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Abstract

Painful neuropathic injuries are accompanied by robust inflammatory and oxidative stress 

responses that contribute to the development and maintenance of pain. After neural trauma the 

inflammatory enzyme cyclooxygenase-2 (COX-2) increases concurrent with pain onset. Although 

pre-treatment with the COX-2 inhibitor, meloxicam, before a painful nerve root compression 

prevents the development of pain, the pathophysiological mechanisms are unknown. This study 

evaluated if pre-treatment with meloxicam prior to painful root injury prevents pain by reducing 

spinal inflammation and peripheral oxidative stress. Glial activation and expression of the 

inflammatory mediator secreted phospholipase A2 (sPLA2) in the spinal cord were assessed at day 

7 using immunohistochemistry. The extent of oxidative damage was measured using the oxidative 

stress marker, 8-hydroxyguanosine (8-OHG) and localization of 8-OHG with neurons, microglia 

and astrocytes in the spinal cord and peripherally in the dorsal root ganglion (DRG) at day 7. In 

addition to reducing pain, meloxicam reduced both spinal microglial and astrocytic activation at 

day 7 after nerve root compression. Spinal sPLA2 was also reduced with meloxicam treatment, 

with decreased production in neurons, microglia and astrocytes. Oxidative damage following nerve 

root compression was found predominantly in neurons rather than glial cells. The expression of 8-

OHG in DRG neurons at day 7 was reduced with meloxicam. These findings suggest that 

meloxicam may prevent the onset of pain following nerve root compression by suppressing 

inflammation and oxidative stress both centrally in the spinal cord and peripherally in the DRG.
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Introduction

Neuropathic pain has been estimated in 7–10% of the population, with chronic pain carrying 

societal costs of $560–635 billion annually (Institute of Medicine (US) Committee on 

Advancing Pain Research, 2011; van Hecke et al., 2014; Holmes, 2016). In the cervical 

spine, the dorsal nerve roots are a common source of painful neuropathic injury since they 

are susceptible to loading from compression by disc herniation, spondylosis or other forms 

of trauma (Côté et al., 2004; Carette and Fehlings, 2005; Abbed and Coumans, 2007). Even 

a transient compression of the nerve root can produce chronic radiculopathy, which often 

manifests as pain or numbness that can radiate down the arm or leg (Abbed and Coumans, 

2007; Kuijper et al., 2009; Caridi et al., 2011). Despite the high prevalence of painful 

neuropathy, current treatments are not effective in providing pain relief, partially due to an 

incomplete understanding of the mechanisms involved in pain cascades (Institute of 

Medicine (US) Committee on Advancing Pain Research, 2011). Both inflammatory and 

oxidative stress pathways at the injury site and in the spinal cord where nociceptive 

processing occurs, contribute to pain through the release of inflammatory mediators and 

reactive oxygen species (Abbed and Coumans, 2007; Goupille et al., 1998; Klein, 2016; 

Nagashima et al., 2009, Salvemini 2011). By inhibiting cyclooxygenase2 (COX-2) 

mechanisms, non-steroidal anti-inflammatory drugs (NSAIDs) can reduce both 

inflammation and oxidative stress (Takahashi et al., 2005; Ma et al., 2002); because of this, 

they are a common analgesic treatment but have side effects (Han et al., 2015; Wong et al., 

2016). The NSAID meloxicam is, a known selective COX-2 inhibitor (Furst, 1997; Hawkey, 

1999; Kimura and Kontani, 2009) that has been shown to cross the blood brain barrier 

(Dehouck et al., 1992; Novakova et al., 2014). It provides effective pain relief in orthodontic 

pain and animal models of temporomandibular joint pain without the same risk of adverse 

side effects (Zarif Najafi et al., 2015; Montesinos et al., 2016; Zhang and Gan, 2017). 

Although meloxicam administration before a painful nerve root compression has been 

shown to prevent pain onset (Philips et al., 2017), the pathophysiologic mechanisms 

responsible its effectiveness after nerve root injury are unknown.

After painful neural trauma, even a transient injury, the central nervous system mounts a 

robust inflammatory response contributing to pain onset and maintenance (Hubbard and 

Winkelstein, 2005; Nicholson et al., 2012; Rothman et al., 2009, 2010; Smith et al., 2013; 

Winkelstein et al., 2002). As part of that immune response, resident spinal glia become 

activated over different time courses (Hubbard and Winkelstein, 2005; Nicholson et al., 

2014; Rothman et al., 2010; Sun et al., 2012; Takahata et al., 2011). Upon activation, both 

microglia and astrocytes release a host of pro-inflammatory cytokines as early as 1 hour 

after painful nerve root compression (Rothman et al., 2009b; Smith et al., 2016) that further 

exacerbate neuroinflammation in the spinal cord (Ren and Dubner, 2008; Crown, 2012; 

Thomas et al., 2015; Johnson et al., 2017). Activated glia and neurons also increase 
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production of phospholipase enzymes, including the subfamily phospholipase A2 (PLA2), 

(Lee et al., 1998; Svensson et al., 2005). PLA2 enzymes catalyze the hydrolysis of 

glycerophospholipids in the cellular membrane to produce free fatty acids, such as 

arachidonic acid (AA), which are used through the COX pathway to produce prostaglandins 

and other inflammatory mediators (Chacur et al., 2004; Svensson et al., 2005). sPLA2 

increases in many painful conditions including discogenic pain (Ren et al., 2015), spinal 

cord injury (Titsworth et al., 2009), and inflammatory pain (Svensson et al., 2005) and its 

direct application to normal nerve tissue induces behavioral sensitivity (i.e. pain) and 

immune cell activation in the spinal cord (Chacur et al., 2004). The upregulation of sPLA2 

during inflammation also increases activity of the COX enzymes, exacerbating inflammation 

(Chacur et al., 2004). Although COX-2 inhibition alleviates pain and suppresses 

neuroinflammation (Ripamonti et al., 1996.; Ma et al., 2002; Tzeng et al., 2005), it is not 

known if systemic COX-2 inhibition has effects on spinal sPLA2 production and associated 

glial activation.

In conjunction with inflammation, oxidative stress pathways also contribute to neuropathic 

pain through the production of reactive oxygen species (ROS) like hydroxyl radicals, 

superoxide and nitic oxide (Machelska and Celik, 2016; Geis et al., 2017; Kiasalari et al., 

2017). ROS production early after neural trauma results from the dysregulation of many 

cellular metabolic processes including production by NADPH oxidase, mitochondrial 

respiratory chains and even from the COX-mediated metabolism of AA to produce 

prostaglandins (Simmons et al., 2004; Adibhatla and Hatcher, 2008). The accumulation of 

ROS after neural injury has been hypothesized to contribute to neuropathic pain by 

activating glia, through inflammatory mediator production (Mosley et al., 2006; Naziroğlu et 

al., 2012; Areti et al., 2014) and by mediating spinal dorsal horn sensitization (Chung, 

2004). In the spinal cord, activated microglia are the main sources of free radicals, which in 

parallel to their production of inflammatory cytokines, further exacerbates inflammation, 

and leads to tissue damage (Mosley et al., 2006). ROS-dependent oxidative damage is 

observed in neuropathic pain and neurodegenerative disorders (Mosley et al., 2006; Kim et 

al., 2010; Hoffman et al., 2011). In particular, increases in the oxidative stress protein and a 

marker of DNA damage and oxidation, 8-hydroxyguanosine (8-OHG), has been reported in 

the spinal cord between 3–14 days after a lumbar spinal nerve transection (Kim et al., 2010). 

Although 8-OHG has been studied in the context of diabetes, Alzheimer’s disease, 

Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), its involvement in pain is not 

well-characterized (Nunomura et al., 2004; Aguirre et al., 2005; Mosley et al., 2006; 

Hoffman et al., 2011). Further, whether COX-2 inhibition prevents pain by reducing 

oxidative damage during neural injury is unknown.

Since systemic administration of meloxicam prior to a painful nerve root injury has been 

shown to prevent the onset of both evoked and spontaneous pain for up to 7 days (Philips et 

al., 2017), this study assessed whether selective COX-2 inhibition with meloxicam before a 

painful nerve root compression modulates aspects of the spinal inflammatory cascades 

and/or oxidative stress in the dorsal root ganglion (DRG) at a time when pain is evident 

(Rothman et al., 2010; Nicholson et al., 2012; Smith et al., 2013). In order to assess if 

meloxicam reduces spinal inflammation, both microglial and astrocytic activation and 

sPLA2 production were evaluated at day 7 using immunohistochemistry in spinal tissue 
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from rats receiving meloxicam treatment prior to a painful nerve root compression (NRC). 

Spinal sPLA2 and its expression in spinal neurons, microglia and astrocytes were separately 

assessed at day 7. In addition, the extent of oxidative stress was also measured using 

immunohistochemistry by the DNA damage marker 8-OHG. The distribution of 8-OHG was 

first evaluated in spinal microglia, astrocytes and neurons. Based on those findings, 8-OHG 

expression was quantitatively assessed in the DRG neurons.

Experimental Procedures

Surgical Procedures

All experimental procedures were approved by the University of Pennsylvania Institutional 

Animal Care and Use Committee and carried out under the guidelines of the Committee for 

Research and Ethical Issues of the International Association for the Study of Pain 

(Zimmermann, 1983). All surgical procedures were performed using male Holtzman rats 

(275–299g; Envigo; Indianapolis, IN) under inhalation isoflurane anesthesia (4% induction, 

2–3% for maintenance). At the time of anesthetic induction, meloxicam (2mg/kg; Bimeda; 

Oakbrook Terrace, IL) was diluted in sterile saline to a volume of 1mL and administered 

subcutaneously immediately before applying the nerve root compression (NRC) (n=7, 

MxNRC). Additional rats underwent NRC only (n=5, NRC) or a sham surgical procedure 

(n=4, sham) to serve as controls as previously described (Weisshaar et al., 2011; Nicholson 

et al., 2014; Smith et al., 2016; Philips et al., 2017). Briefly, a midline incision was made to 

expose the cervical spine and a right dorsal hemilaminectomy at C6/C7 exposed the right C7 

dorsal nerve root. A microvascular clip (10gf; World Precision Instruments; Sarasota, FL) 

was inserted through a small opening in the dura to compress the nerve root for 15 minutes. 

After 15 minutes, the clip was removed and the incision was closed using 3–0 polyester 

suture and surgical staples. Sham surgeries included all of the same procedures with no root 

compression in order to control for the effect of surgery. Rats were monitored during 

recovered in room air with a heating pad.

Behavioral Assessment

Sensitivity of the ipsilateral forepaw to mechanical stimuli was measured before surgery 

(baseline, day 0) and on postoperative days 1, 3, 5, and 7 as previously described (Crosby et 

al., 2015a; Kras et al., 2015; Smith and Winkelstein, 2017). The forepaw was stimulated 

using a series of von Frey filaments of increasing strengths ranging from 1.4g to 26g 

(Stoelting, Wood Dale, IL). The lowest strength filament to evoke a response was recorded 

as the response threshold if the next filament also elicited a positive response. If a rat was 

unresponsive to all filaments, the maximum filament strength (26g) was taken as the 

threshold. Each testing session consisted of 3 rounds with at least 10 minutes of rest between 

each round. The threshold for each rat on each day was determined by averaging the rounds 

and was normalized to each rat’s own baseline threshold. A repeated measures ANOVA with 

post-hoc Tukey test compared response thresholds over time and between groups.

Tissue Harvest & Immunohistochemical Labeling of Spinal Cord & DRG

After behavioral assessment on day 7, the C7 spinal cord and DRGs were harvested to 

evaluate effects of meloxicam treatment on inflammation and oxidative stress. Rats were 
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deeply anesthetized with sodium pentobarbital (65mg/kg) and transcardially perfused with 

phosphate-buffered saline and 4% paraformaldehyde. Tissues were post-fixed overnight and 

stored in 30% sucrose for 6 days at 4ºC. Samples were axially sectioned (14¼m thick) onto 

slides for immunohistochemical labeling. Microglial and astrocytic activation in the C7 

spinal cord at day 7 was assessed using markers of ionized calcium-binding adaptor 

molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP), respectively. Tissue sections 

were blocked for 2 hours in goat serum (Vector Labs; Burlingame, CA) and incubated in 

primary antibody solutions containing rabbit anti-Iba1 (1:1000; Wako; Richmond, VA) and 

mouse anti-GFAP (1:500; Millipore; Billerca, MA) overnight at 4°C. The next day, sections 

were incubated in a secondary antibody solution containing goat anti-rabbit 568 (1:1000; 

Life Technologies; Carlsbad, CA) and goat anti-mouse 488 (1:1000; Life Technologies; 

Carlsbad, CA).

To evaluate spinal sPLA2 and its cell-specific expression in each of neurons, microglia and 

astrocytes at day 7, sections were incubated overnight in antibodies to goat anti-sPLA2-IIA 

(1:500; Santa Cruz; Dallas, TX), mouse anti-MAP2 (1:250; Covance; Cumberland, VA), 

rabbit anti-Iba1 (1:500; Wako; Richmond, VA), and mouse anti-GFAP (1:500, Millipore, 

Billerica, MA). After incubation with primary antibodies, sections were washed in PBS and 

incubated in secondary antibodies of donkey (all from Invitrogen; Carlsbad, CA) anti-goat 

Alexa Fluor 488 (1:1000), donkey anti-rabbit Alexa Fluor 546 (1:1000), and donkey anti-

mouse Alexa Fluor 350 and 546 (1:1000).

At the same time point (day 7), spinal and DRG sections also were evaluated for the cellular 

source of 8-OHG expression and the extent of neuronal 8-OHG in DRG neurons. Tissue 

sections were labeled to determine those cell types associated with expression of 8-OHG. In 

separate runs, tissue sections were blocked in goat serum (Vector Labs; Burlingame, CA) 

and then incubated overnight at 4°C in a primary antibody solution of mouse anti-8-OHG 

(1:200; Abcam, Cambridge, MA) and either rabbit anti-Iba1 (1:1000; Wako; Richmond, 

VA), rabbit anti-GFAP (1:500; Millipore; Billerca, MA), or mouse anti-NeuN 555 conjugate 

(1:500; Millipore; Billerca, MA). The next day, samples were incubated in secondary 

antibody solutions containing goat anti-mouse 488 (1:1000; Life Technologies; Carlsbad, 

CA) and goat anti-rabbit 568 (1:1000; Life Technologies, Carlsbad, CA). Samples labeled 

for 8-OHG and NeuN were only exposed to goat anti-mouse 488 (1:1000; Life 

Technologies; Carlsbad, CA). The distribution of 8-OHG in DNA and RNA was separately 

assessed on a subset of DRG tissue sections at day 7 (n=3 each group) as previously 

described (Nunomura et al., 1999, 2004; Lovell et al., 2011). Sections were first digested 

with Proteinase K (10¼g/mL; Sigma; St. Louis, MO) for 40 minutes at 37°C and then 

separately pre-treated with either RNase free DNase-I (10U/¼L; Sigma) or DNase-I free 

RNase (0.5¼g/¼L; Sigma) for 2 hours at 37°C prior to incubation with 8-OHG antibodies.

Immunohistochemical Analyses

For all analyses, spinal cord and DRG samples were collected also from normal un-operated 

rats (n=2) in order to provide reference for expression levels in naïve control tissues; 

samples with no primary antibody were included in all runs and analyses as controls and to 

verify specificity of each antibody. Tissue sections were imaged at 20x using a digital 
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camera and stereomicroscope with DP2-BSW software (Olympus; Center Valley, PA). 

Spinal cord images were cropped to include only the superficial dorsal horn (750×150 

pixels) (Zhang et al., 2013; Nicholson et al., 2014b); densitometry was used to quantify the 

percentage of positive pixels as a measure of positive labeling (Zhang et al., 2013). For each 

label, the percentage of pixels above the threshold expression in normal samples was 

separately quantified in the dorsal horn on the side ipsilateral to the injury for each sample. 

The total percent positive pixels in the ipsilateral dorsal horn was normalized to that in the 

normal tissue sections; Spinal Iba1, GFAP and sPLA2 expression was separately averaged 

across each group and compared using separate ANOVAs with post-hoc Tukey tests to 

detect differences between groups.

To quantify colocalization of spinal sPLA2 in neurons, microglia and astrocytes, the total 

number of pixels positive for each of sPLA2 and MAP2, sPLA2 and Iba1, and sPLA2 and 

GFAP was separately quantified using a custom MATLAB script as previously described 

(Nicholson et al., 2012; Crosby et al., 2015b; Zeeman et al., 2016). Neuronal, microglial and 

astrocytic sPLA2 were each determined by dividing the total number pixels positive for 

sPLA2 and either MAP2, Iba1 and GFAP by the total number of positive pixels for sPLA2 

(Zeeman et al., 2016) for each image and is presented as fold-change over normal. Each of 

neuronal, microglial and astrocytic sPLA2 expression was compared across groups using a 

two-way ANOVA with Tukey’s post hoc test (groupXday).

Merged images of 8-OHG and Iba1, GFAP, and NeuN were evaluated qualitatively to 

identify which cell type in the spinal cord exhibited the greatest extent of DNA and RNA 

damage from oxidative stress. Since that evaluation revealed expression almost exclusively 

in neurons, neuronal 8-OHG expression was evaluated in the ipsilateral DRG. Images of the 

DRG were cropped (450×450 pixels) to include 10–20 random neurons per image for 

intensity analysis. The mean signal intensity and size of each neuron were determined by 

manually outlining each neuron in ImageJ (Kras et al., 2013). Neurons with an average 

diameter in the range of 4–21¼m were classified as small diameter neurons, and those with 

an average diameter ranging from 21–40¼m were taken as medium diameter neurons 

(Weisshaar et al., 2010; Dong et al., 2012). Neurons greater than 40¼m were considered 

large diameter neurons. Accumulation of 8-OHG was analyzed in all neuron sizes with 

separate follow-up analyses of small- and medium-diameter neurons since those neurons 

contribute to nociception (Weisshaar et al., 2010; Dong et al., 2012). Intensity of 8-OHG in 

the DRG was compared between groups using a one-way ANOVA with post hoc Tukey test, 

with separate tests run for small- and medium-diameter neuron sizes.

Results

A single injection of meloxicam before a nerve root compression prevents the development 

of mechanical hyperalgesia in the ipsilateral forepaw that is typically produced by a nerve 

root compression (Fig. 1). Behavioral outcomes in the MxNRC and sham groups are not 

different and the withdrawal thresholds for those groups are unchanged from baseline. 

Meloxicam treatment (MxNRC) prevents the reduction in paw withdrawal thresholds that is 

seen after a NRC (p<0.0251), with thresholds for MxNRC significantly higher than those for 

NRC on days 1 (p<0.0056), 5 (p<0.0083), and 7 (p<0.0004) (Fig. 1). In contrast, responses 
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in the NRC group significantly decrease from its baseline values on days 1 (p<0.0059), 5 

(p<0.0366), and 7 (p<0.0384). In addition, although responses for the NRC group are 

significantly lower than sham overall (p<0.0012) and on each postoperative testing days 

(p<0.0030), there is no difference between MxNRC and sham on any day (Fig. 1).

As with the behavioral responses at day 7, meloxicam also prevents increases in Iba1 and 

GFAP in the ipsilateral C7 superficial dorsal horn that occur after nerve root compression 

(Fig. 2). Treatment with meloxicam reduces spinal Iba1 to sham and normal levels, which is 

a significant reduction from levels after a painful NRC (p<0.0456) (Fig. 2). Likewise, Iba1 

expression for sham (p<0.0016) and normal (p<0.0036) is significantly lower than for a 

NRC (Fig. 2). GFAP expression in the spinal cord is also significantly lower than levels after 

a NRC for the MxNRC (p<0.0010), sham (p<0.0002), and normal (p<0.0009) groups (Fig. 

2).

With meloxicam treatment, spinal sPLA2 is significantly decreased in the ipsilateral dorsal 

horn (p<0.0001) compared to that for NRC and has similar expression levels as those in 

spinal cords from rats receiving a sham procedure and from normal rats (Fig. 3). Spinal 

sPLA2 expression is significantly lower than that in the NRC group for both the sham 

(p<0.0001) and normal (p=0.0012) groups. Paralleling total sPLA2 expression, sPLA2 

expression in each of neurons and astrocytes is also reduced to sham and normal levels and 

is significantly lower than expression after NRC for both neuronal sPLA2 (p=0.0007) and 

astrocytic sPLA2 (p= 0.002) respectively (Fig. 3). Spinal microglial sPLA2 expression is 

also significantly lower (p=0.0006) in the MxNRC group than in the NRC group, but 

meloxicam treatment does not reduce microglial sPLA2 levels to normal expression 

(p=0.0074) (Fig. 3).

The marker of oxidative stress, 8-OHG, colocalizes predominantly with neurons in the 

spinal cord but not with microglia or astrocytes (Fig. 4). 8-OHG labeling in the spinal cord is 

not different from normal in any of the groups, regardless of injury or treatment. However, 

8-OHG accumulation in the C7 DRG is modulated at day 7 following meloxicam treatment 

(Fig. 5). An average of 15±6 neurons was measured in each image. For neurons of all sizes, 

meloxicam treatment significantly reduces 8-OHG immunoreactivity compared to NRC 

alone (p<0.0004) (Fig. 5). This trend is also observed in small- and medium- diameter 

(p<0.0083) neurons (Fig. 5). Similarly, 8-OHG labeling is lower (p<0.0292) in sham tissue 

compared to NRC for all sizes of neurons, as well as explicitly in small-diameter and 

medium-diameter diameter neurons (Fig. 5). In neurons of all sizes, 8-OHG expression is 

elevated in both DNA and RNA following painful compression, with greater 8-OHG 

expression observed in RNA than DNA (Fig. 6). Meloxicam treatment reduces 8-OHG 

expression in both DNA and RNA to sham levels in neurons of all sizes, including small-

diameter and medium-diameter neurons (Fig. 6)

Discussion

This is the first study to show that in association with preventing pain onset (Fig. 1), 

systemic administration of meloxicam before an otherwise painful nerve root compression 

reduces spinal inflammation as well as peripheral oxidative damage in the DRG (Figs. 2–5). 
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Meloxicam reduces the microglial and astrocytic activation in the spinal cord that is typical 

after painful nerve root injury (Hubbard and Winkelstein, 2005; Rothman et al., 2010; 

Nicholson et al., 2014) (Fig. 2). Paralleling the reduction in glial activation at day 7, spinal 

sPLA2 production is also suppressed, with reductions in both glia and neurons (Fig. 3). 

Interestingly, these reductions in spinal inflammation occur even though meloxicam is given 

systemically, suggesting that centrally-mediated responses may be involved in the pain 

attenuation. Unlike the inflammatory mediator sPLA2, the oxidative stress marker 8-OHG is 

almost exclusively in spinal neurons (Fig. 4) after painful nerve root injury, suggesting that 

accumulation of oxidative damage in neurons, rather than immune cells, may drive pain 

cascades in the periphery. In addition to pain and spinal inflammation, systemic meloxicam 

treatment immediately prior to neural trauma prevented the increase in 8-OHG in both DNA 

and RNA in peripheral DRG neurons (Figs. 5 & 6), further supporting the notion that 

meloxicam may attenuate pain by reducing peripheral oxidative stress. Taken together, these 

results suggest meloxicam may prevent the development of pain by reducing 

neuroinflammation and oxidative stress both centrally and peripherally.

Meloxicam’s reduction of spinal microglial and astrocytic activation a week after injury 

(Fig. 2) and which have been attributed to neuropathic pain maintenance (Winkelstein and 

DeLeo, 2002; Zhang and De Koninck, 2006; Rothman et al., 2010), suggests that its COX-2 

inhibition may reduce the prolonged spinal neuroinflammation that is known to drive 

persistent neuropathic pain (Ripamonti et al., 1996; Ma et al., 2002; Tzeng et al., 2005). 

However, since meloxicam was given immediately before nerve root compression it is 

unclear if the associated analgesic effects were due to the prevention of glial activation at the 

later (day 7) time point or whether it mediated effects much earlier after the injury. Indeed, 

astrocytic activation in the spinal cord at day 7 or later has been associated with the 

maintenance of pain (Zhang and De Koninck, 2006; Rothman and Winkelstein, 2007; 

Nicholson et al., 2012; Smith et al., 2017). Of note, spinal microglia are activated robustly 

early (and before astrocytes) after neuropathic injury and so are associated with pain onset 
(Winkelstein et al., 2001; Scholz and Woolf, 2007; Rothman et al., 2010). Following spinal 

nerve ligation, which is a similar neuropathic injury to that used here, microglia and 

astrocyte activation occur sequentially with distinct roles in the temporal establishment of 

neuropathic pain (Zhuang et al., 2005). The absence of behavioral sensitivity with 

meloxicam treatment inhibiting COX-2 at day 7 when pain is typically evident after NRC 

may be due to the reduced spinal astrocytic activation at that time (Fig. 2). Similarly, 

microglial activation was also suppressed at that same time (Fig. 2); however, it is possible 

that the meloxicam pre-treatment inhibited earlier microglial activation that prevented both 

the pain and associated spinal inflammatory responses that were detected at the later time 

point (Figs. 1–3). Although early spinal microglial activation was not evaluated in this study, 

results do provide support for either a direct action by which meloxicam acts centrally to 

prevent pain or an indirect effect of reducing oxidative stress in peripheral afferents that 

drive spinal responses.

In conjunction with attenuating microglial activation, meloxicam also prevented the increase 

of overall and cell specific spinal sPLA2 expression after painful nerve root compression 

(Fig. 3), further supporting its effectiveness in suppressing spinal neuroinflammation. In 

addition, this is first study to show that spinal sPLA2 increases with a painful nerve root 
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compression, implicating spinal sPLA2 in the maintenance of neuropathic pain after root 

injury. Although sPLA2 expression was probed using quantitative immunohistochemistry, 

previous work has shown that sPLA2 protein quantification from immunohistochemistry in 

the spinal cord follows similar trends to those found by alternate methods such as Western 

Blot (Titsworth et al., 2009). Application of sPLA2 alone onto a healthy sciatic nerve alone 

induces pain in the rat, as well as promotes both microglial and astrocytic activation in the 

spinal dorsal horn (Chacur et al., 2004). Further, expression of the neurotransmitter, 

substance P, is abolished for up to 24 hours after sPLA2 inhibition in cultured DRG neurons 

that are stimulated with inflammatory cytokines (Morioka et al., 2002). The robust increase 

in spinal sPLA2 after a painful nerve root compression injury is attributed to increases in 

neurons, microglia and astrocytes (Fig. 3), which could be from either increased trafficking 

of activated glia into the spinal cord or increased activation of resident spinal glia and 

neurons (Rothman and Winkelstein, 2007; Sheng et al., 2011). Since early after neural 

trauma, increased production of pro-inflammatory cytokines and ROS from activated glia 

and neurons promote the production of sPLA2 (Chacur et al., 2004; Svensson et al., 2005) 

and early glial activation and cytokine production occur after painful nerve root compression 

(Rothman et al., 2010; Smith et al., 2013), it may be possible that meloxicam pre-treatment 

may prevent the early inflammatory response associated with painful root injury, 

suppressing spinal glial activation (Fig. 2) and decreasing neuronal and glial sPLA2 

production in the spinal cord at day 7 (Fig. 3). However, given the distinct differences in 

temporal activation between microglia and astrocytes (Zhuang et al., 2005), it is unknown if 

the analgesic effects of meloxicam are due to the prevention of overall or cell-specific 

sPLA2 production earlier than day 7. Nevertheless, these glial and sPLA2 findings (Figs. 2 

& 3) suggest that meloxicam suppresses spinal neuroinflammation by inhibiting both the 

activation of spinal glia and the production of sPLA2, which likely also mediate other 

centrally-mediated mechanisms of pain.

Although both spinal neurons and glia produce ROS in neuropathic pain states (Mosley et 

al., 2006), DNA and RNA oxidative damage was evident predominantly in neurons in this 

study (Fig. 3), suggesting neuronal toxicity and dysfunction may play a role in radicular 

neuropathic pain. Neuronal oxidative damage has been reported to increase due to excess 

ROS production of several neuropathic pain states, including traumatic brain injury (Zhang 

et al., 2012) and peripheral nerve injury (Kim et al., 2010). Although glial cells are the major 

source of ROS (Mosley et al., 2006), extracellular ROS produced from microlgia has been 

shown to be directly toxic to neurons following neuropathic injury (Zhang et al., 2012; 

Manzanero et al., 2013). Further, intracellular ROS in microglia and macrophages can 

promote the production of neurotoxic cytokines (Block, 2008). After the same painful nerve 

root compression in this study, spinal 8-OHG is robustly elevated as early as 1 day lasting 

for up to 7 days (Kartha et al., 2018) which occurs concurrent with the timecouse of spinal 

glial activation (Rothman and Winkelstein, 2007; Rothman et al., 2010; Nicholson et al., 

2012; Smith et al., 2016). As such, it may be possible that increased glial activation in the 

spinal cord contributes to the accumulation of spinal ROS and the subsequent increased 

spinal neuronal oxidative damage (Fig. 4). Spinal 8-OHG expression was not evaluated after 

meloxicam treatment in this study; so, that hypothesis remains only speculative.
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In addition to spinal microglial activation, peripheral macrophages infiltrate the injured root 

after painful compression in this model (Chang and Winkelstein, 2011). Since those cells are 

a well-known source of extracellular ROS in neural and ischemic injuries (Hackel et al., 

2013; Anwar et al., 2016), 8-OHG was also examined in peripheral DRG neurons. Systemic 

meloxicam that provided pain relief also reduced both the total 8-OHG and the 8-OHG that 

is specifically associated with DNA or RNA in the DRG at day 7 (Figs. 5 & 6), providing 

further evidence that peripheral oxidative stress, specifically oxidative DNA and RNA 

damage in neurons, is associated with nerve root compression as with neuropathic pain 

(Dirig et al., 1998; Takeda et al., 2005; Gmitterová et al., 2018). Interestingy, in addition to 

macrophage infiltration, painful compresson of the nerve root also induces production of 

sPLA2 by DRG neurons (Zhang et al., 2017). Because the use of metabolites (i.e. 

arachidonic acid) from sPLA2 cell membrane hydrolysis are well-established sources of 

reactive oxygen species in the production of COX-2 in neurons and immune cells (Adibhatla 

et al., 2006; Nanda et al., 2007), it is possible that ROS production and the resulting 

peripheral oxidative stress are also due to the elevated sPLA2 activity in the DRG after 

painful root injury. Given the role of COX-2 production in ROS generation and oxidative 

stress (Simmons et al., 2004; Adibhatla and Hatcher, 2008), the finding that 8-OHG in the 

DRG was reduced with meloxicam (Fig. 5) suggests that reducing peripheral oxidative stress 

by inhibiting COX-2 at the DRG, may be sufficient to prevent pain from nerve root 

compression. These findings begin to establish the contribution of oxidative stress in pain 

from neural trauma. However, since 8-OHG is only a marker of oxidative damage and ROS 

was not directly measured, further studies are needed to understand the spatiotemporal 

relationships between the peripherally- and centrally-derived oxidative stress responses and 

pain.

In addition to preventing neuropathic pain behaviors (Philips et al., 2017) (Fig. 1), systemic 

administration of meloxicam immediately prior to a painful nerve root compression prevents 

the spinal inflammation and peripheral oxidative stress that typically accompany that injury 

(Figs 2–5). Although additional studies are needed to further delineate the spatiotemporal 

mechanisms by which COX-2 inhibition alleviates pain following neuropathic injury, these 

findings suggest that a reduction in peripheral oxidative damage (Fig. 5) after selective 

COX-2 inhibition by meloxicam(Furst, 1997; Hawkey, 1999; Kimura and Kontani, 2009) 

may be due to a reduction in peripheral inflammation. In fact, decreased sPLA2 production 

and macrophage infiltration in the DRG has been found with this same meloxicam pre-

treatment paradigm, along with prevention of the upregulation of spinal sPLA2 and 

activation of spinal glial cells that is typically observed after painful nerve root injury 

(Zhang et al., 2017). Together, these findings suggest that downregulation of sPLA2 in the 

spinal cord and DRG may contribute to the analgesic effects of meloxicam; further, the 

spinal changes may be due to regulation of neuroinflammation in the periphery. While 

COX-2 inhibitors have been recognized as alleviating pain by also reducing the robust 

neuroinflammatory response observed in neuropathic pain (Ma et al., 2002; Tzeng et al., 

2005), this work also suggests COX-2 inhibition may alleviate pain by reducing 

inflammation-induced oxidative stress. Given that microglial activation (Winkelstein and 

DeLeo, 2002; Hubbard and Winkelstein, 2005; Rothman and Winkelstein, 2007; Rothman et 

al., 2009a) and oxidative stress tend to have more pronounced effects earlier after injury 
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(Goecks et al., 2012; Nayernia et al., 2014; Geis et al., 2017), further studies probing 

immune cell-mediated ROS production at earlier times are needed to understand the 

interconnected contributions of inflammation and oxidative stress in the establishment of 

neuropathic pain. Nevertheless, this work begins to identify possible mechanisms by which 

meloxicam and agents that utilize COX-2 inhibition can be used as promising interventions 

in the treatment of neuropathic pain.
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Highlights

• Pre-treatment with meloxicam reduces microglial and astrocytic activation in 

the spinal cord at day 7

• Spinal sPLA2 upregulation is prevented by meloxicam, with reduced 

production in neurons, microglia and astrocytes

• 8-OHG colocalizes more in spinal neurons than glial cells and meloxicam 

reduces neuronal 8-OHG in the DRG
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Figure 1. 
Pretreatment with meloxicam (MxNRC) prevents the reduction in normalized forepaw 

response thresholds (mean±SD) at days 1, 5, and 7 compared to NRC (**p<0.008). After 

NRC, responses decrease from baseline on days 1, 5, and 7 (#p<0.04). Normalized 

thresholds decrease significantly for the NRC group relative to sham starting at day 1 and 

lasting through day 7 (*p<0.003). Responses for MxNRC and sham groups are not different 

on any day.
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Figure 2. 
Meloxicam injection prevents the microglial and astrocytic activation that is typically 

observed after NRC in the superficial dorsal horn at day 7. Representative images show Iba1 

(red) and GFAP (green) labeling in the ipsilateral dorsal horn of the C7 spinal cord. In the 

MxNRC group, Iba1 labeling remains at sham and normal levels and is significantly lower 

than levels in the NRC group (*p<0.0456). The increased GFAP in the superficial dorsal 

horn after NRC is prevented by meloxicam (*p<0.001), with GFAP expression similar to 

sham and normal levels. Scale bar is 100¼m and applies to all panels.
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Figure 3. 
Pre-treatment with meloxicam before NRC prevents upregulation of spinal sPLA2. 

Representative images in the spinal dorsal horn show less expression of sPLA2 (green) with 

meloxicam treatment than NRC, and similar to sham and normal levels. Similarly, there is 

less colocalization (yellow) evident between sPLA2 (green) and each of MAP2, Iba1 and 

GFAP (red) in the meloxicam treated (MxNRC), sham and normal groups compared to the 

NRC group. Spinal sPLA2 expression in the NRC group is significantly higher (*p<0.0012) 

than levels in meloxicam-treated, sham and normal groups. The same is true of neuronal 

(*p=0.0007) microglial (*#p=0.0006) and astrocytic sPLA2 (*p=0.002) expression 

compared to NRC levels. Yet, microglial sPLA2 levels with meloxicam pre-treatment 

remain significantly higher (#p=0.0074) than normal levels. Scale bar is 200μm and applies 

to all panels.
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Figure 4. 
Representative images of the C7 spinal dorsal horn at day 7 showing that the oxidative stress 

marker 8-OHG does not colocalize with Iba1 or GFAP but does colocalize with the neuronal 

marker, NeuN. Enlarged images show colocalization of 8-OHG and NeuN in the superficial 

dorsal horn for each study group. Scale bar in the full size images is 100¼m and is 50μm in 

the insets of the superficial dorsal horn.
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Figure 5. 
Representative images and quantification of 8-OHG in the C7 DRG ipsilateral to the injury 

at day 7. Increases in 8-OHG is evident in the NRC group relative to MxNRC and sham for 

all neuron sizes (*p<0.0146). The same patterns of increases are observed in both the small-

(*p<0.0160) and medium-diameter (*p<0.0292) neurons. Scale bar is 50¼m and arrows 

show small and medium neurons.
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Figure 6. 
Representative images of 8-OHG expression in RNA and DNA in the C7 ipsilateral DRG 

neurons of all sizes at day 7. 8-OHG in both RNA and DNA are elevated in the NRC group, 

with more 8-OHG observed in RNA than DNA. Meloxicam treatment reduces 8-OHG in 

both RNA and DNA to sham levels in neurons of all sizes, including small-diameter 

(arrowhead) and medium diameter (arrow) neurons. Scale bar is 150¼m and applies to all 

panels.
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