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SUMMARY

Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance 

to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare 

pre-existing clones or alternatively through the acquisition of new genomic aberrations. To 

investigate this question, we applied single cell DNA and RNA sequencing in addition to bulk 

exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant 

chemotherapy (NAC). Deep-exome sequencing identified 10 patients where NAC led to clonal 

extinction and 10 patients where clones persisted after treatment. In 8 patients, we performed a 

more detailed study using single cell DNA sequencing to analyze 900 cells and single cell RNA 

sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and 

adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in 

response to chemotherapy in TNBC patients.
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INTRODUCTION

Triple-negative breast cancer (TNBC) is an aggressive subtype that constitutes 12–18% of 

breast cancer patients (Foulkes et al., 2010). TNBC patients lack the estrogen receptor (ER), 

progesterone receptor (PR) and HER2 receptor and therefore are not eligible for hormone or 

anti-Her2 therapy. Deep-sequencing studies (Balko et al., 2012; Balko et al., 2014; Shah et 

al., 2012), multi-region sequencing analysis (Yates et al., 2015), and single cell sequencing 

studies (Gao et al., 2016; Navin et al., 2011; Wang et al., 2014) have shown that TNBC 

patients harbor high levels of somatic mutations, frequent mutations in TP53 (83%) and 

complex aneuploid rearrangements (80%) that result in extensive intratumor heterogeneity 

(ITH).

The standard of care for many TNBC patients is neoadjuvant chemotherapy (NAC), which 

includes a combination of taxanes (mitotic inhibitors) and anthracyclines (DNA 

intercalators). While NAC is effective in some TNBC patients, about 50% evolve resistance, 

leading to poor overall survival (Foulkes et al., 2010; Liedtke et al., 2008). The genomic and 

molecular basis of chemoresistance in TNBC patients remains poorly understood, in part 

due to a lack of methods that can resolve ITH and detect genomic information in rare 

subpopulations. A major gap in knowledge is whether chemoresistance arises due to the 

selection and expansion of rare pre-existing subclones (adaptive resistance), or, alternatively, 

through the induction of new mutations that confer a chemoresistant phenotype (acquired 

resistance) (Navin, 2014). This question has been studied for decades in bacterial systems 

(Luria and Delbrück, 1943) but remains poorly understood in most human cancers.

Previous genomic studies of therapy resistance have reported acquired resistance (Ding et 

al., 2012; Kim et al., 2015; Kolodziejczyk et al., 2015; Patch et al., 2015) or adaptive 

resistance (Ding et al., 2012; Kurtova et al., 2015) to systemic chemotherapies in different 

human cancers. In acute myeloid leukemia, whole-genome sequencing identified different 

modes of clonal evolution, with some patients acquiring relapse-specific mutations and 

others selecting minor clones (Ding et al., 2012). In high-grade serous ovarian cancer, 

platinum-based chemotherapy induced new somatic mutations, consistent with acquired 

resistance (Patch et al., 2015), while resistance to cytotoxic chemotherapy in bladder cancer 

was associated with the selection of pre-existing subpopulations (Kurtova et al., 2015). In 

glioblastoma, treatment with temozolomide induced many new mutations in post-treatment 

tumor samples, consistent withan acquired model of therapy resistance (Kim et al., 2015; 

Kolodziejczyk et al., 2015).

Previous work on chemoresistance in TNBC patients has focused mainly on in situ 
hybridization methods (Almendro et al., 2014) and bulk genomic profiling techniques 

(Balko et al., 2012; Balko et al., 2014). With targeted cytogenetic markers, one study showed 

that genetic diversity did not change in response to NAC but instead selected for 

mesenchymal phenotypes (Almendro et al., 2014). A study in TNBC used next-generation 

sequencing (NGS) to profile residual disease in post-treatment chemotherapy samples and 

identified a number of clinically actionable mutations (Balko et al., 2014). In another report, 

authors identified JAK2 amplifications as a potential therapeutic target to overcome resistant 

disease in TNBC patients (Balko et al., 2016). However, these studies were based on 
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targeted markers or bulk genomic tissue profiling and had limited ability to reconstruct 

clonal evolution during chemotherapy.

Single cell DNA (Navin et al., 2011; Wang et al., 2014) and RNA (Gao et al., 2017; Islam et 

al., 2014; Tirosh et al., 2016; Yuan and Sims, 2016) sequencing methods have emerged as 

powerful tools for resolving ITH, reconstructing evolutionary lineages, and detecting rare 

subpopulations (Grun et al., 2015; Habib et al., 2016). The application of single cell DNA 

and RNA sequencing methods to solid tumors has enabled phylogenetic reconstruction of 

tumor lineages (Navin et al., 2011; Shah et al., 2012; Wang et al., 2014), resolved rare 

subpopulations (Lohr et al., 2014; Martelotto et al., 2017) and provided insight into the 

phenotypes of stromal and tumor cells in different cancers (Johnson et al., 2014; Meyer et 

al., 2015; Patel et al., 2014). We reasoned that these technologies could overcome many of 

the technical hurdles that have previously challenged bulk genomic studies of 

chemoresistance in TNBC patients.

Due to the extensive ITH reported in TNBC patients, we hypothesized that genomic 

aberrations associated with chemoresistance are pre-existing in the tumor mass and 

adaptively selected in response to chemotherapy. In this study, we analyzed longitudinal 

frozen samples collected from TNBC patients during NAC treatment. We identified two 

classes of clonal dynamics in response to NAC, in which the mutations, CNAs and 

expression profiles were eliminated from the tumor mass, or alternatively persisted after 

NAC. In the clonal persistence patients, we applied both single cell DNA and RNA 

sequencing methods, which further showed that genomic mutations and copy number 

aberrations were adaptively selected in response to chemotherapy, followed by 

transcriptional reprogramming to evolve the resistant phenotypes. Importantly, this 

integrated evolutionary model would not have been elucidated by profiling only the genomes 

or transcriptomes of the resistant tumor cells independently.

RESULTS

TNBC Patients Treated with Neoadjuvant Chemotherapy

We focused our study on 20 treatment-naive TNBC patients with local disease who were 

treated with NAC (Table S1, Methods). All patients were classified as TNBC based on the 

absence of ER staining, PR staining and HER2 copy number by FISH. NAC treatment 

included an anthracycline (epirubicin) and a taxane (docetaxel) for 2 cycles, after which 

patients received 4 cycles of the same chemotherapy in combination with an angiogenesis 

inhibitor (bevacizumab) (Figure 1A). Frozen core biopsy samples were collected pre-

treatment, after 2 cycles of therapy (mid-treatment) and during the surgical excision that 

occurred after 6 cycles of NAC (post-treatment). To mitigate spatial variation, two core 

biopsy samples were collected from each time-point, and large surgical tissue sections were 

used from the post-treatment samples for genomic analyses. Exome sequencing was 

performed on matched longitudinal samples from 20 TNBC patients, while a more detailed 

analysis using single cell DNA and RNA sequencing was performed on a subset of 8 

patients (Figure 1B).
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Clonal Extinction and Persistence of Mutations in Response to NAC

To investigate mutational evolution in the bulk tissue samples, we performed exome 

sequencing (mean depth 180×) on matched pre-treatment, mid-treatment and post-treatment 

samples from 20 TNBC patients (Table S2, Methods). Matched blood samples were 

sequenced in parallel (mean depth 125×) to distinguish somatic mutations. Our data 

identified TP53 mutations in 60% of the TNBC patients, consistent with frequencies 

reported in TCGA (Cancer Genome Atlas, 2012). On average, 49 nonsynonymous mutations 

(range 4–118) and 3 indels (range 1–6) were detected in each patient. Among the 20 

patients, 10 showed no detectable mutations after treatment (Figure 2A), while 10 showed 

residual mutations after treatment (Figure 2B). Notably, we did not observe an increase in 

mutation burden in response to NAC in any of the TNBC patients.

We compared mutation allele frequencies (MAFs) before and after therapy (Figure 2CD) 

and applied PyClone2 (Roth et al., 2014) and CITUP (Malikic et al., 2015) to estimate 

clonal subpopulations after copy number (Sathirapongsasuti et al., 2011) and purity 

normalization (Oesper et al., 2014) (Figure 2C-D). This analysis detected 2–4 major 

subclones in each TNBC patient and two distinct responses to NAC: 1) clonal extinction, 

wherein clones were completely eliminated (Figure 2C), or 2) clonal persistence, wherein 

clonal frequencies shifted but remained present in the post-treatment samples (Figure 2D). 

The classification of clonal extinction or persistence patients was also supported by indel 

frequency data (Table S3), tumor purity estimates from histopathological slides, and 

computational purity estimations with ThetA using the exome sequencing data (Table S4). 

However, in two clonal persistence cases (P12 and P16), the histopathological estimates 

were 0% for tumor cellularity in the post-treatment tumors, while the exome data identified 

residual mutations at low frequencies.

In the clonal persistence patients, most mutations were detected both pre-treatment and post-

treatment, but had decreased frequencies in response to NAC (Figure 2D). However, we also 

identified a number of new mutations (N=33) that emerged in response to NAC (Table S5). 

In P17, for example, 13 new nonsynonymous mutations were detected that emerged after 

NAC at the mid-treatment time point, including nonsynonymous mutations in the apoptosis 

inhibitor, BIRC7, the actin binding protein, PARVG, and the solute carrier, SLC6A9, which 

had significant functional impact scores based on SIFT (<0.05) (Ng and Henikoff, 2003) and 

POLYPHEN (P>0.85) scores (Adzhubei et al., 2010). Similarly, in patient P19, we identified 

7 new mutations in the post-treatment sample, including a significant nonsynonymous 

mutation in the solute carrier SLC5A8. While none of the resistance-associated mutations 

recurred across multiple patients, they did share common biological functions, including cell 

proliferation, apoptosis, solute transport, and cytoskeleton regulation (Table S5).

We next asked whether the new mutations detected post-treatment were spontaneously 

induced due to acquired resistance, or alternatively, existed at very low frequencies pre-

treatment, but were not detected due to the limited coverage depth of exome sequencing 

(mean 180×). To address this question, we selected a subset of apparently new post-

treatment mutations (N=14) and performed targeted deep-amplicon sequencing (mean depth 

1,671,000×) of the pre-treatment bulk tumor DNA (Table S6, Methods). We applied 

DeepSNV (Gerstung et al., 2012) to detect rare mutation frequencies that were statistically 
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significant compared to matched normal blood (sensitivity 1e4). The amplicon data showed 

that in 4/5 patients, the suspected de novo mutations did in fact occur at low frequencies in 

the pre-treatment tumor (range 0.02–2%), consistent with adaptive resistance (Figure 2E). 

However, in one patient (P19), the de novo mutations were not statistically significant 

compared to the matched normal sample (Figure 2F). The mutations in this patient may have 

arisen de novo after the tumor cells were challenged with chemotherapy, or alternatively 

may have not been sampled due to insufficient sequencing depth, or sampling from different 

spatial regions.

Copy Number Evolution and Clonal Extinction in Response to NAC

To investigate copy number evolution in response to NAC, we performed single-nucleus 

sequencing (SNS) (Gao et al., 2016; Navin et al., 2011) on 900 single cells from matched 

longitudinal samples of 8 TNBC patients (Methods). We selected 4 clonal extinction patients 

(P1, P2, P6, P9) and 4 clonal persistence patients (P11, P12, P14, P15) for this analysis, 

based on their classifications from the exome data. Single nuclei were isolated from 

aneuploid-gated distributions with FACS and used for sparse (~0.1×) whole-genome 

sequencing to quantify genomic copy number at 220kb resolution (Methods). FACS analysis 

of DAPI-stained nuclei showed that the 4 clonal persistence patients had aneuploid 

distributions in both the pre-treatment and post-treatment sample, while the 4 clonal 

extinction patients had low or undetectable aneuploid distributions post-treatment (Figure 

S1).

To delineate the clonal substructure of the 4 clonal extinction patients, we identified 

common chromosome breakpoints across all the cells in the population (Nilsen et al., 2013) 

and performed optimal clustering (Hennig, 2015) and t-SNE projections (van der Maaten 

and Hinton, 2008) (Methods). This analysis identified 2–3 clusters of aneuploid tumor cells 

and one cluster of normal diploid cells in each patient (Figure 3A). The aneuploid clusters 

were found exclusively in the pre-treatment tissues, while the diploid clusters were mainly 

associated with the post-treatment tumor. Next, we computed consensus integer copy 

number profiles for each subclone and inferred clonal lineages using maximal parsimony 

(Methods) (Figure S2A). The clonal frequencies were then plotted with Timescape (Smith et 

al., 2016) to visualize clonal dynamics in response to NAC (Methods). These data identified 

two major clones in three patients (P2, P6, P9) and three major clones in the fourth patient 

(P1) in the pre-treatment tumors (Figure 3, Figure S2A). Consensus profiles indicated that 

the multiclonal tumors shared common evolutionary ancestors, as evidenced by shared 

CNAs, including early events in MET, MYC, and PTEN in P6 (Figure 3B), MDM4, EGFR, 

and PTEN in P2 (Figure 3C), MYC and PTEN in P9 (Figure 3D) and MYC, MET, TP53, 
CDKN2A and ALK in P1 (Figure 3E). These tumors also had CNAs that emerged in the 

later stages of tumor evolution after diverging from the common ancestors. However, 

irrespective of the number of clonal subpopulations, NAC resulted in the extinction of tumor 

cells in these patients, as evidenced by the presence of exclusively diploid copy number 

profiles after treatment.
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Adaptive Copy Number Evolution in Response to NAC

To delineate copy number evolution in the 4 clonal persistence patients (P11, P12, P14, P15) 

we detected 2–5 clusters of aneuploid tumor cell copy number profiles (Figure 4A) and 

constructed maximum parsimony trees from event matrices (Figure S2B). Strikingly, we 

found that in all 4 patients, a minority of pre-treatment tumor cells (indicated with arrows) 

clustered with the post-treatment tumor cells, suggesting that they shared a resistant 

genotype. To identify specific CNAs in the resistance-associated clones, we computed 

consensus copy number profiles from the single cells (Figure 4B-E). While most CNAs were 

shared between subclones, we also identified specific CNAs that occurred exclusively in the 

chemoresistant clones. In P14, resistance-associated clone A displayed two focal deletions 

on chr 3p, including a 5.3mb hemizygous deletion of 3p26 (IL5RA) and a 14.3mb 

hemizygous deletion of 3p24–22 (RARB). This clone expanded after NAC from 7.7% to 

71.8% post-treatment (Figure 4B). In P11, two resistance-associated clones emerged after 

NAC, including clone C that expanded from 5.7% to 41.4%, and clone E that emerged mid-

treatment at 2.6% and expanded to 37.8% (Figure 4C). The resistance-associated clone C 

had a 22.9mb hemizygous deletion on chr 4p15 (PCDH7, DTHD1), a hemizygous deletion 

of a 5.8mb region on chr11q21–22 (MAML2) and chr13q (RB1, BRCA2, FOXO1). In 

contrast, resistant clone E had a 23mb gain of chr 19p (JAK3, BRD4) and a 20.0mb loss on 

chromosome 20 (PAK7). Expansion of the two minor clones with different genotypes 

suggests convergent evolution towards a resistant phenotype. CNAs specific to the resistant 

subclones were also identified in P12 and P15 by comparing consensus profiles (Figure 4D-

E). However, our data did not reveal any recurrent CNAs in the resistant clones among the 4 

TNBC patients.

Transcriptional Programs of Tumor Cells in Clonal Extinction Patients

We investigated phenotypic evolution in response to NAC using a high-throughput nanogrid 

single nucleus RNA sequencing (SNRS) method (Gao et al., 2017). SNRS performs 

automated imaging and selection of up to 1,800 single nuclei in parallel for 3’ mRNA 

profiling. We profiled the transcriptomes of 3,370 single nuclei isolated from two matched 

longitudinal samples per patient from the 4 clonal extinction patients (P1, P2, P6, P9). An 

average of ~500 nuclei were selected from each time point for SNRS, which resulted in an 

average of 1.2 million reads and 4,107 genes detected per cell. To distinguish normal stromal 

cells from aneuploid tumor cells, we calculated copy number profiles from RNA read counts 

(Patel et al., 2014), using a set of 240 diploid normal breast cells from a different patient as a 

baseline reference (Gao et al., 2017) (Methods). Clustered heatmaps identified a large 

number (90–99%) of aneuploid tumor cells in the pre-treatment tumor, but only diploid 

normal cells post-treatment, consistent with the single cell copy number analyses (Figure 

5A). We detected differentially expressed genes using MAST (Finak et al., 2015) between 

the pre-treatment tumor cells and the epithelial cells in the post-treatment samples, by 

excluding other cell types based on their RNA profiles. With MAST, we regressed out the 

batch effects caused by the single cell gene detection rates (Methods) and performed high-

dimensional analyses to determine if tumor cells were present post-treatment (Figure 5B). 

To determine if the batch effect regression affected the biological signal, we compared the 

corrected and uncorrected datasets, which revealed a high concordance (72 – 99%) (Figure 

S3A). We predicted the intrinsic breast cancer molecular subtypes (Gendoo et al., 2016) and 
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found that all 4 TNBC patients were dominated by the basal-like subtype of tumor cells, 

however there were also a small number of tumor cells present in each tumor with other 

subtype signatures (Figure S3B). This analysis identified distinct clusters of pre-treatment 

and post-treatment cells, and further showed that no tumor cells were identified post-

treatment, suggesting that they were eliminated by NAC.

Clustering of differentially expressed genes showed that a number of genes were upregulated 

in the tumor cells relative to the normal epithelial cells (mean = 530 genes) in the post-

treatment samples, including several known cancer genes (NRAS, MYC, FGFR2, TP53) 

(Figure S4A). While most cancer genes were unique to individual patients, this analysis also 

identified 12 known cancer genes that were upregulated in all of the clonal extinction 

patients (Figure 5C). To determine if cancer phenotypes were shared across the TNBC 

patients, we performed GSVA analysis (Hanzelmann et al., 2013) and clustering on a set of 

cancer-specific signatures, which showed that the actin pathway, CDC42RAC pathway, cell 

proliferation, undifferentiated in cancer, mTORC1 signaling, unfolded protein response, 

cancer meta-analysis, oxidative phosphorylation, and MYC targets were upregulated in the 

pre-treatment tumor cells (Figure 5D). The gene signature analysis also showed that the pre-

treatment tumor cells had increased proliferation and apoptosis (Figure S4B-C). These genes 

and pathways may potentially play a role in conferring sensitivity to chemotherapy in the 

clonal extinction patients.

We combined all the tumor and normal cell RNA data from the 4 patients, and performed a 

high-dimensional analysis of the gene signatures with t-SNE (Figure 5E). The data indicated 

that normal cells and tumor cells formed two distinct clusters. Importantly, these results did 

not show any clustering of single cells by patient or batch, suggesting that batch effects were 

minimal. Within the normal cell cluster from the post-treatment samples, we found high 

levels of the ACTA2 fibroblast marker, and within the tumor cell cluster from the pre-

treatment samples, high levels of the epithelial marker, EPCAM (Figure 5F). We further 

classified all normal cells in the post-treatment samples by 8 major breast cell types using 

cell-type specific markers and showed that fibroblasts were the most abundant cell type 

(mean 51.1% ± 14.9% SD) present after NAC, followed by other cell types such as T-cells 

(mean 6.9%) and other CD45+ immune cells (Figure 5G, Methods).

Acquired Transcriptional Reprogramming of Chemoresistant Tumor Cells

To investigate phenotypic evolution in the clonal persistence patients (P11, P12, P14, P15), 

we performed SNRS oñ400 nuclei from each matched time point sample, resulting in an 

average of 1.2 million reads and 5,166 genes detected per cell. We calculated copy number 

profiles from the single cell data (Methods) and performed 1-dimensional clustering (Figure 

6A). In contrast to the clonal extinction patients, a large fraction of aneuploid cells (85–

99%) were detected in both the pre-treatment and post-treatment samples, consistent with 

the single cell copy number data. The few normal diploid cells that were detected and 

removed from expression analysis.

To determine whether any of the tumor cells with chemoresistant expression profiles existed 

at low frequencies in the pre-treatment tumor, we performed high-dimensional analysis 

(Figure 6B, Methods). In three patients (P15, P14, P11), we did not detect any pre-existing 
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transcriptional profiles that clustered with the post-treatment tumor cells, despite profiling 

hundreds of cells. To identify genes upregulated in the chemoresistant post-treatment tumor 

cells, we performed differential expression analyses using MAST (FDR adj p-value < 0.05; |

log2 fold change|≥1) and identified a number of differentially expressed genes (N=59–275) 

in each patient (Figure 6C). A few significant genes included known cancer genes (MYC, 
ERBB3, KIT and PIK3R1), but were not recurrent across the TNBC patients (Figure 6C).

Molecular subtyping showed that the tumors had many basal-like cells, with the except of 

one patient (P12) where a number of tumor cells were classified as HER2-enriched, luminal 

A- and luminal B (Figure S3C). Interestingly, P12 was HER2+ by IHC protein levels but did 

not have copy number amplifications by FISH (Table S1). These data show that the subtype 

composition of single cells did not change drastically in response to NAC, suggesting that 

subtype-switching did not occur (Figure S3C).

To identify common phenotypes of the chemoresistant tumor cells, we performed single cell 

gene signature analysis using GSVA for a set of cancer-related signatures and clustered the 

normalized scores from all 4 patients together (Methods, Figure 6D-E). This analysis 

determined that gene signatures including, degradation of ECM, AKT1 signaling via mTOR 

(Creighton, 2007), CDH targets (Onder et al., 2008), hypoxia (Harris, 2002), EMT and 

Angiogenesis, were upregulated in the chemoresistant tumor cells after NAC (Figure 6D). 

We used t-SNE to cluster all the single cell data from the 4 patients in high-dimensional 

space, which separated the pre-treatment and post-treatment tumor cells into two distinct 

clusters. Notably, the single cells from different patients were intermixed within each major 

cluster, suggesting that batch effects were minimal (Figure 6E). We labeled the 

chemoresistance gene signature scores of single cells in the high-dimensional plots and 

showed that they were highly enriched in the post-treatment samples (Figure 6E). Next, we 

used an extended cohort of breast cancer patients with chemotherapy (N=412) from the 

METABRIC cohort (Curtis et al., 2012; Pereira et al., 2016) with gene expression data and 

long-term clinical follow-up data to determine if any of the chemoresistance-associated 

signatures correlated with patient survival. This analysis showed that two signatures (AKT1 

signaling and Hypoxia) were associated with statistically significant (p<0.05) worse survival 

(Figure S5).

Although the full transcriptional programs of chemoresistant cells were not found to be pre-

existing in the clonal persistence patients, we further investigated whether subsets of 

chemoresistant genes were expressed in single cells in the pre-treatment samples by 

integrating the single cell DNA and RNA datasets (methods). First, we determined if 

subclonal CNAs in resistant clones of the single cell DNA data were present in the RNA 

copy number profiles, to classify each cell as having either a resistant or sensitive genotype. 

To decrease technical noise from transcript dropout and sparse coverage, we rescued missing 

values in the single cell RNA data using SAVER (Huang et al., 2017) before calculating 

copy number profiles. We then compared the tumor cells with resistant genotypes in the 

post-treatment tumor to the sensitive genotypes in the pre-treatment tumors to obtain the top 

variable genes using MAST (FDR adj p-value < 0.05; |log2 fold change|≥1.58) (Finak et al., 

2015). By performing random forest regression and classification, we defined ‘primed cells’ 

in the pre-treatment tumor that expressed a portion (17~ 60%) of the chemoresistant genes 
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(Methods). In three patients (P11, P12 and P14) we detected pre-treatment cells (4–33 cells) 

that expressed a subset of the chemoresistant genes (Figure S6A-B). The frequency of the 

primed tumor cells was lower than the pre-existing chemoresistant copy number profiles of 

single cells, suggesting that CNAs alone were insufficient to confer the full resistant 

phenotypes of the tumor cells.

We further performed an integration of the exome mutations and the 3’ single cell RNA 

datasets to determine if expressed mutations could be identified in the last exons of the 

expressed mRNA transcripts. This analysis showed that the expressed mutations were 

detected exclusively in the pre-treatment single cell RNA data of the clonal extinction 

patients, while the clonal persistence patients showed evidence of expressed mutations in 

both the pre-treatment and post-treatment single cell RNA datasets (Figure S6C). These data 

further confirmed our classification of the clonal persistence and extinction patients.

DISCUSSION

In this study we investigated the genomic and phenotypic evolution of tumor cells in TNBC 

patients in response to NAC, which revealed two distinct classes of clonal dynamics: 

extinction and persistence. In the clonal extinction patients, NAC eliminated the tumor cells, 

leaving only normal diploid cell types after treatment, including many fibroblasts and 

immune cells. In contrast, the clonal persistence patients harbored a large number of residual 

tumor cells with genotypes and phenotypes that were altered in response to NAC. Using 

single cell DNA and RNA sequencing methods we performed a detailed analysis of 8 

patients, which showed that the CNAs that emerged in response to NAC were pre-existing 

and adaptively selected, while the expression profiles were acquired through transcriptional 

reprogramming. Our data further suggests that a small fraction of genotypes selected by 

NAC were primed for transcriptional reprogramming and had subsets of chemoresistant 

genes expressed prior to treatment. Collectively, our data support a model of 

chemoresistance in which two modes of evolution (adaptive and acquired) were operating to 

establish the resistant tumor mass (Figure S6D).

Our data contrast with previous genomic studies that investigated chemotherapy response in 

AML, glioblastoma and ovarian cancer, which reported large increases in mutation 

frequencies in the post-treatment samples (Ding et al., 2012; Johnson et al., 2014; Patch et 

al., 2015). In our exome data, we observed decreases or no changes in the mutation 

frequencies of post-treatment samples in response to NAC. The differences in mutagenicity 

may be due to the chemotherapeutic agents that were used to treat the glioblastoma and 

ovarian cancer patients, since telozolomide and cis-platinum have been shown to be highly 

mutagenic, while taxanes and anthracyclines are not known to be highly mutagenic. 

However, our results are consistent with a previous study in TNBC, which reported no 

significant increase in somatic mutations after chemotherapy (Balko et al., 2014).

The genomic data generated in this study is consistent with a punctuated model of copy 

number evolution in TNBC patients (Gao et al., 2016), wherein hundreds of chromosomal 

aberrations are acquired in short evolutionary bursts at the earliest stages of tumor 

progression. We speculate that early bursts of genome instability generate rare 
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chemoresistant clones with genotypes that do not expand significantly until the population is 

challenged by chemotherapy. Interestingly, we often identified more clonal subpopulations 

in the mutational data compared to the copy number data, suggesting ongoing mutational 

diversification in the tumor lineages, which is consistent with reports that copy number and 

mutation rates represent two distinct molecular clocks during breast cancer evolution (Wang 

et al., 2014). Collectively our copy number and mutational data showed that 

chemoresistance-associated mutations encompassed diverse biological functions and were 

pre-existing in the tumor mass.

In contrast to the diverse mutations, the transcriptional programs converged on a few 

common pathways identified across multiple patients. The gene signatures associated with 

chemoresistance included EMT, CDH1 targets, AKT1 signaling, hypoxia, angiogenesis and 

ECM degradation. The CDH1 targets signature includes genes and transcription factors that 

are upregulated after the knockdown of E-cadherin (eg. Twist, Snail), and together with the 

EMT signature, relate to the transition of tumor cells to mesenchymal phenotypes in 

response to NAC (Liberzon et al., 2015). This observation has previously been reported in 

post-NAC samples from breast cancer patients (Almendro et al., 2014) as well as in studies 

that demonstrate mesenchymal cells in post-treatment tumors desensitize tumors to cytotoxic 

agents (Zheng et al., 2015). AKT1 signaling is a survival signal and has previously been 

implicated in paclitaxel resistance by inhibiting apoptotic pathways (Kim et al., 2007). 

Similarly, hypoxia has also been shown to enhance chemoresistance in tumor cells via HIF-1 
(Cosse and Michiels, 2008; Doktorova et al., 2015; Petit et al., 2016). Studies have also 

shown that ECM degradation is important for invasion, migration and metastasis (Lu et al., 

2012; Oskarsson, 2013). In most patients, we found that the chemoresistant transcriptional 

programs were not pre-existing and were acquired via transcriptional reprogramming after 

treatment, however a small fraction of primed tumor cells with subsets of resistant genes 

were identified in some patients.

Our data has several important clinical implications. First, the pre-existence of 

chemoresistant genotypes in the tumor mass indicates that there may be diagnostic 

opportunities for detecting chemoresistant clones in TNBC patients prior to the 

administration of NAC, to predict which patients may benefit from chemotherapy. Second, 

the stratification of TNBC patients into clonal extinction and clonal persistence groups may 

have prognostic applications in patient outcome or survival, beyond histopathological 

techniques. Third, our data on chemoresistant phenotypes raise the possibility of therapeutic 

strategies to overcome chemoresistance, such as targeting EMT signaling (Marcucci et al., 

2016), using PI3K/AKT1 pathway inhibitors (Liu et al., 2009; Owonikoko and Khuri, 2013), 

or inhibiting hypoxia with HIF-1 inhibitors (Hu et al., 2013; Semenza, 2003) to re-sensitize 

the tumor cells to chemotherapy.

Limitations of our study include the small number of patients (N=8) that were analyzed at 

single cell resolution. Future work will need to be performed in a larger cohort of TNBC 

patients to understand the generalizability of our evolutionary model and the chemoresistant 

gene signatures. Functional studies will also be needed to validate the chemoresistant 

signatures and understand their mechanistic roles in conferring resistant phenotypes. 

Although batch effects have been identified as a major confounding effect in single cell 
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RNA data (Tung et al., 2017), we mitigated these errors by processing all samples in 

parallel, using identical reagents, and normalizing our data. Another potential source of error 

is spatial bias in the core biopsy samples, which we mitigated by using two independent core 

biopsy samples from each time point and large surgical specimens from the post-treatment 

time points.

In closing, we expect that the combined single cell DNA and RNA sequencing methods used 

in this study will provide new insights into genomic and phenotypic evolution in response to 

chemotherapy in many human cancer types. In most human cancers, chemotherapy remains 

to be the first line of therapy and standard of care, and tumors often respond well initially 

but frequently develop resistance within the first few years. The use of both single cell DNA 

and RNA sequencing methods was critical in our study, since the application of only one 

technique would have led to the false inference of either adaptive or acquired evolution. 

Other important future directions include an analysis of matched metastatic tumors, to 

understand whether the chemoresistant clones in the primary tumor seed distant metastases 

and also confer resistance at these organ sites. These studies will become more realistic as 

single cell DNA sequencing technologies increase in throughput and decrease in cost (Wang 

and Navin, 2015), and the ability to perform multi-modal single cell DNA and RNA 

profiling in the same cell becomes technically feasible (Zahn et al., 2017) for analyzing 

larger cohorts of TNBC patients.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Nicholas Navin (nnavin@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fresh frozen triple-negative breast cancer (TNBC) tissue samples were obtained from the 

Predict Response of Preoperative Treatment of Breast Cancer Early (PROMIX: 

NCT00957125) trial in collaboration with Dr. Theodoros Foukakis at the Karolinska 

University Hospital and Internal Review Board (IRB) approval at the University of Texas 

MD Anderson Cancer Center and Karolinska University Hospital. All patients were enrolled 

under informed consent. The triple-negative status of all tumor samples was determined by 

immunohistochemistry and FISH copy number. The PROMIX trial recruited patients with 

localized, primary breast cancer, including inflammatory breast cancer, suitable for primary 

medical treatment and/or patients with regional lymph node metastases. Frozen tumor tissue 

samples were collected <2 weeks prior to treatment initiation (14G core biopsy), after 2 

three-weekly cycles of epirubicin 75 mg/m2 and docetaxel 75 mg/m2 (14G core biopsy), and 

after 4 additional three-weekly cycles of epirubicin 75 mg/m2 and docetaxel 75 mg/m2 in 

combination with bevacizumab 15 mg/kg (surgical excision). Core biopsy samples were 

collected prior to NAC and after 2 cycles, while surgical samples were collected after 6 

cycles of NAC.
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METHOD DETAILS

Bulk Exome Sequencing

Bulk genomic DNA was extracted from frozen tumor samples following the manufacturer’s 

instructions outlined in the DNA Mini Kit (Qiagen, #51306). Germline genomic DNA was 

extracted from matched patient blood samples with the DNA Blood Mini Kit (Qiagen, 

#51106). Extracted DNA was sonicated to 250 bp using the S220 Sonicater (Covaris). 

KAPA libraries (KAPA Biosystems, #8502) were constructed from the sonicated DNA 

according to manufacturer’s instructions using 10–250 ng of input DNA and unique 

NEXTflex-96 barcodes (Bio Scientific) for each individual sample. Barcoded libraries (8–

12) were pooled together for exome captures using the SeqCap EZ v2 kit (Roche, 

#06953212001), which targeted 44 Mb of the genome. Final v2 exome capture products 

were quantified with the dsDNA HS Fluorometric Assay (Invitrogen, #Q32854), Agilent’s 

High Sensitivity DNA Chip, and KAPA Library Quantification kit (#KK4835) and 

sequenced at 100 paired-end cycles on the HiSeq2000 or HiSeq4000 system (Illumina).

Exome Data Processing and Analysis

FASTQ sequences were mapped to the human assembly NCBI build 37 (hg19) using the 

Bowtie2 alignment software (Langmead and Salzberg, 2012). Samtools (v0.1.19) was used 

to convert SAM files to compressed BAM files and to sort the BAM files by chromosomal 

coordinates (Li et al., 2009). PCR duplicates were marked with Picard (v1.56), and the 

sorted, marked BAM files were realigned with the Genome Analysis Toolkit (GATK1.4–37) 

(McKenna et al., 2010) at intervals with indel mismatches. Mutect2 was used to detect single 

nucleotide variants (SNVs) and to perform local realignment for indel calls (do Valle et al., 

2016). Germline variants were removed by filtering out variants in the matched normal 

blood samples. Gene annotations and function prediction scores were performed with 

Annovar (Yang and Wang, 2015), dbSNP build135 (Sherry et al., 2001), 1000Genomes 

(Genomes Project et al., 2015), Polyphen, Avsift (Ng and Henikoff, 2003), and COSMIC 

(Forbes et al., 2017). Mutation sites were selected if there were at least 30 reads across all 

time points; and MAF < 0.01 in the germline blood; and variant read count ≥5 for a depth of 

30, MAF ≥ 0.09 for depth >30 in at least one time point. Mutations were then identified in 

the other time points if at least 5 variant read counts were detected.

Estimation of Clonal Dynamics from Mutation Data

Non-synonymous somatic mutations were identified in the bulk exome sequencing data for 

20 TNBC patients with 2 or 3 longitudinal samples. Bulk tumor genomic copy number 

profiles were estimated from the pair-end exome sequencing depth using the R package 

‘exomeCNV’ (Sathirapongsasuti et al., 2011). Tumor purity was estimated with THetA2 

(Oesper et al., 2013). The variant allele frequencies from each point mutation were 

normalized with both exome-derived copy number profiles and estimated tumor purities, and 

initial clusters were identified using PyClone2 (v0.12.9) (Roth et al., 2014). Mutation 

clusters with only one mutation were excluded from further analysis. The PyClone cluster 

frequencies were calculated as the mean variant allele frequencies of mutations within each 

cluster. The clonal frequencies were then adjusted using CITUP (Malikic et al., 2015) by 

Kim et al. Page 12

Cell. Author manuscript; available in PMC 2019 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



joint calculation of the cluster identifications and optimal trees across the tumor time points 

from same patient.

Detection of Rare Variants by Targeted Amplicon Sequencing

Forward and reverse primers were designed to amplify ~150 bp regions containing the 

targeted mutation site identified by bulk exome sequencing for the tumor sample and its 

matched blood sample. Amplicons were PCR-amplified, purified, eluted in ~20μL H2O, and 

run on an agarose gel to confirm fragment sizes. Fragments were pooled together in 

equimolar concentrations, and the larger amplicons were sonicated. A New England 

BioLabs kit was used for end repair of amplification products (NEB, E6050L), and amplicon 

products were subsequently purified with the DNA Clean and Concentrator-5 Kit (Zymo 

Research, #11–303). NEBNext DNA Library Prep enzymes were used for 3’ adenylation 

(#E6053L), adapter ligation (#M0202L), and PCR amplification (#M0541L) to barcode the 

library with a P7 unique NEXTflex-96 barcode. The final barcoded library was quantified by 

quantitative PCR using the KAPA Library Quantification kit. The sample was sequenced on 

the MiSeq system (Illumina #MS-102–3001, 150 single-read). DeepSNV (Gerstung et al., 

2012) was applied to determine whether mutations were statistically significant and present 

at higher levels in the tumor samples compared to the matched normal blood samples at a p-

value < 0.05, with 5 bp flanking regions around the mutation site of interest to establish error 

rates.

Multiplexed Single Cell Copy Number Sequencing

The highly-multiplexed single-nucleus-sequencing (HM-SNS) protocol published by Gao et 

al. 2016 was used to multiplex single nuclei for copy number sequencing. Briefly, nuclei 

from frozen tumors were isolated by mincing the tumor in DAPI-NST buffer (800 mL of 

NST [146 mM NaCl, 10 mM Tris base at pH 7.8, 1 mM CaCl2, 21 mM MgCl2, 0.05% BSA, 

0.2% Nonidet P-40]), 200 mL of 106 mM MgCl2, 10 mg of DAPI, and 5mM EDTA) and 

filtering through a 37-μM nylon-mesh filter (Lake et al., 2016). Single nuclei from the 

aneuploid distribution were flow-sorted into 96-well plates through the FACSAria II flow 

cytometer. Each individual well contained 10 μL of lysis solution from the Sigma-Aldrich 

GenomePlex WGA4 kit. The diploid population of DAPI fluorescence intensity was initially 

established with a control diploid cell line.

Whole-genome amplification (WGA) was performed as described in the Sigma-Aldrich 

GenomePlex WGA4 kit (WGA4–50RXN). The DNA concentration was measured (Thermo 

Fisher Scientific, Qubit 2.0 fluorometer), run on gel electrophoresis for size distributions, 

and sonicated to 250 bp using the S220 Sonicator. The products underwent NEB end repair 

and were subsequently purified with the DNA Clean and Concentrator-5 Kit. The NEBNext 

DNA Library Prep enzymes were used for 3’ adenylation, adapter ligation, and PCR 

amplification to barcode each single-cell library with a P7 unique 8-bp identifier 

(NEXTflex-96 barcodes) and common P5 adapter for sample multiplexing. After adapter 

ligation, libraries were purified with AMPure XP beads 0.5x, and PCR-amplified (8-cycles). 

Final library concentrations were measured by Qubit, and libraries were pooled in equimolar 

concentrations. The final multiplexed pooled library was quantified by quantitative PCR 

using the KAPA Library Quantification kit and the QuantStudio 6 Flex Real-Time PCR 
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System. Size distributions of the pooled submission were evaluated on 2100 Bioanalyzer 

(Agilent Technologies). Pooled 96-libraries were sequenced using 76 single-end or 76 

paired-end cycles on the HiSeq2000 or HiSeq4000 (Illumina).

Single-Cell Copy Number Data Processing

Sequencing data was processed into a master FASTQ file using the CASAVA 1.8.1 pipeline 

(Illumina Inc.) and then demultiplexed using an in-house perl script (Gao et al., 2016) into 

individual FASTQ files representing the sequencing reads from each single cell. Sequence 

reads were aligned to the NCBI build 37 (HG19/NCBI37) using Bowtie2 (Langmead and 

Salzberg, 2012) and converted to sorted BAM files. Poorly mapped reads (MQ<40) were 

filtered out using Samtools (0.1.19) (Li et al., 2009). PCR duplicates were identified as 

sequencing reads with the exact same starting position and were also removed from read 

counts via an in-house Python script. Single cell copy numbers were calculated using the 

‘variable binning’ method followed by the Circular Binary Segmentation (CBS) (Olshen et 

al., 2004) as previously described (Baslan et al., 2012; Navin et al., 2011). Sequencing reads 

were counted into 11,927 genomic bins with variable start and stop coordinates to simulate 

mapping bias across the genomic positions, where the median genomic length spanned by 

each bin is 220 kb. Loess normalization was used to correct for GC bias (Baslan et al., 

2012). Copy number segmentation was performed using the CBS method (Olshen et al., 

2004) followed by MergeLevels (Willenbrock and Fridlyand, 2005) to join adjacent 

segments with non-significant differences in segment ratios. The parameters used for CBS 

segmentation was alpha=0.0001 and undo.prune=0.05 respectively. Default parameters were 

used for performing MergeLevels, which successfully joined false positive detections of 

erroneous chromosome breakpoints.

Copy Number Clustering and Phylogenetics

Clonal subpopulations in single cell copy number data were defined using an optimal 

clustering method as previously described (Gao et al., 2016). To minimize the effects of 

parallel association in the clustering results, we first obtained a copy number event matrix by 

applying the population segmentation method using R package ‘copynumber’ (Nilsen et al., 

2013) to find common breakpoints across all cells in the population. The optimal number of 

clusters was identified using the short event matrix and determined by the average silhouette 

distance width using R ‘pamk’ function in the ‘fpc’ package (Hennig, 2015). Integer copy 

numbers were calculated by scaling the absolute ratios with the population average ploidy 

and rounding to the nearest integer values. Following identification of clonal subpopulations, 

the consensus copy number profile of each subpopulation was calculated as the median copy 

number of all single cells within the subpopulation. Clonal lineage analysis was performed 

on aneuploid single cells that had genome-wide copy number aberrations. The relative clonal 

frequency of each subpopulation was calculated as the number cells that belonged to each 

specific sub-cluster divided by the total number of clonal cells. The tree structures of the 

clonal subpopulations were inferred using the maximum parsimony tree method in R 

package ‘phangorn’ (Schliep, 2011) from the annotated event matrix where copy numbers 

larger than ground states were labeled as ‘gain’ and those smaller than ground states were 

labeled as ‘loss’. The ground states were labeled as ‘neutral’. Finally, clonal lineages were 
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analyzed with TimeScape (Smith, 2017) using the MP tree structures and the clonal 

frequencies across the treatment time points for individual TNBC patient samples.

Nanogrid Single-Nucleus RNA Sequencing

Single-nucleus RNAseq was performed as previously reported by Gao et al. 2017. Briefly, 

frozen tumor sections were minced in DAPI-NST lysis buffer and filtered through a nylon-

mesh filter to further remove cytoplasmic components. The final suspension was diluted to 

1000 μL of 1 cell/50 nL with 1x PBS and D-RNase free water (0.35x PBS in the final 

dilution). Single nuclei were dispensed into the WaferGen SmartChip™ (5000 wells), and 

nanowells were selected (~500 cells/chip) and visualized with the Wafergen CellSelect™ 

software according to the manufacturer’s instructions to confirm that selected wells had 1 

cell/well. Chips were placed in freezing chambers and stored at −80°C until reverse-

transcription (RT). Frozen chips were thawed, and 50nL of RT solution (56μL 5M betaine, 

24μL 25 mM dNTP mix, 3.2μL 1 M MgCl2, 8.8μL 100 mM DTT, 61.9μL 5X 

SMARTScribe™ First-Strand Buffer, 33.3μL 2X SeqAmp™ PCR Buffer, 4.0μL 100μm RT 

E5OLIGO, 8.8μL 10μM Amp Primer, 1.6μL 100% Triton X-100, 28.8μL SMARTScribe™ 

Reverse Transcriptase, and 9.6μL SeqAmp™ DNA Polymerase) was deposited into each 

selected well. After RT, complementary DNA (cDNA) products from selected wells were 

pooled together, purified, and underwent PCR amplification. The amplified product was 

purified with 0.6x AMPure XP beads and eluted in 11μL D-RNase-free water. The eluted 

product was quantified with Qubit and Bioanalyzer. The cDNA was then diluted to 0.2 ng/

μL and used to construct Nextera XT DNA libraries with i7 index primers. The final 

libraries, containing ~500 barcoded single-nuclei transcriptomes, were sequenced at 100 

paired-end or 76 paired-end cycles on the HiSeq4000 system (Illumina).

Single-Nucleus RNA Sequencing Data Processing

After sequencing, the BCL2 intensity files were processed into a master FASTQ file using 

the CASAVA 1.8.1 pipeline (Illumina Inc.) and then demultiplexed into individual fastq files 

with each file representing one single cell. Sequencing reads were mapped to the human 

transcriptome (HG19) using bowtie2 (Langdon, 2015), and gene expression levels were 

summarized into TPM values using RSEM (Li and Dewey, 2011) using uniquely mapped 

reads.

Copy Number Calculation from Single-Nucleus RNA Data

Single cell copy number based on the RNAseq data were calculated from a [log(TPM/

10+1)] matrix using a sliding windows of 50 genes as previously described (Gao et al., 

2017; Patel et al., 2014). To perform the calculation, genes were sorted by their genomic 

coordinates spanning from chr1 to chr22, chrX and chrY. We excluded genes that were 

detected in less than 30% of the cells, which resulted in 3,000–7,000 genes per cell that were 

used for the copy number calculations. We used a set of 240 normal breast tissue single cells 

as diploid baselines as previously described (Gao et al., 2017). Relative gene expression was 

obtained for each gene by subtracting the baseline levels. To mitigate the bias caused by 

extreme gene expression levels, we replaced the relative gene expression values ≥ 3 with 3 

and relative expressions ≤ −3 with −3. We then obtained a ‘moving average’ of adjacent 50-

gene relative expression values to represent the [log2(copy number ratio)] of that genomic 
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location. We further normalized the [log2(copy number ratio)] to their mean values for each 

cell to center around zeros. Single cells without genome-wide CNAs were defined as normal 

cells and were normalized to diploid cell baselines to remove minor CNAs caused by cell 

type variations among normal cells.

Differential Gene Expression Analysis

Single cell RNAseq data has a bimodal gene expression distribution, and as a result, the 

number of genes detected was variable. We applied MAST (Finak et al., 2015), a two-part 

generalized linear model, to adjust gene detection ratios across cells and to compare the gene 

expression in post-treatment cells to their matched pre-treatment samples, which resulted in 

fewer false positive discoveries (Jaakkola et al., 2016). Single cells that did not express 

either GAPDH or ACTB were excluded from the analysis. We also excluded a list of 217 

curated house keeping genes, which included 98 genes from a previously published list 

(Tirosh et al., 2016) and genes that were detected in <30% cells in both the pre-treatment 

and post-treatment groups, which resulted in 7,318 genes per patient on average for 

differential gene expression analyses. For clonal extinction patients, we compared all pre-

treatment tumor cells to post-treatment normal epithelial cells in each patient. For clonal 

persistent patients, we compared all pre-treatment tumor cells with all post-treatment tumor 

cells. The significant differentially expressed (DE) genes were defined as having FDR 

adjusted p-value < 0.05 and |log2(fold change)| ≥ 1. Clustered heatmaps of significant DE 

gene expression were generated with R function ‘heatmap.3’ based on z-scores of log(TPM/

10+1). Single cells from both pre-treatment and post-treatment tumors were projected to 2D 

space using the tSNE with R package ‘tsne’ (Donaldson, 2016).

Breast Cancer Subtype Prediction

Single cells were classified into 5 established intrinsic breast cancer molecular subtypes 

(normal-like, basal-like, luminal A, luminal B and Her2 enrichment) using the R ‘genefu’ 

package (Gendoo et al., 2016) with [log(TPM/10+1)] data matrix. Single cells with low 

prediction confidence (< 0.7) were undefined. In the pentagon plots, the total number of 

single cells within each tumor was scaled to 500 single cells per tumor to balance the 

visualization across different tumors.

Gene Set Variation Analysis

Gene signatures of single cells were quantified by applying the single-sample gene set 

variation analysis (ssGSVA) (Hanzelmann et al., 2013), which calculated the signature 

enrichment scores of individual single cells independently without normalization across 

cells. The gene expression [log(TPM/10+1)] matrix was used and single cells that did not 

express either GAPDH or ACTB were excluded from the analysis. We performed unbiased 

analysis on a set of 50 hallmark signatures (Liberzon et al., 2015) and a set of 4725 curated 

pathway signatures (MSigDB,C2 sets). The resulting GSVA score matrix was organized as 

having single cells in the columns and the signatures in the rows. Comparisons of single-cell 

enrichment scores of pre-treatment and post-treatment single cells were performed using the 

R package ‘limma’ (Ritchie et al., 2015). Differentially enriched signatures were defined as 

having FDR adjusted p-values < 0.05 and |mean score difference|>= 0.1 as described 

previously (Gao et al., 2017). Projection of all single cells from the extinction group or the 
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persistent group tumors to 2D space was performed using t-SNE (Donaldson, 2016) based 

on the top differentially enriched signatures.

Normal Cell Type Prediction from Single Nucleus RNA Data

Prediction of known normal cell types in the clonal extinction post-treatment tumors was 

performed using a semi-supervised approach. We first classified immune cell types using 

established markers: T cells (CD4|CD8A|CD8B), B cells (CD19|CD20) or other immune 

cells (CD45). For the remaining cell types we performed a decision tree using Gini 

coefficients to evaluate the variability of known cell type markers across all the remaining 

cells. Larger Gini coefficients indicated stronger unevenness of the marker gene expression 

across the remaining cell populations, and therefore the cell type with the largest Gini 

coefficient was determined first. The remaining cell types with smaller coefficients were 

identified subsequently in an iterative process. The markers for the remaining cell type 

classification in sequential included: fibroblasts (ACTA|CAV1|FAP|FN1), luminal epithelial 

cells (CK8|CK18), adipocytes (ADIPOR1/2), basal epithelial cells (CK5|CK14) and 

endothelial cells (PECAM1|CD34). We used the gene expression [log(TPM/10+1)] cutoff=1 

to determine whether a cell marker was expressed in a single cell. In our datasets, we 

observed a subset of cells that were co-expressed both fibroblasts and epithelial cells 

markers. Since ‘fibroblast’ cells were defined before epithelial cells, we reclassified certain 

‘fibroblast’ cells as epithelial cells if they expressed higher levels of epithelial markers on 

average.

Survival Analysis in Extended Patient Cohorts

To determine whether the chemoresistance-associated gene signatures were associated with 

patient survival, we obtained the METABRIC dataset (Curtis et al., 2012; Pereira et al., 

2016) with mRNA gene microarray expression data and long term clinical follow-up data. 

We analyzed a total of N=412 breast cancer patients that received chemotherapy. To test the 

association of selected gene sets with patient survival, we first performed gene set variation 

analysis (Hanzelmann et al., 2013) and stratified patients into low enrichment (ssGSVA 

score ≤ −0.1) and high enrichment (ssGSVA core ≥ 0.1) groups. We then performed a Cox 

proportional hazard regression of survival month and survival status over gene set 

enrichment status using the R ‘survival’ package (Therneau 2015) and the log-rank test p-

values were used to determine significance.

Integration of Single Cell Copy Number Data with SNV Mutations

To integrate single cell copy number with the bulk mutation data, we used Samtools (0.1.19) 

(Li et al., 2009) to perform ‘mpileup’ of sparse single cell copy number reads and quantified 

the number of variant reads at specific mutation sites that were detected by exome 

sequencing. Mutation sites with ≥ 1 variant read counts in at least one cell were called as 

mutated sites. Mutations in single cells were then mapped to clonal subpopulations in 

maximum parsimony trees constructed from the single cell copy number data. With this 

approach, a subset of clonal mutations were successfully mapped to the truncal lineages of 

the copy number trees, however the limited coverage at subclonal mutation sites did not 

permit accurate mapping to the subclonal lineages.
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Integration of DNA Mutations and RNA Single Cell Data

Since the single nuclei RNA expression data had coverage only at the 3’ ends, we mapped 

all exome mutation sites to the last exons of genes to identify a subset of mutations with 

these criteria. We used Samtools (0.1.19) (Li et al., 2009) ‘mpileup’ to obtain sparse 3’ 

single cell RNA sequencing read counts for mutations detected in the last exons of genes. 

Mutation sites with ≥ 1 read count coverage in the RNA data that matched the mutation 

variant base were considered as positive for having the expressed mutation, while sites with 

≥ 1 read count coverage and only reference bases were considered as negative for the 

expressed mutation. Sites with no read count data in samples were indicated as ‘low 

coverage’ for detecting the expressed mutation.

Identification of Primed Cells by Integrating Single Cell CNA and RNA Data

We identified ‘primed’ cells in the pre-treatment tumor samples that expressed a subset of 

the chemoresistant genes by integration of single cell CNA data with single cell RNA data. 

Due to the sparseness of the single cell RNA data, we performed imputation using Single 

Cell Analysis Via Expression Recovery (SAVER) (Huang et al., 2017) to improve copy 

number estimations. Next, we identified the CNAs associated with resistance in the single 

cell DNA copy number profiles that expanded in the resistant clones from the persistence 

patients. To find the preexisting single cells that had resistant CNA genotypes, we clustered 

all pre-treatment single cells with post-treatment single cells using hierarchical clustering 

with the calculated RNA copy number profiles. Single cells with resistance associated CNAs 

that clustered together were defined as having a resistant genotype, whereas pre-treatment 

single cells that did not have resistance associated CNAs were defined as having a sensitive 

genotype. We next obtained a restricted list of significant top variable genes (N<50 genes) 

by comparing the transcriptional profiles of the post-treatment resistant cells (those that had 

both resistant genotypes and phenotypes) to pre-treatment nonresistant cells (those that did 

not have resistant genotypes or phenotypes) using MAST (FDR adjusted p < 0.05; |log2(fold 

change)| ≥ 1.58) (Finak et al., 2015). Next, we performed random forest regression with the 

R ‘randomForest’ package (Breiman, 2002) on 70% of the data using the top variable genes 

followed by prediction of resistance/sensitive classification for all single cells within each 

tumor. We defined the predicted probability of classifying a resistant single cell to be the 

resistance expression score of each cell. To determine the cutoff of the resistance expression 

score and define the primed cells, we calculated the cutoff score that separated pre-treatment 

cells within each tumor into two groups using the least square method and took the median 

values across the 4 patients as the universal cutoff (cutoff=0.172). We manually set the 

resistance cutoff as 0.6 to account for RNA dropout noise in the single cell RNA data. As 

such, single cells that had a resistance expression score >=0.6 were defined as resistant cells, 

and single cells that had resistance expression scores between 0.172 and 0.6 were defined as 

primed cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. Overview of Treatment Schedule and Experimental Design
(A) Timeline of chemotherapy treatment schedule and sample acquisition. Core biopsies 

were obtained prior to NAC at 0 cycles and mid-treatment, after two cycles of NAC 

(docetaxel and epirubicin). The surgical sample was obtained after four additional cycles of 

NAC in combination with bevacizumab. (B) For each longitudinal time-point sample, three 

experimental procedures were performed, including bulk exome sequencing, single-cell 

copy number profiling and 3’ single-nucleus RNA sequencing using a nanogrid platform 

(methods).
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Figure 2 –. Mutational Evolution and Clonal Dynamics in Response to NAC
Bulk exome sequencing of matched longitudinal samples from 20 TNBC patients. (A) Total 

number of exonic mutations detected in the clonal extinction patients with no residual 

mutations after NAC. (B) Total number of exonic mutations detected in clonal persistence 

patients with residual mutations after NAC. (C) Line plots of raw mutation allele frequencies 

(MAFs) in left panels and inferred clonal subpopulations in the right panels for clonal 

extinction patients. (D) Line plots of MAFs in left panels and inferred clonal subpopulations 

in right panels for clonal persistence patients, with mutations that expanded in resistant 

clones after NAC labeled with purple lines. (E) Targeted deep amplicon sequencing of pre-

existing resistance-associated mutations in four clonal persistence patients, with stars 

indicating mutations that were statistically significant (p <0.05) in the pre-treatment tumor 

samples by DeepSNV. (F) A single patient (P19) in which the resistance-associated 
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mutations in the post-treatment tumor sample were not statistically significant (not mutated) 

in the pre-treatment tumor (ns, p >0.05).
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Figure 3 –. Copy Number Evolution in Clonal Extinction Patients
(A) t-SNE plots of single cell copy number profiles from the pre-treatment and mid-

treatment or post-treatment samples of four clonal extinction patients with normal cells (N) 

and tumor subpopulations (A, B, or C) labeled. (B-E) Clustered heatmaps of single cell 

integer copy number profiles and consensus integer copy number profiles of the clonal 

subpopulations. Consensus line profiles show annotated cancer genes and subpopulation-

specific differences indicated with grey bars. Lower panels show analyses of clonal 

dynamics calculated from optimal clustering results and maximum parsimony trees, and 

plotted in TimeScape with cancer gene and clonal frequencies annotated.
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Figure 4 –. Adaptive Copy Number Evolution in Clonal Persistence Patients
(A) t-SNE plots of single cell copy number profiles from the pre-treatment and mid-

treatment or post-treatment samples of four clonal persistence patients with tumor 

subpopulations (A,B,C,D,E) labeled. Arrows indicate pre-existing single cells from the pre-

treatment samples that share the post-treatment chemoresistant genotypes. (B-E) Clustered 

heatmaps of single cell integer copy number profiles and consensus profiles of clonal 

subpopulations. Consensus line profiles show annotated common cancer genes and 

subpopulation-specific differences are indicated with grey bars. Lower panels show analyses 

of clonal dynamics calculated from optimal clustering results and maximum parsimony 
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trees, and plotted in TimeScape with cancer gene and clonal frequencies annotated. Stars 

indicate the chemoresistant clones that were selected and expanded in response to NAC.
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Figure 5 –. Transcriptional Profiles of Clonal Extinction Patients
(A) Clustered heatmaps of single cell copy number profiles calculated from single cell 

SNRS data from pre-treatment and mid-treatment or post-treatment samples from 4 clonal 

extinction patients, clustered with 240 normal breast cells from a different patient. (B) t-SNE 

projections of single cell RNA profiles from pre-treatment and mid-treatment or post-

treatment samples from each clonal extinction patient, with immune cells excluded. (C) 

Violin plots of single cell RNA expression data for 12 cancer genes that were significantly 

upregulated (FDRadj p-value < 0.05, log2(foldchange) ≥1) in the pre-treatment tumor cells 

across all four clonal extinction patients, in relative to post-treatment normal epithelial cells. 

(D) Cancer gene signature analyses and clustering of GSVA scores for single tumor and 

normal cells from all 4 clonal extinction patients. (E) t-SNE projection of combined single 

cell data from the four clonal extinction patients, with immune cells excluded. (F) 

Expression of fibroblast marker ACTA2 and epithelial marker EPCAM in the tumor and 

normal cells. (G) Normal cell type classification and frequencies of cell types in the post-

treatment tissue samples.
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Figure 6 –. Transcriptional Reprogramming in the Chemoresistant Tumor Cells
(A) Heatmaps of single cell copy number profiles calculated from single cell RNA data from 

pre-treatment and mid-treatment or post-treatment samples from 4 clonal persistence 

patients. (B) t-SNE projections of single cell RNA profiles from pre-treatment and mid or 

post-treatment samples from each clonal persistence patient, with an arrow indicating two 

cells from the pre-treatment samples that cluster with the post-treatment expression profiles 

in patient P12. (C) Venn diagrams and clustered heatmaps of significant differentially 

expressed genes between the pre-treatment tumor cells and post-treatment tumor cells with 

cancer gene annotations. (D) Violin plots of single-cell GSVA scores for the pre-treatment 

and post-treatment tumor cells from all 4 clonal persistence patients. Significance * indicates 

FDR adjusted p < 0.05 and |mean GSVA score difference| ≥ 0.1. (E) t-SNE projection of all 
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combined single cell data from the four clonal persistence patients, labeled by pre/post 

treatment, sample origin, or GSVA signatures.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Frozen breast tumor tissue 
samples

Karolinska University Hospital P1-P20, this manuscript

Critical Commercial Assays

GenomePlex WGA4 kit Sigma-Aldrich Cat#WGA4–50RXN

DNA Clean & Concentrator-5 Zymo Research Cat#11–303 or 11–306

Qubit dsDNA HS Assay Kit Invitrogen Cat#Q32854

NEBNext end repair module NEB Cat#E6050L

NEBNext dA-Tailing module NEB Cat#E6053L

T4 DNA ligase NEB Cat#M0202L

NEBNext High-Fidelity 2X PCR 
Master Mix

NEB Cat#M0541 L

KAPA Library Quantification Kit Kapa Cat#KK4835

Nimblegen’s SeqCap EZ Exome 
V2 kit

Roche Cat#05860482001

Ampure XP beads Beckman Coulter Cat#A63881

DNA Mini Kit QIAGEN Cat#51306

DNA Blood Mini Kit QIAGEN Cat#51106

KAPA Library Preparation Kit Kapa Cat#KK8502

DNA Clean and Concentrator-5 
Kit

Zymo Research Cat#11–303

WaferGenlCELL8v2 Takara/Wafergen Cat#1565 or Cat#640003

Nextera XT DNA Library 
Preparation Kit

Illumina Cat#FC-131–1096

Oligonucleotides

Primers for amplicon validation, 
see Table S5

This manuscript N/A

Software and Algorithms

Burrows-Wheeler Aligner vO.7.12 Li H. and Durbin R. 2009 http://bio-bwa.sourceforge.net/ RRID:SCR_010910

SAMtools v1.2 Lietal.,2009 http://samtools.sourceforge.net/ RRID: SCR_002105

GATK McKenna et al.,2010 https://software.broadinstitute.org/gatk/ RRID:SCR_001876

Picard Tools Broad Institute http://broadinstitute.github.io/picard RRID:SCR_006525

MuTect2 Cibulskis et al.,2013 https://software.broadinstitute.org/gatk/ RRID:SCR_000559

ANNOVAR Wang et al., 2010 http://annovar.openbioinformatics.org/en/1atest/ RRID:SCR 012821

exomeCNVv1.4 JF Sathira pongs asuti JF etal., 
2011

https://cran.r-project.org/src/contrib/Archive/ExomeCNV/

THetA2 Oesper L et al.,2014 http://compbio.cs.brown,edu/projects/theta/

PyClone2 vO.12.9 Roth A etal., 2014

CITUP Malikic S et al.,2015 https://github.com/sfu-compbio/citup

R package TimeScape’ McPherson A etal, 2016 https://github.com/shahcompbio/timescape

deepSNV version 1.16.0 Gerstung et al.,2012 https://bioconductor.org/packages/release/bioc/html/deepSNV.html RRID:SCR_006214
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REAGENT or RESOURCE SOURCE IDENTIFIER

R package ‘DNAcopy’ Shah etal., 2006 https://bioconductor.org/packages/release/bioc/html/DNAcopy.html RRID:SCR_012560

R function MergeLevels Willenbrock and Fridlyand, 
2005

https://www.rdocumentation.org/packages/aCGH/versions/1.50.0/topics/mergeLevels

R package ‘copynumber’ Nilsen G et al.,2012 https://bioconductor.rikenJp/packages/3.1/bioc/html/copynumber.html

R package ‘phangorn’ Schliep KP 2011 https://github.com/KlausVigo/phangorn

R package ‘tSNE’ Donaldson J, 2016 https://CRAN.R-project.org/package=tsne

R package ‘fpc’ Hennig C, 201 https://CRAN.R-project.org/package=fpc

RSEM Li B and Dewey C, 2011 https://github.com/deweylab/RSEM

R package ‘MAST’ Finak G etal., 2015 https://github.com/RGLab/MAST

R package ‘GSVA’ Hanzelmann S etal., 2013 https://bioconductor.org/packages/release/bioc/html/GSVA.html

R function ‘heatmap.3’ Murtagh and Legendre 2014 https://github.com/obigriffith/biostar-tutorials/tree/master/Heatmaps

R package ‘randomForest’ LiawAand Wiener M, 2015 https://www.stat.berkeley.edu/~breiman/RandomForests/

R package ‘SAVER’ Huang M et al.,2017 https://github.com/mohuangx/SAVER

R package ‘survival’ Therneau T, 2015 https://github.com/therneau/survival
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