. conyzoides and P. hysterophorus will

have decreased suitability. The average combined suit-

able area of all the five species is 578 908, 573 654 and

590 259 km2 for the current, RCP4.5 and RCP8.5 scenar-

ios, respectively. Currently, P. hysterophorus occupies

maximum suitable area (33.53% of the total suitable area)

followed by A. conyzoides (26.62%), L. camara (14.10%)

and C. odorata (13.52%), while A. adenophora occupied

the least (12.22%). All the future changes in the suitability

of the five species, either an increase or decrease, will be

less than 22% for each species. The highest increase in

suitability will be seen for A. adenophora, almost 21.88%

under RCP8.5, while A. conyzoides will have the highest

decrease in suitable area, almost -17% under RCP4.5

compared to current time (Table 1).

Suitability dynamics of individual species

Table 2 and Fig. 2 show how the five IAPS under investi-

gation expand, decrease or remain stable under RCP4.5 and

RCP8.5 by 2070 in the Himalayan region. All IAPS will

have significant dynamism in terms of suitability with

respect to future climate scenarios. The majority of suit-

able areas for all five species will remain stable under both

RCPs compared to the present (Fig. 2). A. conyzoides and

L. camara will lose the maximum (19.36%) and minimum

(2.66%) of suitable areas, respectively, while A. adeno-

phora and A. conyzoides will have the maximum (20.65%)

and minimum (2.85%) gains in suitable area under RPC4.5

by 2070 (Table 2). Similarly, P. hysterophorus and L.

camara will lose the maximum (14.66%) and minimum

(1.67%) of their suitable area, respectively, while A. ade-

nophora and P. hysterophorus will have the maximum

(21.42%) and minimum (7.80%) gain in suitable area under

RCP8.5 by 2070 (Table 2). Overall, A. adenophora will

have the highest gain in suitability under both RCPs,

whereas L. camara will have the smallest reduction in

suitable area.

Ageratina adenophora will expand more in the western

Himalaya, especially on the lower belts of Uttarakhand,

Himachal Pradesh and Jammu and Kashmir along with

some parts of northern Pakistan under RCP4.5 (Fig. 2a).

Little expansion can be seen in the lower belt of the central

Himalaya and eastern Himalaya in Assam. Minor expan-

sion will occur in the whole northern belt, including the

Tibetan Plateau and Yunnan Province of China. However,

under RCP8.5 (Fig. 2b), more expansion can be expected in

the lower belt of the central and eastern Himalaya, while

less expansion in the western Himalaya is evident under

RCP4.5. In RCP4.5, the species will have a minor north-

ward expansion throughout the whole region, including

Yunnan. For A. conyzoides, some areas will become

unsuitable under RCP4.5, especially the lower belt of the

western Himalaya and northern India, while Yunnan will

see expansion. A reduction of suitability can be seen under

RCP8.5, but will also have more expansion both in the

Table 1 Current and future suitability of the five IAPS under the two

emission scenarios

Species Suitable area (km2)

Current RCP4.5

(2070)

%

Change

RCP8.5

(2070)

%

Change

A. adenophora 353 986 426 496 20.48 431 439 21.88

A. conyzoides 770 549 639 544 - 17 720 774 - 6.45

C. odorata 391 386 441 639 12.84 416 016 6.29

L. camara 408 034 463 951 13.70 484 730 18.80

P.

hysterophorus

970 589 896 641 - 7.62 898 337 - 7.44
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western Himalayas and Yunnan province (Fig. 2d). For C.

odorata (Fig. 2e), some parts of Jammu and Kashmir will

be more suitable, including the border between western

Nepal and India as well as Yunnan, under RCP4.5.

Northward expansion is visible and similar to that A.

adenophora. However, expansion will be less under

RCP8.5, though minor northward expansion is still evident.

Likewise, L. camara (Fig. 2g) will expand into some parts

of Afghanistan and Pakistan, including the lower belt of

Himanchal State and Jammu and Kashmir of the western

Himalaya, under RCP4.5. Northern India bordering central

Nepal and Assam in the eastern Himalaya will see suit-

able areas for the expansion of L. camara, including the

northern elevated range as well as in Yunnan Province.

Similar phenomena could be expected for this species

under RCP8.5 but with more climatically suitable areas in

Yunnan Province. On the contrary, P. hysterophorus

(Fig. 2i) will have less climatically suitable areas in the

whole northern region at the highest elevations, including

Yunnan, under both RCPs compared to the other four

species. The southern belt of the Himalaya, mainly Punjab

Province of both Pakistan and India, will have less

expansion and more contraction in suitability. Northeast

Afghanistan will gain some suitable areas under both

RCPs, while northern Myanmar will see more unsuit-

able areas under RCP8.5 by 2070 (Fig. 2j).

Suitability along elevation belts

The percentage change in climatic suitability with respect

to different elevation belts in the Himalayan region for the

present and 2070 under RCP4.5 and RCP8.5 is provided in

Table 3. On average, almost 78% of the current suit-

able habitats of the five IAPS lies below 1500 m (B1).

Approximately 89% and 64% of the current suitable habi-

tats of C. odorata and A. adenophora lie below 1500 m,

respectively. From this, it is obvious that all the investi-

gated species categorically belong to tropical and sub-

tropical climates. However, there is a sharp decline in

potential suitable areas with increasing elevation. A. ade-

nophora and L. camara have almost 20% suitable area at

B2 (1500–2000 m), while the remaining three species have

only approximately 8% of suitability on average, and this

suitability declines further at higher elevations. The future

suitability of all the five IAPS under both RCPs follows the

same pattern; however, they differ in the expansion and

reduction of such suitability. For instance, the suitability of

A. adenophora and L. camara continues to decline in both

RCPs beyond B3 (2000–2500 m), while the rest of the

species shows a mixed trend of both expansion and con-

traction. Such dynamism also differs if we consider the

same elevation belts between the present and RCP4.5 and

RCP8.5 in 2070.

Invasion of IAPS in the protected areas

A total of 493 protected areas (PAs), based on the classi-

fication and mapping of the World Database on Protected

Areas (WDPA) of UNEP–WCMC, exist in the study area

(Fig. 3). Our results show that no new PAs in the study area

will be invaded by 2070 under both RCPs, since most of

them (338 PAs, which is * 69%) are already being inva-

ded in whole or part by either one or more of the five

investigated IAPS. This includes almost all the PAs in

Nepal and Bhutan, as well as one from Afghanistan, 78

from China, 114 from India, 5 from Myanmar and 83 from

Pakistan. However, the areal extent of the five IAPS will

either increase or decrease within the boundaries of the

PAs in the future (under both RCPs by 2070).

For example, the future suitability expansion of A.

adenophora will mostly be to PAs of north-western India,

while C. odorata could affect some PAs of northern India

(Figs. 2, 3). Similarly, the L. camara habitat expansion

could invade PAs up to northern Pakistan and eastern India

(Fig. 2, 3).

DISCUSSION

This study investigated current potential and future pre-

dicted habitat suitability of the five IAPS in the Himalayan

region using the MaxEnt ecological niche modelling

Table 2 Stable, reduction and expansion suitable areas of the five IAPS by 2070 under RCP4.5 and RCP8.5

Species Area under RCP4.5 (km2) Area under RCP8.5 (km2)

Reduction Stable Expansion Reduction Stable Expansion

A adenophora 19 637 (4.40%) 334 349 (74.94%) 92 147 (20.65%) 19 038 (4.25%) 334 947 (74.35%) 96 492 (21.42%)

A conyzoides 153 594 (19.36%) 616 954 (77.79%) 22 589 (2.85%) 122 122 (14.49%) 648 427 (76.93%) 72 347 (8.58%)

C odorata 18 578 (4.04%) 372 808 (81%) 68 830 (14.96%) 25 609 (5.80%) 365 777 (82.82%) 50 239 (11.37%)

L camara 12 694 (2.66%) 395 339 (82.94%) 68 612 (14.39%) 8 236 (1.67%) 399 798 (81.10%) 84 932 (17.23%)

P hysterophorus 144 436 (13.87%) 826 152 (79.35%) 70 488 (6.77%) 154 326 (14.66%) 816 263 (77.54%) 82 073 (7.80%)

Note: The percentages in brackets denote the portion of the total distribution of a species

702 Ambio 2018, 47:697–710

123
� Royal Swedish Academy of Sciences 2018

www.kva.se/en



Fig. 2 Projected distribution maps of five IAPS showing likely stable, expansion and reduction areas under RCP4.5 and RCP8.5 in 2070 with

respect to the current time period (AF Afghanistan, TJ Tajikistan, PK Pakistan, IN India, NP Nepal, BT Bhutan, MM Myanmar and CN China)
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software and also looked at possible impacts on biodiver-

sity-rich PAs. The current potential habitat distribution of

all five IAPS highly matched with the existing occurrence

records used in the model analysis (Fig. 1) and supports the

findings of Xu et al. (2012) and Chen et al. (2017), who

also reported that the distribution of invasive species in

China is highly concentrated in Yunnan, eastern and

coastal provinces, while areas in western regions, such as

the Tibetan Plateau, have the least. Our models obtained

AUC values that ranged from almost 0.75 for L. camara to

0.92 for A. adenophora, which are within the accept-

able range for models to be considered robust. Swets

(1988), Pearce and Ferrier (2000) and Elith (2000) sug-

gested that AUC values above 0.75 are potentially useful

and acceptable for interpreting a niche model output. In

this context, Evangelista et al. (2008) showed that predic-

tive ecological niche models perform poorly for generalist

plants such as invasive species that can withstand broad

environmental conditions that are not easily defined by

data, independent variables or model design compared to

geographically restricted specialist plants. Thus, we con-

sidered our model performance sufficient for interpreting

the overall result of the five IAPS in the Himalayas. The

annual mean temperature and annual precipitation were

found to be the most influential variables for most of the

IAPS, along with population density, compared to topo-

graphical variables such as elevation, slope and aspect in

describing their distribution. Zhu et al. (2007) reported

temperature and precipitation as the major variables

influencing the spread of A. adenophora in China. Human

population density and economic activity were strongly

correlated with invasive species richness in 31 provinces of

China (Liu et al. 2005b), which has been reported as a

similar case to the central Himalaya (Bhattarai et al. 2014;

Shrestha et al. 2015), suggesting that both of these factors

are the keys behind the spread of invasion, as shown by our

models.

Of the five species, three species, viz. A. adenophora, C.

odorata and L. camara, will have overall increased suit-

ability under both RCPs compared to the present, while A.

conyzoides and P. hysterophorus will have decreased

suitability overall. This change in suitability in the future

depends not only on the temperature or precipitation vari-

ables that the MaxEnt model used but also on many non-

climatic factors as well as the individual plant’s morpho-

logical and physiological advancement and its ability to

cope with an adverse climate. All five IAPS are charac-

teristically known as broad ecological and environmentally

tolerant species that possess the inherent features necessary

to maintain their growth and survival in adverse conditions.

It is for this reason that it is difficult for us to explain why

some species will expand and others may contract their

suitable areas in the next couple of decades. Bezeng et al.

(2017), for instance, modelled 162 non-native trees and

shrubs of South Africa and found that over half of them

will have decreased climatic suitability by 2070. Fandohan

et al. (2015) also reported a decrease in the suitability of C.

odorata in the protected areas (PAs) of four West African

countries by 2070. Similarly, the changes in either expan-

sion or reduction of such suitable area are less than twenty

two percent, while most of the area remains stable for all

species (Table 2, Fig. 2). This suggests that all the

Table 3 Percentage change in current and future suitability areas of the five IAPS with elevation belts and two emission scenarios

Elevation Belts (m) CC scenario \1500 (B1) 1500–2000 (B2) 2000–2500 (B3) 2500–3000 (B4) 3000–3500 (B5) [3500 (B6)

A. adenophora Current % 63.897 22.449 11.966 1.588 0.082 0.018

RCP4.5 (% change) 2.899 - 2.705 - 0.920 0.539 0.169 0.018

RCP8.5 (% change) - 1.027 - 2.002 1.036 1.523 0.423 0.048

A. conyzoides Current % 72.084 11.253 9.410 4.461 2.646 0.146

RCP4.5 (% change) - 3.372 1.979 0.889 0.612 - 0.163 0.055

RCP8.5 (% change) - 6.082 2.034 2.920 2.044 - 0.969 0.052

C. odorata Current % 89.485 8.477 1.570 0.429 0.032 0.006

RCP4.5 (% change) - 2.252 0.261 1.329 0.648 0.015 - 0.001

RCP8.5 (% change) - 0.875 0.138 0.944 - 0.191 - 0.015 - 0.002

L. camara Current % 75.640 18.705 5.434 0.190 0.027 0.004

RCP4.5 (% change) - 1.181 - 0.296 1.385 0.075 0.011 0.006

RCP8.5 (% change) - 0.475 - 0.780 1.117 0.123 0.011 0.005

P. hysterophorus Current % 87.245 5.826 5.510 0.601 0.378 0.440

RCP4.5 (% change) - 0.338 0.790 - 0.474 0.569 - 0.246 - 0.301

RCP8.5 (% change) 0.831 0.048 - 1.432 1.150 - 0.184 - 0.413

Note: Corresponding areas in km2 with respect to elevation belts for each climate scenario are provided in Supplementary Information S7
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Fig. 3 Combined invasion of the five IAPS (grey coloured) for the present, RCP4.5 and RCP8.5 for the year 2070 and vulnerable protected areas

(light brown coloured) in the study area
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modelled IAPS will conserve most of their current eco-

logical niche even with future changes in climate in the

Himalayan region. Some species will expand towards the

south, especially in the central and eastern foothills of the

Himalaya. This is obvious, as Goncalves et al. (2014),

citing spread of L. camara in India, reported that invasive

species should not always be expected to conserve their

strict niche, and therefore, areas in all directions may be at

risk of a potential future invasion. Invasive species exhibit

more phenotypic plasticity, an evolutionary mechanism,

than native species occurring in the same region (Daehler

2003), signifying their ability to move into suitable cli-

matic areas that enhance their growth and development.

For instance, Zhao et al. (2012) reported that phenotypic

plasticity is the only factor that helps the invasive weed A.

adenophora to succeed in different climatic and geographic

contexts in Yunnan, China. The southward expansion of L.

camara in northern India on the border of Nepal and

Assam shown by our model can be further justified because

these areas are elevated terrain between 500 and 1300 m

that could be under cold stress currently and whose climate

may warm by 2070 to better suit the species requirement.

Our model shows less northward expansion overall from

all of the five IAPS, with almost none towards the Tibetan

Plateau, while there is some expansion towards the western

Himalayan region (Fig. 2). As mentioned, it should be

noted first that all the modelled species are of tropical and

sub-tropical origin, with lower growth form that could not

withstand the harsh climate of the high Himalaya and

Tibetan Plateau, even though some climatic modification is

projected there. For instance, alien invasive plants can have

a strong response in the currently warm, urbanized and low

elevation regions rather than the areas with cold and high

elevations that have a low human population and less

disturbance (Marini et al. 2009). In the case of China, Lin

et al. (2007) argued that provinces located in southern

China and the coastal areas of eastern China, which saw a

major boost in economic activities in the last quarter of 20th

century and are now more economically developed, have

higher abundances of invasive species compared to pro-

vinces in inland and western China, such as our study area,

that contributed as much to the expansion of invasive

species as climatic factors.

Similarly, the B1 (\1500 m) belt has high suitability for

all the species, which tends to decrease with increasing

elevation under both RCPs by 2070 (Table 3). McDougall

et al. (2011) and Alexander et al. (2011) reiterated that

invasion risk in the mountain ecosystem is comparatively

less than other ecosystems. Low propagule availability, the

absence of species exposed to wider environmental con-

ditions, low anthropogenic disturbances and low invasi-

bility of natural communities are reasons that the alpine

ecosystem currently has a restricted number and intensity

of invasive species (Alexander et al. 2016). Abiotic

stressful areas, such as the Himalayas and Tibetan Plateau,

are less prone to invasion than more moderate environ-

ments. Zefferman et al. (2015) explained the low invasi-

bility of harsh areas through twin hypotheses: (i) propagule

limitation hypothesis—suggests invasion on such sites is

limited by the low arrival rates of propagules than in

moderate habitat found at lower elevations; and (ii) inva-

sion resistance hypothesis—suggests that such sites bear

abiotic stressful conditions even in the future and also have

increased biotic resistance from resident organisms. Our

findings are consistent with (i) Andersen et al. (2015) and

Averett et al. (2016), who reported a decreasing distribu-

tion of invasive species with increasing elevation in the

Wallowa Mountains of the USA; (ii) Becker et al. (2005)

and Seipel et al. (2016), for similar observations in the

Swiss Alps; and (iii) Barni et al. (2012) in a mountain

ecosystem in the Italian Alps. They argued that an invasion

into such highlands will proceed at rather a slow pace due

to the adverse climate in the context of future warming.

Joshi et al. (2006) reported that lower winter temperatures

or high frost levels constrained the vertical distribution of

invasive plant species such as C. odorata towards the

northern boundary of the Nepal Himalaya, mainly due to

their impacts on photosynthetic activity.

The problems known so far as a result of the invasion of

alien species should act as a lesson for us to take actions

even before we are able to unearth all of their effects

(McNeely 2001). Impacts from invasive species to

ecosystems and their biota is pervasive at a global scale,

which in turn affects ecosystem services (ES) upon which

millions of people derive or sustain their livelihood. Our

result shows the possible expansion of suitable areas of the

five IAPS in different ecosystems ranging from tropical and

sub-tropical to temperate in the elevated northern region

(Fig. 2, Table 3). Similarly, Fig. 3 depicts that almost 69%

of the PAs established within the study area are currently

invaded and will remain so in the future by the five

investigated IAPS that are capable of invading forests,

shrub land, grassland, pasture and agroecosystems. This

will have irreversible impacts on the habitat and food

availability for many endangered wildlife species. The

whole Himalayan region is a hotspot of biodiversity with

numerous fragile ecosystems along the northern boundary.

For instance, Chettri et al. (2008) reported that 32% of the

PAs within the Hindu Kush Region fall under a global

biodiversity hotspot, while 62% are under the Global 200

eco-regions. PAs in China occupy almost 15% of the total

land area, with a high concentration found in the western

region, including Tibet and Qinghai (Xu et al. 2017).

Kannan et al. (2013) reported that the majority of PAs in

India, i.e. 102 national parks and 515 wildlife sanctuaries

spatially distributed from lowlands to highlands, are
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currently invaded by invasive species, notably with Lan-

tana and Eupatorium spp., while future impacts are largely

unknown. Even the southern tropical PAs are the critical

habitat of numerous endangered species, such as rhino-

ceros, royal Bengal tiger and many indigenous flora, for

which invasion is considered highly destructive. The pro-

visioning ES, such as non-timber forest products (NTFPs)

on which the livelihoods of mountain people depend, could

be heavily hit from such invasions in the sub-temperate and

temperate regions.

Similarly, as discussed, a niche model performs com-

paratively poorly for generalist plants, such as the ones that

have been modelled in this paper. MaxEnt is based on

climate, and many non-climatic factors such as biotic

interactions, soil types, as well as dispersal mode and

abilities that are also responsible for the future dynamism

of invasive species by restricting or expanding their ranges

are not included in the modelling process. Clements and

Ditommaso (2011) argued that current modelling approa-

ches should consider potential evolutionary changes to

correctly predict the invasive range expansion because

these plants are capable of rapid genetic changes to boost

their invasive ability into newly invaded areas with a

modified ecosystem. Urban et al. (2016) recently empha-

sized the use of biological mechanisms of species in the

model to increase the prediction accuracy and make the

model uncertainties explicit. There are uncertainties

inherent in the existing model projection and future emis-

sion scenarios itself (Stott and Kettleborough 2002; Knutti

and Sedlacek 2013). Similarly, Jones (2012) reported that

high current niche model accuracy, especially in the case of

invasive species, may not point to high future accuracy,

mainly because they are not at equilibrium with the envi-

ronment and therefore suggested to use it more cautiously.

The five IAPS investigated in this paper are of tropical

origin, not temperate or alpine origin, and the growth form

and physiological and morphological characteristics totally

differ compared to plants from high elevations; therefore,

we could not expect a massive northward and high eleva-

tion expansion with a future warming climate in the region,

as suggested for cold-adapted plant species in other studies

(Song et al. 2004; Benito et al. 2011; Xiaodan et al. 2011;

Lamsal et al. 2017). Human activities, such as agriculture

and urban development, might move upward in the

mountain region under current global warming (Price

2006). Marini et al. (2012) reported human population

pressure as a major driver of alien plant invasions in the

European Alps in their distribution compared to climatic

conditions. As the literature suggests, such activities in

high lands cause areas to become suitable for invasion,

which is also the case for the Himalayas. In addition,

Zhang et al. (2015) found that the invasive species that

reach higher elevation of mountain forests in Sangdong

Province of China are those that have successfully invaded

low elevations and filtered out to areas with successive

worsening climate and decreasing anthropogenic propagule

pressure. Similar findings have been reported from the

Canary Islands of Spain (Haider et al. 2010), where most of

the non-native plants of higher altitudinal ranges were the

ones introduced in lowlands and preadapted to local cli-

mates. All the IAPS considered in this study were intro-

duced and are currently well adapted to the lowlands of the

Himalaya foothills and therefore are likely to expand along

the high elevation gradient, though at a very low pace.

Invasive species pose a significant global problem,

causing detrimental impacts to all states, to their ecosys-

tems and diversity, and thus deserve a significant global

response (McNeely 2001). IAPS in South Asia are a

comparatively a less studied topic, though this region is

highly vulnerable to invasion due to the high mosaic of

biodiversity hotspots and low human response capacity.

The fate of high elevation mountain ecosystems, such as

the Himalayan region, is even unknown. Zhang et al.

(2015) suggested that the monitoring and management of

IAPS should first target low elevation areas to prevent their

invasion into high elevation regions, which could be the

case for the Himalayas. Likewise, Funk et al. (2014)

reported the impact of IAPS on ecosystem services that

directly hinders economic and ecological benefit to human

beings. These effects should be considered in an inter-

governmental policy dialogue to assure continuous and

timely investment in control activities.

CONCLUSION

This study reveals that the five IAPS will mostly conserve

their existing ecological niches in the future, with lesser

expansion towards the northern high elevation regions of

the Himalayas, because the high mountains and harsh cli-

mate could potentially serve as barriers. Therefore, our

findings are timely and are thus expected to help resource

managers, including those in PAs, in preparing a baseline

database and initiating the formulation of future response

strategies in the Himalayan region against anticipated

invasion risks arising from these five IAPS. The newly

identified areas at high risk as a result of transboundary

scale IAPS expansion can be delineated for strategic con-

trol measures to prevent their spread. A good and realistic

transboundary strategic response policy that is suitable to

local context of each country, for example, indigenous

biological and cultural weed control measures, could be a

viable option to buffer against the current and future

detrimental impacts of invasion into the fragile ecosystems

of the region that harbour numerous endangered biota.
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