Skip to main content
. 2018 Sep 10;6:155. doi: 10.1186/s40168-018-0543-z

Table 2.

Linear regression modeling of variation versus input biomass and mean relative abundance. Summary of the linear regression model (a) and predicted variation values for a subset of 16S rRNA gene copies/microliter and mean relative abundance values (b)

a. Model Estimate Standard error t value p value
(Intercept) 1.43238 0.12556 11.408 < 2.2E−16
log10 copies/microliter − 0.2816 0.04905 − 5.741 6.93E−8
log10 mean relative abundance − 0.54936 0.06927 − 7.931 1.13E−12
Residual standard error 0.5196
Multiple R-squared 0.4496
Adjusted R-squared 0.4407
F statistic 50.25 on DF (2123)
b. Prediction Mean relative abundance (%)
Copies/microliter 1 5 10 25 50
Low biomass 10 0.5723 1.7313 2.7888 5.2376 8.4370
Medium biomass 1000 0.2865 0.8668 1.3963 2.6224 4.2242
High biomass 100,000 0.1435 0.4340 0.6991 1.3130 2.1150