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A b s t r a c t Objectives: The authors consider the problem of identifying new, unexpected,
and interesting patterns in hospital infection control and public health surveillance data and
present a new data analysis process and system based on association rules to address this
problem.

Design: The authors first illustrate the need for automated pattern discovery and data mining in
hospital infection control and public health surveillance. Next, they define association rules,
explain how those rules can be used in surveillance, and present a novel process and system—
the Data Mining Surveillance System (DMSS)—that utilize association rules to identify new and
interesting patterns in surveillance data.

Results: Experimental results were obtained using DMSS to analyze Pseudomonas aeruginosa
infection control data collected over one year (1996) at University of Alabama at Birmingham
Hospital. Experiments using one-, three-, and six-month time partitions yielded 34, 57, and 28
statistically significant events, respectively. Although not all statistically significant events are
clinically significant, a subset of events generated in each analysis indicated potentially
significant shifts in the occurrence of infection or antimicrobial resistance patterns of P. aeruginosa.

Conclusion: The new process and system are efficient and effective in identifying new,
unexpected, and interesting patterns in surveillance data. The clinical relevance and utility of this
process await the results of prospective studies currently in progress.
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Surveillance systems are essential in detecting new
and re-emerging threats of infectious agents in public
health and hospital settings.1 – 3 The effectiveness of
these systems is determined by their ability to rapidly
analyze time-series data to detect unusual disease
clusters.1,3
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In a chapter on computerized public health surveil-
lance systems in Principles and Practice of Public Health
Surveillance, Dean et al. describe an ideal public health
surveillance system.2 In doing so, they give a hypo-
thetic example in which the user, and epidemiologist,
uses the ideal system to compare data recently col-
lected with similar data from the past. Specifying no
other constraints, the user ‘‘asks the system to pro-
duce a series of maps for all conditions with unusual
patterns.’’ Identifying those patterns that are most in-
teresting, the investigator then employs traditional
database query techniques and statistical analysis to
investigate them further.

In addition to the political and administrative barriers
that the authors identify as obstacles to practically re-
alizing such a system, they correctly identify the fol-
lowing challenge: ‘‘Several kinds of mental shifts, as
well as corresponding technical developments, will be
necessary before a computerized system can be used
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to examine automatically a ‘time slice’ of disease and
injury records that originate in clinics and hospitals.’’2

It is this challenge that we address.

The process described in the example just given is anal-
ogous to data mining. Data mining, also known as
Knowledge Discovery in Databases, is the non-trivial
process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data.4 There-
fore, when Dean et al. describe an ideal surveillance
system as one that must ‘‘produce a series of maps for
all conditions with unusual patterns,’’ they describe a
system that does data mining.

A number of statistical strategies have been developed
for automatically detecting temporal patterns in sur-
veillance data. Recently, Hutwagner et al.1 have em-
ployed cumulative sums to detect unusual temporal
patterns in Salmonella surveillance data. They show
that cumulative sums are effective in detecting sero-
type-specific Salmonella disease outbreaks at the state
level. Their analysis, however, is limited to disease in-
cidence over two-variable state-serotype combina-
tions. Farrington et al.5 use a log-linear regression
model to automatically detect temporal clusters of
disease by organism type using the weekly infectious
disease reports of England and Wales. They look for
national disease outbreaks by organism and, there-
fore, consider disease incidence over one variable in
time.

Until now, all automatic surveillance strategies have
assumed that the user has a predefined outcome or
case (e.g., Salmonella infections in a specific location)
whose incidence is to be monitored for outbreaks in
time. This has limited surveillance analysis to low-
dimensional one-, two-, or possibly three-variable out-
comes. If significant changes in incidence occur in out-
comes not identified before analysis begins, these
changes go undetected.

We address the problem of automatically identifying
new, unexpected, and interesting patterns in surveil-
lance data. To this end, we propose a novel data min-
ing surveillance process that is not constrained to
looking for outbreaks within user-defined outcomes.
In our process, arbitrarily complex outcomes are rep-
resented by association rules, and their incidences are
captured in the confidences of those rules over time.
While deviations in outcome incidence can be de-
tected using a number of different techniques, includ-
ing cumulative sums and regression, we currently em-
ploy a simple chi-square–based test for this purpose.

The Data Mining Surveillance System (DMSS) is a
computer data analysis system that we are developing
based on the process just mentioned. In this paper we
describe DMSS and experimental results obtained by

using DMSS to analyze one year of Pseudomonas aeru-
ginosa data from University of Alabama at Birming-
ham (UAB) Hospital. Hospital infection control data,
which contain elements of time, place, and person, are
analogous to public health surveillance data, which
contain similar data elements.6 Our process and sys-
tem, therefore, apply to both public health and hos-
pital infection control surveillance.

Background

Association rules are the subject of many papers in
the data mining literature.7 – 13 Many of these papers
address the problem of efficiently generating associ-
ation rules from large data sets.7,9,10,12,13 This problem
can be restated as one of efficiently discovering fre-
quent sets in data.

A frequent set B is a set of zero or more items found
together in at least T records in a data set, where T is
a user-defined frequent set support threshold. Fre-
quent set B has support S(B) $ T, where S(B) is the
number of records in which B is found. The set of zero
items, called EmptySet, has support N, the number of
records in the data set.

The following example illustrates the concept of fre-
quent set. In a supermarket database, where each rec-
ord contains the names of the items in a single basket
at the checkout, the frequent set (Bread, Milk, Cheese)
is likely to exist in the records from a single day be-
cause bread, milk, and cheese are found together in
many baskets. If the frequent set (Bread, Milk, Cheese)
exists, then so do the frequent sets (Bread), (Milk),
(Cheese), (Bread, Milk), (Milk, Cheese), and (Bread,
Cheese).

The association rule A ⇒ B, where A and B are fre-
quent sets and A intersect B is null, is a statement of
conditional probability. The confidence of A ⇒ B is
the conditional probability of B given A, which is
equal to S(A < B)/S(A). Alternatively, an association
rule is a statement about the incidence of B in A. Spe-
cifically, the confidence of A ⇒ B is the incidence of
B in A. In the supermarket setting, the confidence of
association rule (Milk, Cheese) ⇒ (Bread) is S((Milk,
Cheese, Bread))/S((Milk, Cheese)), which is the prob-
ability that bread is found in the same basket as milk
and cheese or, equivalently, the incidence of bread in
baskets with milk and cheese. The confidence of the
association rule EmptySet ⇒ A is S(A)/N, which
should be interpreted as the unconditional probability
of A or the incidence of A in all observations. The
precondition support of association rule A ⇒ B is
S(A). Association rules that have relatively high pre-
condition support are more meaningful than rules
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with relatively low precondition support because they
are statements about the incidence of B in non-trivial
populations A. From now on, association rules that
have high precondition support will be called high-
support association rules.

Traditional association rule data mining applications
focus on discovering high-support, high-confidence
association rules because these rules can be used for
classification.4,7 For example, a high-support, high-
confidence rule that says that young men who pur-
chase items a, b, and c also purchase item d 65 percent
of the time can be used to construct a marketing strat-
egy in which all four items are placed contiguously
on a shelf.

While high-support, high-confidence rules will be
useful in our surveillance paradigm, high-support,
low-confidence rules will often be more useful. The
reason is simple: If B occurs every time A occurs, and
A occurs frequently, then we maintain that the rule A
⇒ B will probably be known or trivial and therefore
uninteresting. However, if B occurs infrequently with
A and A occurs relatively frequently, then A ⇒ B is a
low-confidence association rule, and changes in the
confidence of A ⇒ B are likely to go undetected by
traditional methods.

Methods

Association Rules for Public Health Surveillance

Since, as mentioned in the previous section, the as-
sociation rules we seek are commonly not of high con-
fidence, we propose the following process for analyz-
ing surveillance data:

n For each time-slice or partition of data, discover all
high-support association rules.

n For each rule discovered in the current partition,
compare the confidence of the rule from the current
partition to the confidences of the rule in previous
partitions.

n If the confidence of the rule has increased signifi-
cantly from a previous partition, or previous par-
titions, to the current partition, report this finding
as an event.

Because a large number of high-support association
rules can be found even in small data sets, a successful
implementation of this process depends on efficient
algorithms and on data selection and preprocessing
strategies that reduce the number of association rules
discovered. Efficient algorithms are described else-
where.7,9,13 In this paper, we focus on the process just

outlined, the system based on that process, and ex-
perimental results obtained from using the system to
analyze real infection control data.

Notably different from other data mining research ef-
forts are the sizes of the data sets that we use.
Whereas traditional data mining work focuses on
very large data sets that are megabytes to terabytes in
size, we experiment with time-slices of data that are
kilobytes in size. For public health and infection con-
trol data sets, however, a great number of interesting
and unusual patterns may exist in kilobyte-size data
sets. Although we have developed and implemented
strategies that will allow us to analyze larger data
sets, those strategies were not required for the results
obtained here. Therefore, we will describe them in a
later paper.

Processing a Time-slice of Data

The Data Mining Surveillance System is based on the
data analysis process described earlier. It processes
one partition or time-slice of data at a time, discov-
ering all high-support association rules. Each partition
is composed of records that may be sparse (incom-
plete) or of varying lengths. The only constraint is that
each record contains only items from discrete or cat-
egoric attributes. The system does not yet handle
items from continuous attributes. For each high-sup-
port association rule A ⇒ B found in the current par-
tition, PC, the system updates a data structure called
the history with S(A) and S(A < B) for the rule in PC.
The values for S(A) and S(A < B) are used in com-
puting the confidence of A ⇒ B. The history also con-
tains S(A) and S(A < B) for all previous partitions in
which A ⇒ B was a high-support association rule.

Searching for Interesting Patterns

After at least two partitions of data are processed,
DMSS can search for association rules whose confi-
dence has increased significantly from some previous
partition to the current partition, PC. It does this by
identifying all association rules in the history that
have S(A) and S(A < B) for PC, i.e., those association
rules that were discovered in the current partition. Of
these rules, those that were discovered in previous
time-slices and therefore have S(A) and S(A < B) for
earlier partitions are analyzed to determine whether
the confidence of the rule has increased significantly
over time. The analysis is accomplished as follows.
For each association rule R discovered in PC, the con-
fidence of R in PC, Conf(R, PC), is compared with the
confidence of R in the last partition in which R was
found prior to PC, Conf(R, PC21). The comparison of
confidences is done using a chi-square/Fisher-exact–
based comparison of two proportions.14,15 If Conf(R,
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PC) is greater than Conf(R, PC21) and the probability
that the difference between the proportions occurred
by chance is less than 5 percent, then this finding is
presented to the user. If the difference is not signifi-
cant at the 5-percent level, then Conf(R, PC) is com-
pared with Conf(R, PC22) if Conf(R, PC22) exists. This
continues until a significant difference between con-
fidences is found or no Conf(R, PC2n) exists. Since the
assumptions of statistical inference are not met in this
type of exploratory analysis, no strong statistical state-
ments can be made about underlying populations.
Strong statements are not our objective, however, as
we are trying only to identify potentially interesting
patterns. The ultimate value of each pattern is depen-
dent on its real-world interpretation by domain ex-
perts.

The strategy used to identify temporal patterns in
DMSS is an interchangeable part. If other strategies
(e.g., cumulative sums) are more effective for certain
classes of problems, they can be used instead. The
simple chi-square–based strategy, however, is effec-
tive.

Experiments with Infection Control Data

Data Source and Data Preprocessing

One year’s (1996) Pseudomonas aeruginosa infection
control data were acquired by extracting antimicrobial
susceptibility results and related patient demograph-
ics from UAB Hospital’s laboratory information sys-
tem. Each record describes a single P. aeruginosa iso-
late and is composed of the following items: date
reported, source of isolate (e.g., sputum, blood), lo-
cation of patient in hospital, patient’s home zip code,
and a resistant (R), intermediate resistance (I), or sus-
ceptible (S) test result for piperacillin, ticarcillin/cla-
vulanate, ceftazidime, imipenem, amikacin, gentami-
cin, tobramycin, and ciprofloxacin according to
minimal inhibitory concentration breakpoints of the
National Committee for Clinical Laboratory Stan-
dards.16 These antimicrobials were selected because
they were used in UAB Hospital for treating P. aeru-
ginosa infections in 1996 and were routinely reported
by the microbiology laboratory for this organism.

Duplicate records were removed so that each patient
had no more than one isolate per month.17 The result-
ing data set contained approximately 80 non-duplicate
records per month.

In addition to removing duplicate records, items of
the form S;Antimicrobial were removed from each
record so that only I;Antimicrobial and R;Antimicro-
bial items remained. This was done because an isolate
is more likely to be susceptible to each of the anti-
microbials than it is resistant or intermediate to it.

Consequently, most of R/S/I;Antimicrobial items will
be of the S;Antimicrobial type. Therefore, removing
S;Antimicrobial items significantly decreases the av-
erage number of items in a record. Because the num-
ber of frequent sets and, consequently, the number of
association rules grow quickly with the average num-
ber of frequent items, this strategy significantly re-
duces the computational burden of generating asso-
ciation rules. In addition, of the association rules that
contain Antimicrobial items, we are interested only in
those that pertain to population-specific or location-
specific increases in antimicrobial resistance (which
include Intermediate items). The corresponding de-
creases in susceptibility can be inferred. Therefore, we
are looking for association rules whose confidences
increase significantly over time. Patterns of increasing
antimicrobial resistance fit this model and will be de-
tected. Conversely, patterns of increasing antimicro-
bial susceptibility (and the corresponding decreases in
resistance) are defined here as not interesting and do
not fit the model.

In summary, the data selection/preprocessing step
significantly decreases the number of association rules
generated without sacrificing any interesting infor-
mation. This is important because it decreases the
computational burden on the system and the number
of patterns, or events, that the user must evaluate.

Experimental Design

Three separate analyses of the data were conducted,
each using a different size of data partition (time-
slice). Different sizes were used to determine whether
short-lived interesting patterns are discovered only
when the time-slice size is relatively small (e.g., one
month) while other interesting patterns are discov-
ered only when the time-slice size is relatively large
(e.g., six months). For the three experiments A, B, and
C, we chose partition sizes of one month, three
months, and six months respectively. Therefore, in ex-
periment A, 12 one-month partitions of data were
used; in B, 4 three-month partitions were used; and
in C, 2 six-month partitions were used. Within each
experiment, the partitions were non-overlapping.

A frequent-set support threshold of 2 and a rule-sup-
port threshold of 10 were used for all experiments.
This means that a set of items A must be found in at
least two records in a partition to be a frequent set
and that for each association rule B ⇒ C, S(B) must
be greater than or equal to 10 for B ⇒ C to be a high-
support association rule.

The Data Mining Surveillance System was con-
structed in C11, and all experiments were conducted
on a Silicon Graphics Indy workstation with 32 Mb of
RAM.
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Results

The Data Mining Surveillance System tracks many as-
sociation rules for statistically significant changes in
their confidences over time. In experiment A, DMSS
discovered and actively monitored more than 2,000
association rules. In experiment B, it monitored more
than 12,000 rules, and in experiment C, more than
20,000 rules.

System efficiency depends on how fast the system can
process data and how easily the user can evaluate the
discovered events. Experiments A, B, and C required
a total 31, 52, and 63 seconds of machine time respec-
tively to process all data and to search for events.
Therefore, to process one year of P. aeruginosa data in
three separate analyses required less than 21/2 minutes
of computer time. From the thousands of rules dis-
covered in each experiment, a relatively small number
of events were discovered and presented to the user.
In experiment A, 34 events were discovered for the
entire year. In B, 57 events were discovered, and in C
28 events were discovered.

Analysis of all events reveals that many of them were
discovered in only one experiment. Seventy-two per-
cent of the events discovered in experiment A were
not found in experiment B or C; 74 percent of the
events discovered in experiment B were not found in
A or C; and 60 percent of the events discovered in
experiment C were not found in A or B. This is be-
cause of the dynamics of the organism and patient
populations themselves and constraints in processing.
Events discovered in experiment A and not in exper-
iments B or C generally occur over short time frames,
i.e., within three months. These inter-quarter changes
are invisible in the three-month and six-month anal-
yses of experiments B and C. Similar logic holds for
events found in experiment B but not in C. Events
found in experiment C but not in A or B are generally
composed of low-frequency item sets whose supports
become substantial (frequent) only when counted
over six-month intervals.

Because of the dynamic nature of the environment
and hence the data collected from it, multiple parti-
tion sizes were used to maximize the sensitivity of the
experiments. Maximizing sensitivity in general comes
at the expense of decreasing specificity, thereby in-
creasing the chance of overwhelming the user with
patterns and events. In this case, however, the use of
three partition sizes yielded a manageable number of
events. In other cases, this will not be true. Since the
purpose of our process is exploratory, however, as
long as the number of patterns is manageable, we
would rather err by being too sensitive while sacrific-
ing positive predictive value. If there are too many

patterns, a simple way to decrease their number is to
decrease a from 0.05 to 0.01 in the chi-square and
Fisher exact tests. We are also investigating ways of
incorporating domain knowledge into the process to
make it more specific.

Discussion

Until now, surveillance strategies have required out-
comes of interest be known in advance before moni-
toring activities begin. Therefore, interesting activity
outcomes that are not known to be of interest in ad-
vance will go undetected. In addition, the lack of sys-
tems that ‘‘recognize and promptly report significant
changes and trends’’ has been cited as a barrier to
successfully detecting, preventing, and controlling
disease outbreaks.18

Elder and Pregibon19 have added:

With increasingly huge and amorphous databases,
it is clear that methods for automatically hunting
down possible patterns worthy of fuller, interactive
attention are required. The existence of such tools
can free one up to, for instance, posit a wider range
of candidate data features and basis functions
(building blocks) than one would wish to deal with,
if one were specifying a model structure ‘by hand’.

Our objectives were threefold: First, to define a new
surveillance process based on association rules that is
capable of identifying patterns worthy of further in-
vestigation; second, to demonstrate that a system
based on this process can automatically discover in-
teresting and unexpected patterns in real-world data
sets; and third, to show that the system can accom-
plish the second objective efficiently. The DMSS pro-
cess and system have been described above. We ad-
dress the second and third objectives by analyzing the
performance and results of DMSS on real-world P.
aeruginosa data.

Pseudomonas aeruginosa was selected for these experi-
ments because it is a clinically important bacterium
exhibiting considerable variability in incidence and
antimicrobial susceptibility over time and space. In
Tables 1, 2, and 3, we summarize some events discov-
ered in experiments A, B, and C and discuss them
briefly in the following paragraphs.

Some of the events discovered in each experiment are
relatively simple and have a rule EmptySet ⇒ A where
A contains one item. Rules of the form EmptySet ⇒ A
where A is R;Antimicrobial are manually evaluated
on a yearly basis and could be evaluated over shorter
time intervals. The same manual analysis could be
performed where A is a single hospital location or
source of isolate. Because of time and resource con-
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Table 1 n

Events Including Ticarcillin/Clavulanate (Ticar/Clav), Piperacillin, and Ceftazidime (Experiment B)
Event Findings Action Indicated

EmptySet È R;Ticar/Clav
R;Ceftazidime
R;Piperacillin

An increase from 4% (4/104) in Oct to 8%
(7/86) in Nov to 11% (8/73) in Dec in the
probability that a Pa isolate is resistant to ti-
car/clav, ceftazidime, and piperacillin.

A review of the use of third-gen-
eration cephalosporins to deter-
mine whether a formulary change
is necessary.

R;Ceftazidime
R;Piperacillin

È SourceSP
R;Ticar/Clav

An increase from 8% (2/24) in Q3 to 32%
(8/25) in Q4 in the probability that a Pa iso-
late is from sputum and resistant to ticar/
clav given that it is resistant to ceftazidime
and piperacillin.

Supports recommendation.

R;Piperacillin È SourceSP
R;Ticar/Clav
R;Ceftazidime

An increase from 6% (2/33) in Q3 to 26%
(8/31) in Q4 in the probability that a Pa iso-
late is from sputum and resistant to ticar/
clav and cerfazidime given that it is resistant
to piperacillin.

Supports recommendation.

R;Ticar/Clav È SourceSP
R;Ceftazidime
R;Piperacillin

An increase from 7% (2/29) in Q3 to 24%
(8/34) in Q4 in the probability that a Pa iso-
late is from sputum and resistant to ceftazi-
dime and piperacillin given that it is resistant
to ticar/clav.

Supports recommendation.

R;Ticar/Clav
R;Ceftazidime
R;Piperacillin

È SourceSP An increase from 12% (2/16) in Q3 to 42%
(8/19) in Q4 in the probability that a Pa iso-
late is from sputum given that it is resistant
to the 3 antimicrobials.

Supports recommendation.

NOTE: Data were for one year (1996) and were analyzed for three-month intervals. Q1 indicates Jan–Mar; Q2, Apr–Jun; Q3,
Jul–Sep; Q4, Oct–Dec. Pa indicates Pseudomonas aeruginosa.

straints, however, it is unlikely that anyone would
monitor outcomes with more than two or three vari-
ables such as those shown in Table 1.

In Table 1, results from experiment B reveal an in-
crease from the third to the fourth quarter of 1996 in
the proportion of P. aeruginosa resistant to the anti-
microbials ticarcillin/clavulanate, piperacillin, and
ceftazidime. This same pattern was also detected in
experiment A. In addition, several other events indi-
cate that these isolates were found more frequently in
sputum (Table 1). Since ticarcillin/clavulanate, piper-
acillin, and ceftazidime are among the drugs most fre-
quently used in treating gram-negative infections in
the hospital and because P. aeruginosa infections often
manifest themselves as nosocomial pneumonia, in-
creased resistance to ticarcillin/clavulanate, piperacil-
lin, and ceftazidime is a cause for concern. A review
of the usage of the three drugs and the incidence of
true infections with P. aeruginosa is appropriate.

Results from experiments B and C indicate that the
proportion of P. aeruginosa isolates resistant to imipe-
nem increased in 1996 (Table 2). From the annual hos-
pital drug utilization report, we know that imipenem

utilization increased 70 percent from the first quarter
to the fourth quarter and 35 percent from the first six
months to the second six months of 1996. These find-
ings suggest that the Pharmacy and Therapeutics
Committee should initiate a review of imipenem uti-
lization.

Experiment C also revealed several source-specific P.
aeruginosa events. Events pertaining to urine isolates
intermediate and resistant to imipenem, resistant to
ceftazidime, and resistant to piperacillin are shown in
Table 3.

In the previous examples, there are no events in spe-
cific locations within the hospital. However, as shown
in Table 4, the probability that P. aeruginosa was from
a patient in the neurologic intensive care unit and that
it was from sputum increased significantly from the
first half to the second half of 1996. Taken together
with the results of the other analyses—e.g., increased
proportion resistant to multiple antimicrobials—an
investigation to explain this occurrence and determine
its cause should be undertaken.

It is important to note that the patterns identified by
the process are only potentially interesting and that
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Table 2 n

Events Including Imipenem (Experiments B and C)
Event Findings Action Indicated

Experiment B:
EmptySet È R;Imipenem An increase from 2% (6/292) in Q3 to 8% (21/263)

in Q4 in the probability that a Pa isolate is resis-
tant to imipenem.

Utilization review of imipenem.

R;Ciprofloxacin È R;Imipenem An increase from 7% (3/43) in Q3 to 24% (8/33) in
Q4 in the probability that a Pa isolate is resistant
to imipenem given that it is resistant to cipro-
floxacin.

Review of antimicrobial selection in
the treatment of patients with Pa
infection.

R;Piperacillin È R;Imipenem An increase from 6% (2/33) in Q3 to 26% (8/31) in
Q4 in the probability that a Pa isolate is resistant
to imipenem given that it is resistant to pipera-
cillin.

Review of antimicrobial selection in
the treatment of patients with Pa
infection.

Experiment C:
EmptySet È I;Imipenem An increase from 2% (7/409) in S1 to 7% (39/555)

in S2 in the probability that a Pa isolate is inter-
mediate to imipenem.

Supports both recommendations.

EmptySet È R;Imipenem An increase from 2% (8/409) in S1 to 5% (27/255)
in S2 in the probability that a Pa isolate is resis-
tant to imipenem.

Supports both recommendations.

R;Ciprofloxacin È I;Imipenem An increase from 6% (4/66) in S1 to 15% (11/72) in
S2 in the probability that a Pa isolate is interme-
diate to imipenem given that it is resistant to cip-
rofloxacin.

Supports both recommendations.

NOTE: Data were for one year (1996) and were analyzed for three-month intervals (experiment B) or six-month intervals (experiment
C). Q1 indicates Jan–Mar; Q2, Apr–Jun; Q3, Jul–Sep; Q4, Oct–Dec; S1, Jan–Jun; S2, Jul–Dec. Pa indicates Pseudomonas aeruginosa.

Table 3 n

Sample Source-specific Events (Experiment C)
Event Findings Action Indicated

SourceUrine È I;Imipenem An increase from 2% (2/96) in S1 to
9% (12/142) in S2 in the probability
that a Pa isolate is intermediate to
imipenem given that it is from
urine.

Supports need for utilization review
of imipenem indicated in Table 2.

EmptySet È SourceUrine
I;Imipenem

An increase from 0.5% (2/409) in S1
to 2% (12/555) in S2 in the proba-
bility that a Pa isolate is from urine
and is intermediate to imipenem.

Supports the above recommenda-
tion.

EmptySet È SourceUrine
R;Ceftazidime

An increase from 1% (5/409) in S1 to
3% (16/555) in S2 in the probability
that a Pa isolate is resistant to cef-
tazidime and is isolated from urine.

Combined with the next event, in-
dicates need for review of use of
third-generation cephalosporins.

SourceUrine
R;Piperacillin

È R;Ceftazidime An increase from 50% (5/10) in S1 to
85% (11/13) in S2 in the probability
that a Pa isolate is resistant to cef-
tazidime given that it is isolated
from urine and that it is resistant to
piperacillin.

—

NOTE: Data were for one year (1996) and were analyzed for six-month intervals. S1 indicates Jan–Jun; S2, Jul–Dec. Pa indicates
Pseudomonas aeruginosa.
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Table 4 n

Sample Location-specific Events (Experiment C)
Event Findings Action Indicated

EmptySet È LocNICU SourceSP An increase from 0.5% (2/409) in S1 to 2% (12/
555) in S2 in the probability that a Pa isolate is
from the NICU and is isolated from sputum.

Review the intensive care procedures in
the NICU and/or antimicrobial usage.

SourceSP È LocNICU An increase from 4% (2/54) in S1 to 23% (12/53)
in S2 in the probability that a Pa isolate is from
a patient in the NICU given that the isolate is
from sputum.

Supports the above recommendation.

NOTE: Data were for one year (1996) and were analyzed for six-month intervals. S1 indicates Jan–June; S2, Jul–Dec. Pa indicates
Pseudomonas aeruginosa.

they are not strong statements of statistical inference.
Their ultimate value can be determined only in the
context of expert interpretation followed by careful
examination of underlying factors.

Although the experiments presented in this paper
were conducted on retrospective data, we plan to use
DMSS in prospective surveillance programs. In such
programs, DMSS would analyze new partitions of
data as they become available. Discovered events
would be timely and, as such, could be interpreted,
investigated, and acted on in a proactive manner.

In the future, we believe that DMSS will be particu-
larly useful in focused intensive care unit surveillance
where it could be used to identify possible disease
outbreaks and their clinical and microbiologic char-
acteristics. These functions are crucial components of
nosocomial outbreak investigations.20 In addition,
DMSS could be used to assist in establishing and
modifying standards for the empiric and prophylactic
use of antimicrobial agents in intensive care units.
While such standards are desirable,21,22 there is little
agreement on their design and implementation.22

Events generated by DMSS indicating shifts in anti-
microbial susceptibilities of resident organisms could
suggest when changes in policy governing antimicro-
bial use should be initiated to combat emerging resis-
tance.

Conclusions

We have defined a new exploratory data mining pro-
cess for automatically identifying new, unexpected,
and potentially interesting patterns in hospital infec-
tion control and public health surveillance data. This
process and the system based on it, DMSS, utilize as-
sociation rules to represent outcomes and association
rule confidences to monitor changes in the incidence
of those outcomes over time. Through experiments
with P. aeruginosa infection control data from UAB
Hospital, we have demonstrated that the DMSS pro-

cess and system are effective and efficient in identi-
fying potentially interesting and previously unknown
patterns whose ultimate value depends on careful
expert evaluation. Our future work will focus on ex-
periments with public health and intensive care unit
infection control data, utilizing prospective clinical
studies, to determine the usefulness of DMSS in hos-
pital infection control. In addition, evaluation of more
sophisticated chi-square–based strategies for identi-
fying outbreaks, improved event presentation to the
user, and strategies for handling larger data sets are
planned.

We believe that this approach to surveillance will be
useful in hospital infection control programs and is a
step toward the public health surveillance system de-
scribed by Dean et al.2 The clinical relevance and util-
ity of this approach await the result of prospective
studies currently in progress.

The authors thank Alan Stamm, MD, Director of the UAB Hos-
pital Infection Control Committee, for his support and helpful
suggestions.
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