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Abstract

Current environmental monitoring approaches focus primarily on chemical occurrence. However, 

based on concentration alone, it can be difficult to identify which compounds may be of 

toxicological concern and should be prioritized for further monitoring, in-depth testing, or 

management. This can be problematic because toxicological characterization is lacking for many 

emerging contaminants. New sources of high-throughput screening (HTS) data like the ToxCast 

database, which contains information for over 9,000 compounds screened through up to 1,100 

bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers 

new opportunities to prioritize chemicals, sites, or biological effects for further investigation based 

on concentrations detected in the environment linked to relative potencies in pathway-based 

bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin 

along with the ToxCast effects database were used to calculate exposure-activity ratios (EARs) as 

a prioritization tool. Technical considerations of data processing and use of the ToxCast database 

are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and 
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chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were 

linked to discrete adverse outcome pathways to identify potential adverse outcomes and 

biomarkers for use in subsequent monitoring efforts.

Abstract

Introduction

Environmental monitoring has traditionally relied heavily upon analysis of different matrices 

(water, sediment, soil, etc.) for potential contaminants through targeted analytical methods. 

Advances in analytical instrumentation have increased the sensitivity of targeted methods, 

with compounds routinely measured in water at low part per trillion levels.1, 2 Additionally, 

expansion of high resolution instruments in environmental monitoring has led to nontargeted 

analytical methods being implemented, with hundreds to thousands of compounds detected 

and dozens to hundreds of compounds tentatively identified in some instances.3–6 Despite 

advances in the ability to detect contaminants in the environment, understanding the 

biological implications from exposure to these compounds has not kept pace. Thus, while 

chemicals can be identified and quantified in the environment, the potential biological 

effects of hundreds to thousands of individual contaminants remain poorly defined.7

Advances of high throughput toxicology have led to the development of biological effects 

data for a large number of chemicals. For example, the Tox21 Program8, 9 and USEPA 

ToxCast Program10 together provide high-throughput screening (HTS) data for over 9,000 

unique substances, including many industrial and environmentally relevant chemicals for 

which traditional human health or ecological effects data are lacking. Chemicals are 

prepared and screened in a standardized manner, and each chemical is tested using a 

consistent dose-response design across assays. This allows derivation of point of departure 

estimates such as the chemical-specific half-maximal activity concentration (AC50) or 

activity concentration at cutoff (ACC) for each chemical-assay combination, and chemicals 

can be subsequently ranked in terms of potency for a given assay target. Together the 

programs utilize a number of in vitro and in vivo HTS assays to identify a range of pathway-

specific and nonspecific biological interactions providing a final database covering hundreds 

of specific biological pathways and processes.

To effectively leverage the breadth of biological and chemical space covered within these 

databases, new approaches and tools are being developed. A method for exposure-activity 
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profiling using exposure-activity ratios (EARs) represents one approach for screening and 

prioritizing chemicals using both chemical occurrence and HTS data,11 and has been 

previously highlighted with potential for application to environmental monitoring.12, 13 

Exposure-activity ratios, similar in concept to toxic units,14 incorporate both the dose (i.e., 

environmental concentration) and the relative potency (i.e., point of departure estimate) for a 

given chemical-assay pair, allowing for prioritization of chemicals or sites based on expected 

biological activity. Assays identified as higher priority based on EARs can be further linked 

through adverse outcome pathways (AOPs) to identify hazards to organisms and/or 

ecosystems,15 and measurable endpoints associated with perturbation of specific biological 

processes identified for confirmation or monitoring of predicted site-specific hazards.

The EAR approach utilizing the ToxCast database offers a currently-viable, standardized 

method to integrate chemical occurrence and biological effects for prioritization of 

environmental monitoring datasets. The present work applies this approach to a study 

focused on identifying and characterizing emerging contaminants across tributaries and 

Areas of Concern (AOCs) within the Great Lakes,1 specifically demonstrating the use of 

EAR analysis as a rapid, screening level tool for prioritization of existing chemical 

occurrence datasets. This study was part of an on-going, multiagency effort directed at 

effects-based tool development for application to monitoring and surveillance of 

contaminants of emerging concern and their potential impacts on resident biota and 

ecosystems in the Great Lakes.16 The present case study demonstrates how EARs can be 

used to prioritize environmental sites, identify potential biological activity(ies) of concern, 

and highlight chemicals likely contributing to the biological activity. Further, prioritized 

biological activities are linked to existing AOPs to identify potential adverse effects and 

strategies for monitoring predicted hazards in exposed organisms. Issues that may 

commonly be faced when using HTS databases for EAR calculations are detailed to focus 

on the application of this approach for utility in environmental monitoring.

Experimental

Study Locations and Sample Collection

Data presented in this study were obtained from a publicly available U.S. Geological Survey 

(USGS) report.1 In 2012, surface water samples were collected at 66 sites across six 

watersheds in the Great Lakes Basin, including the St. Louis River/Duluth Harbor, MN; Fox 

River/Green Bay, WI; Detroit River, MI; Raisin River, MI; Maumee River, OH; and 

Irondequoit Bay, NY. Sampling locations varied from those with low anticipated 

anthropogenic impact to sites in close proximity to municipal wastewater treatment plants 

(WWTPs). Samples were collected from all watersheds in Spring (April-May), and 

additional samples were collected from the Maumee and St. Louis Rivers in summer 

(September). A total of 140 water samples were collected for chemical analysis (excluding 

blanks and duplicates). Samples were collected as either 1 L depth-integrated grab samples 

or 96 h temporally-integrated samples.17 Site features including depth, flow, and water 

quality parameters were recorded at the time of sample collection.1 Sample numbers varied 

across watersheds ranging from 3 to 76. The most intensive efforts were focused at the St. 
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Louis River and Maumee River watersheds with collection of 76 and 37 samples, 

respectively. Full collection methods are detailed elsewhere.1

Analytical Chemistry

Surface water samples (both grab and composite) were submitted to the USGS National 

Water Quality Laboratory (Denver, CO, USA) and analyzed for three broad suites of 

contaminants: wastewater indicators18, pharmaceuticals19, and steroids and sterols20 (see SI 

Table S1 for complete list of contaminants and method). In total, 134 unique organic 

compounds were measured using these three GC-MS based analytical methods. In cases 

where compounds were measured across multiple analytical methods (3β-coprostanol, 

bisphenol A [BPA], cholesterol), only the result from the method with the lowest laboratory 

reporting limit (LRL) was retained for our analysis. Further details including complete 

analyte lists, quality control procedures, and concentrations of analytes were reported 

previously.1

Chemical Concentration Dataset Processing

Analytical methods used in this study are reported by USGS as information-rich methods,21 

meaning additional qualifying information is included alongside analyte quantification. As 

such, reported concentrations of some compounds are below the given LRL. All reported 

values, including those below LRLs, were used for EAR calculations without adjustment. 

Non-detections (reported as <LRL) were assigned a value of zero to prevent highly bioactive 

compounds (i.e., from the HTS dataset) from skewing EAR results.

In Vitro Bioassays

A limited number of water samples were further screened for total estrogenic activity using 

the T47D-KBluc cell line, which is stably transfected with an ERα-reporter gene construct.
22 Samples were tested in triplicate, independent wells. The full methodology for this 

bioassay is available in the SI.

ToxCast Database

The ToxCast database23 (including both ToxCast and Tox21 information) contains HTS data 

for thousands of chemicals screened through multiple assay platforms. The database 

currently includes 12 platforms covering a variety of cell-based, cell-free, and whole 

organism HTS assays, encompassing over 300 unique signaling pathways (e.g., estrogen 

receptor [ER], aryl hydrocarbon receptor, glucocorticoid receptor, etc.) and nonspecific 

endpoints (oxidative stress, cytotoxicity, organelle conformation, etc.). ToxCast assay 

sources and operating procedures are described in detail elsewhere.24–41 All ToxCast data 

used for this study were from the October 2015 data release and are publicly available online 

through the ToxCast website.23

Exposure-Activity Ratios

To support screening and prioritization, EARs comparing surface water chemical 

concentration to ACC estimates for all chemicals available in the ToxCast database were 

calculated (Eq. 1). Assuming non-interactive concentration addition within assays, a 
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summed EAR of environmental mixtures containing n number of chemicals can be 

calculated (Eq. 2). While the AC50 has previously been used as the point of departure 

estimate for EAR calculations;11–13 we chose the ACC for the present analysis. ACC 

estimates the chemical concentration at which a defined threshold of response (the activity 

cutoff) is achieved within an assay42 (see SI Figure S1). Unlike the AC50 where the 

concentration estimate may align with different magnitudes of bioassay response for each 

chemical tested in an assay, the activity cutoff threshold is uniform for all chemicals tested 

in the same assay. Thus, the ACC is less prone to violating assumptions underlying relative 

potency estimation.43 The activity cutoff for each assay is based on a multiplier of the 

baseline median absolute deviation (BMAD; 3x,5x,6x, or 10x), which is calculated as the 

median absolute deviation for each assay endpoint using data points from the two lowest 

tested concentrations of all chemicals within a given assay. The multiple of the BMAD was 

generally selected specific to assay platforms (sometimes individual assays) to account for 

the baseline variability and signal window with a goal of achieving a high sensitivity for true 

actives while minimizing false positives due to baseline variability to the extent possible. 

The two lowest concentrations were used for determining BMAD as they are below 

bioactive concentrations for the great majority of samples. The use of median over mean 

provides for protection from extreme values from highly potent chemicals. Also, use of 

sample wells rather than solvent controls for background activity measurement has an 

advantage of being derived from wells treated identically to all other sample-treated wells. 

For assays that are normalized to a positive control, a cutoff threshold of 20% response may 

also be used to ensure the response is in a reasonable range of the response of a known, 

reference chemical to provide some test for biological significance in addition to statistical 

significance. Assay specific cutoff threshold criteria are given in supporting information (SI 

Table S2).

While the EAR is a simple calculation conceptually, processing of the extensive chemical 

dataset (154 samples x 134 chemicals) and even larger ToxCast database (1192 assays x 

9076 chemicals) was expedited by development of a custom, R-based program to facilitate 

processing, calculation, and visualization of the EAR dataset (details in SI).

EAR =  Exposure  environmental concentration in µM
Activity  ACC in µM Eq. 1

EAR mixture = ∑
i = 1

n Exposurei environmental concentration in µM
Activityi ACC in µM Eq. 2

Quality Assurance Considerations

During the process of generating EARs, multiple issues with chemical occurrence and 

ToxCast datasets were identified, which could lead to artifacts and errors in interpretation 

and use of the EARs. The first issue was the use of chemical salts for toxicity testing in 

ToxCast assays. Chemical occurrence data are reported as free compound (e.g., methadone, 
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CAS 76–99-3) while some compounds, especially pharmaceuticals, are tested in ToxCast 

assays as ion pairs (e.g., methadone hydrochloride, CAS 1095–90-5). Compounds from the 

chemical occurrence dataset that were not identified in the ToxCast database through a 

search for a matching CAS number were manually screened for tested chemical alternatives. 

Among 27 analyzed compounds initially identified as not present in the ToxCast database, 

nine actually were present as chemical analogs. In these cases, CAS numbers were updated 

in order to better align chemical occurrence data with the ToxCast database for EAR 

generation (SI Table S3). Additionally, within the ToxCast data, molecular weights for these 

CAS numbers were updated to match the measured compound and maintain correct µM 

calculations. For the purposes of EAR generation, free and salt forms were considered to be 

equipotent across the assays.

In the ToxCast database, assays are grouped by platform and target (as defined by annotation 

fields from the database).23 Some of these assays were purposefully excluded from EAR 

consideration. Specifically, since a goal of this case study was to link EARs to potential 

adverse outcomes, most nonspecific cell-based or cell-free assay endpoints were excluded. 

For example, we excluded assays from the platforms Apredica (APR) and Bioseek (BSK), 

which largely target nonspecific endpoints44 such as cell cycle status, cell proliferation, 

organelle conformation, DNA damage, and stress response, and are difficult to interpret 

though specific pathway-based toxicity assessment. Assays categorized as ‘background 

measurement’, ‘cell cycle’, and ‘cell morphology’ (based on ‘intended_target_family’ 

annotation field) also were excluded from EAR calculations as these monitor baseline assay 

performance, not specific effects. The ‘intended_target_family’ annotation was used for 

subsequent grouping of assay results, and several assays designated ‘NA’ were manually 

assigned to an existing category (SI Table S2). For all zebrafish (Danio rerio) related assays, 

a new category ‘ZF’ was included. Attagene (ATG) assays reporting in the ‘loss’ direction 

and Novascreen (NVS) assays reporting in the ‘gain’ direction (based on ‘signal_direction’ 

annotation field) also were removed from the final EAR results, as these platforms are not 

optimized or designed to report for the given assay direction.23 Overall, 528 of 1192 assay 

endpoints were considered for the final EAR calculations (SI Table S2).

Chemical-assay pairs were further censored from the final dataset using ToxCast data quality 

flags. These flags, explicitly noted in the ToxCast database, were implemented to identify 

potential false positive and false negative results based on dose-response irregularities.42 

Chemical-assay pairs indicating false positives were removed from the final results, 

specifically, data with flag identifications 7,10,11,15, and 17 (SI Table S4). Employing these 

flags enabled removal of the majority of false positive chemical-assay pairs from the final 

EAR results. One specific chemical-assay pair, fluoranthene in the 

‘Tox21_p53_BLA_p3_ratio’ assay, was observed to result in very high EAR values (>100). 

Upon closer examination, the dose response curve was found to be flat and was identified as 

an unflagged, false positive. This chemical-assay pair also was removed from the final 

dataset. Other unflagged, false positive chemical-assay pairs may be present in the dataset, 

but no other individual pairs exhibited the very high EAR values that may greatly skew the 

final interpretation of results. No flagged, potential false negatives were identified after 

evaluating actual concentration-response curves, a typical finding given that the “hit-calling” 
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algorithm is designed to be conservative (i.e., favoring false positives) in the interest of 

identifying all potential hazards.

A final observation was associated with generation of best-fit dose-response curves and 

corresponding ACC values using the automated ToxCast data analysis pipeline.42 For a 

number of assays, ACCs of specific chemicals were reported below the minimum 

concentration tested within the assay. Closer examination of dose-response curves showed 

that the minimum tested concentration for many strong agonists was at or near saturation for 

receptor targets (e.g., 17β-estradiol and ER related assays), thus full dose-response curves 

are estimated from the upper “plateau” of the curve. For example, the lowest concentration 

of 17β-estradiol tested in the ‘ATG_ERE_CIS-up’ assay (0.09 µM) induces approximately 

98% of the maximum 17β-estradiol response, and an ACC value of 3.1e-5 µM is 

extrapolated from the model fit. For compounds detected in the chemical occurrence dataset, 

85 chemical-assay pairs (comprised of 14 chemicals and 34 assays) have ACCs below the 

minimum tested concentration (SI Table S5). Eleven of the identified chemicals are steroids 

or xenobiotics known to interact with nuclear receptors, and 27 of 38 assays are related to 

nuclear receptors. This suggests the dose range generally screened in ToxCast is insufficient 

to fully characterize strong agonists of some nuclear receptors. Moreover, ACC estimates 

extrapolated over orders of magnitude in concentration will inherently be less accurate or 

unreliable compared to those estimated from a full dose-response curve. No adjustments 

were made for these chemical-assay pairs, and consequently, EARs for these instances may 

be underestimated.

Results and Discussion

Chemical occurrence summary

Of 134 contaminants analyzed across the three analytical methods, 109 were reported above 

LRLs in one or more surface water samples (SI Table S1). By analytical method, 60 of 67 

(90%) wastewater contaminants, 39 of 48 (81%) pharmaceuticals, and 10 of 19 (53%) 

steroids and sterols were detected at one or more sites. By watershed, the greatest number of 

wastewater contaminants, pharmaceuticals, and steroids and sterols were detected within the 

St. Louis River, Maumee River, and Irondequoit Bay watersheds, respectively (Figure 1). Of 

note, the St. Louis River and Maumee River watersheds had more intensive sampling efforts 

centered on WWTPs, and as such, it could be reasonably expected to observe a greater 

number of compounds at these sites. Based on frequency and concentration alone, several 

chemicals can be highlighted from within the dataset. Cholesterol, DEET, fluoranthene, and 

pyrene, which are all within the wastewater indicators method, were detected most 

frequently, in 98%, 93%, 71%, and 69% of all samples, respectively. Cholesterol, 3β-

coprostanol, β-sitosterol, and BPA, again all within the wastewater indicators method, were 

detected at the highest single concentrations, with maximum concentrations of 120 µg/L, 

95.2 µg/L, 64.4 µg/L, and 60.5 µg/L, respectively. This abbreviated list again demonstrates 

the need to consider effects concentrations of compounds, as several chemicals present at 

high concentrations (e.g., the naturally derived sterols) would be expected to have limited 

biological effects.
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ToxCast coverage of chemicals

Compounds in ToxCast were screened in multiple phases, with different batteries of assays 

used for some phases of the overall testing program (for overview see 45); thus, the assay 

coverage for all chemicals in ToxCast is not consistent. For chemicals measured within the 

current study, 116 of 134 (86%) analyzed chemicals and 96 of 109 (88%) detected chemicals 

had been evaluated in one or more assays (SI Table S1, SI Table S6). Tox21 had the greatest 

coverage of detected chemicals (87%), followed by ATG and NVS (61%), and then BSK 

and CEETOX (51%) (Figure 1). Considering assay coverage of detected chemicals, 48 

(44%) have data in 10 or more batteries, 66 (61%) have data in three or more batteries, and 

30 chemicals (28%) have data only for the Tox21 assay suite (SI Figure S2).

Exposure-Activity Ratio Based Prioritization

Site Prioritization—As an initial screen of the chemical occurrence dataset, EARmixture 

values (Eq. 2) were calculated for all sites (SI Table S7). No active chemicals were detected 

for 299 of 528 assays leaving 229 total ToxCast assays with calculated EAR values in one or 

more samples. Similarly, three of 140 water samples had no detected compounds that were 

active in ToxCast leaving a total of 137 samples with calculated EAR values. To better 

summarize the EAR dataset by watershed and individual sites, EARmixture values across all 

229 assays were summed for each site, as a cumulative EARmixture. Since the data matrix of 

chemicals and assays is consistent for all samples, this provides a value of estimated activity 

at each site irrespective of individual assay target. Through this approach, the St. Louis River 

watershed, which was most intensively sampled, showed the highest values, and the largest 

range of cumulative EARmixture of any watershed (Figure 2A). Median EAR was highest at 

the Raisin River, followed by Maumee River, Fox River, and St. Louis River watersheds. 

Focusing on the St. Louis River (representing the watershed with the maximum EAR values 

and greatest sample coverage), three sites with the greatest potential impact, WLSSD-

Proximal (WLSSD-P), and WLSSD-Distal (WLSSD-D), and SMTP were identified (Figure 

2B). These three sites all are notably in close proximity to two WWTPs and reasonably 

could be hypothesized as having a relatively greater potential for biological effects. 

WLSSD-P and WLSSD-D are impacted by a larger WWTP receiving both municipal and 

industrial waste, with WLSSD-P nearest to the WWTP outflow and WLSSD-D at a more 

distal location with a greater dilution of the effluent.17 SMTP is impacted by a separate, 

smaller WWTP receiving exclusively municipal waste. Accordingly, the highest cumulative 

EARs are observed at WLSSD-P followed by WLSSD-D and SMTP. Though details of 

specific chemicals and relevant biological pathways are not captured at this level of site 

prioritization, the ability to condense chemical occurrence and biological activity datasets 

into a single output allowed for a rapid comparison and prioritization of watersheds or 

individual sites from the dataset.

As an alternative strategy for site prioritization, exceptionally high cumulative EARmixture 

values were identified across watersheds to highlight unique sites or potential point sources 

of contamination. Only four sites in total, located in the St. Louis River, Maumee River, and 

Irondequoit Bay watersheds, had cumulative EARmixture values greater than 2 (Figure 2). As 

noted above, both sites within the St. Louis River (WLSSD-P and WLSSD-D), as well as the 

single site in the Maumee River watershed (MX-WWTP) are in close proximity to WWTPs, 
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which likely explains the elevated EARmixture values from these sites. The single site in 

Irondequoit Bay (IB-06), however, has no obvious point sources of contamination. This site 

is unique in the composition of detected contaminants, with many steroidal compounds 

observed only at this site. Several naturally occurring androgenic and estrogenic steroids 

were detected, as well as two synthetic estrogens, mestranol and diethylstilbestrol, all of 

which contribute heavily to the high EAR values observed in this sample. The presence of 

many steroids in this single sample likely indicates an unknown contamination source 

upstream of the site. Mestranol is a component of some oral contraceptives,46 indicating a 

possible human waste source; conversely, the presence of 17α-estradiol is generally 

associated with animal waste or animal production facilities.47, 48 Also, although 

diethylstilbestrol is no longer used as a human pharmaceutical, its environmental occurrence 

could be associated with illicit use in livestock operations,49 again suggesting agricultural 

sources may be contributing to the estrogenic signal. Further investigation would be required 

to identify potential sources of the observed contamination. Given the elevated EAR values 

and unique chemical signature at IB-06, further monitoring at this site is warranted.

Biological Activity Prioritization

To prioritize molecular targets and biological pathways most likely to be perturbed by 

chemicals broadly observed in the Great Lakes samples and/or at specific sites, mean 

EARmixture values were calculated within each assay across all sites (SI Table S8). Assays 

were then grouped according to the ToxCast database ‘intended_target_family’ annotation23 

resulting in 15 assays groups containing one to 75 individual assays (Figure 3A). Of 

categories containing two or more assays, the greatest median mean EARmixture values were 

observed for ‘transporter’, ‘nuclear receptor’, and ‘oxidoreductase’ at 4.8e−4, 2.1e−4, and 

1.8e−4, respectively. Maximum mean EARs of 0.50, 0.018, and 0.0097 were observed for 

‘nuclear receptor’, ‘DNA binding’, and ‘oxidoreductase’ assay groupings. Other endpoints 

including ‘cyp’, ‘esterase’, and ‘ZF’ assay groupings are also elevated (and likely not 

statistically different) from assay groupings highlighted above, so these groupings could be 

further investigated. Because the ‘intended_target_family’ level of assay organization does 

not inform as to specific molecular targets of the detected chemicals, broad categories such 

as ‘nuclear receptor’ and ‘DNA binding’ must be further “dissected” to reveal relevant 

biological pathways. For example, exploring ‘nuclear receptor’ assays in more detail by 

using the ‘intended_target_gene_symbol’ annotation field of the ToxCast database reveals 

assay gene targets which would be most relevant for linking biological activity to adverse 

effects through AOP constructs (Figure 3B). The primary targets driving the high response 

in ‘nuclear receptor’ assays are ER, constitutive androstane receptor (NR1I3; CAR), and 

peroxisome proliferator-activated receptor (PPAR) assays (Figure 3B). Elevated EARs 

observed in ‘oxidoreductase’ and ‘DNA binding’ are driven by assays measuring thyroid 

peroxidase (TPO) inhibition and increased SOX1 expression, respectively. Since both TPO 

inhibition and SOX1 expression are measured by only a single assay, it is not possible to 

evaluate the veracity of this response across multiple test systems.

For targets measured by multiple assays, such as ER (which is reflected in some manner in a 

total of 18 different assay endpoints), the range of EARmixture values from individual assays 

can be dissected further to compare individual assay endpoints. For the ER-based assays, 

Blackwell et al. Page 9

Environ Sci Technol. Author manuscript; available in PMC 2018 September 11.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



mean EARmixture values across all sites ranged from 3.5e−5 to 0.50 (Figure 3C). Aside from 

two antagonist assays, the bulk of the mean EARmixture values for the various ER assays fall 

between 0.001 and 0.1. However, slightly greater EARs were detected for the Odyssey Thera 

(OT) ‘OT_ERE_GFP’ assays and the ATG ER assays. The range of EARs observed in the 

ER assays reinforces that not all assays are equivalent in performance and design. ER assay 

endpoints are measured at different points along the signaling pathway, including receptor 

binding (NVS), receptor dimer formation (OT), receptor-DNA interaction (OT), mRNA 

transcription (ATG), protein production (Tox21), and cell proliferation (ACEA). 

Additionally, possible errors from extrapolating ACC values below tested concentrations 

may be contributing to inter-assay variability. The use of aggregate or average values may 

eliminate much variability for targets with a rich assay coverage (e.g., ER), but for targets 

with few or only a single assay, caution should be exercised in establishing a predefined 

EAR screening threshold without first considering the range of responses observed in a 

dataset.

Chemical Prioritization

Individual chemicals can also be prioritized by EAR calculations. Here, chemicals were 

prioritized based on EARs calculated using the maximum concentrations reported in the 

Great Lakes dataset. The full matrix of chemical-assay pairs results in a total of 50688 

theoretically possible EARs (96 detected chemicals x 528 considered assays; SI Table S9). 

However, not all possible EARs can be calculated due to chemicals not being tested in all 

assay batteries or chemicals being inactive in tested assays. In total, EARs could be 

calculated for 1245 (2.5%) chemical-assay pairs, with values ranging from 3.5e−8 to 44.9. It 

should be again noted that chemicals in the ToxCast database have been tested in multiple 

phases, using variable assay platforms across phases; thus, chemicals present in the database 

are not necessarily tested in all the same assays (see SI Figure S2, Table S1, Table S6). Of 

detected chemicals that were present in the ToxCast database, 73 of 96 were active in one or 

more assay(s). Focusing on EARs ≥0.01, representing approximately the upper 10% of 

EARs, the chemical list can be narrowed to 20 compounds and 146 chemical-assay pairs (SI 

Table S9). BPA, at a maximum detected concentration of 60.5 µg/L, had the greatest number 

of non-zero EARs (89), and the greatest number of EARs >1 (9). BPA is known to be an 

estrogen receptor agonist,50 and 8 of 9 EARs >1 are from ER related assays. Another assay 

yielding a high EAR for BPA is a CAR antagonist assay. The CAR is involved in xenobiotic 

metabolism and energy homeostasis and can increase expression of cytochrome P450 (CYP) 

enzymes.51 In addition to BPA, five other chemicals (17α-estradiol, 17β-estradiol, 

diethylstilbestrol, estriol, estrone) have EARs>1; all are natural or synthetic estrogens. 

Fourteen additional chemicals have one or more EARs>0.01 (see SI Table S9), including 

androgenic steroids (androstenedione, epitestosterone), pesticides (atrazine, metolachlor), 

and several other common wastewater and urban contaminants (4-nonylphenol, methadone, 

triclosan, triphenyl phosphate). Methadone shows the greatest activity in a NVS opiate 

receptor binding assay, which is consistent with the therapeutic use of methadone as an 

opiate pain reliever. Triphenyl phosphate shows the greatest activity in a PPARγ receptor 

binding assay and has been demonstrated to interact with the human PPARγ receptor.52, 53 

The known androgen receptor (AR) agonist androstenedione surprisingly has a higher EAR 

value in the ‘ATG_ERa_trans_up’ assay (EAR = 0.017) than in the AR responsive assay 
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endpoints (maximum EAR = 0.007). In this case, ACC extrapolation error may explain the 

higher predicted ER activity since the extrapolated ACC within the ‘ATG_ERa_trans_up’ is 

more than 50 times below the lowest tested concentration. Another possible reason for this 

elevated ER activity could relate to assay platform differences. Two other ER-responsive 

assays, ‘TOX21_ERa_LUC_BG1_Agonist’ and ‘ACEA_T47D_80hr_Positive’, predict 

androstenedione to have much lower ER activity, with EARs of 3.0e−4 and 5.3e−7, 

respectively. Additionally, androstenedione is not active in two NVS ER assays, which 

directly measure competitive receptor-binding, suggesting androstenedione has low affinity 

for direct binding to the ER. Androstenedione is, however, a direct precursor to estrone, a 

potent ER agonist, and can be converted to such by CYP-aromatase (CYP19A1).54 ATG 

assays use a modified HepG2 cell line,36 which plausibly could be more metabolically active 

than other assay cell lines, leading to an elevated ER signal from androstenedione through 

direct formation of estrone. Taken together, this example highlights the value of considering 

chemical response across multiple assays (if available) when elevated EAR values are 

observed for a chemical.

Recently, computational models have been developed to aid in separating true positive and 

false positive chemicals for ER, AR, and TPO assays within the ToxCast database.55–57 

Development of such models requires multiple orthogonal assays, which are not currently 

available for many assay targets. Nevertheless, if chemicals for these select pathways are 

identified through EAR analysis, the developed models could be applied to confirm that 

compounds are predicted to be active in the given biological pathway, further increasing 

confidence in EAR prioritization of select chemicals and biological pathways.

Exposure-activity Prioritization Validation

As part of the development of methods for an effects-based monitoring program,16 a set of 

12 water samples from the St. Louis River watershed for which we had generated EAR 

values were screened for estrogenic activity using the T47D-KBluc cell line (SI Table S10; 

see SI for methods details). This provided an opportunity to directly compare measured ER-

mediated activity and EAR prioritization in these samples. The samples were collected both 

in the Spring and Fall of 2012 along a wastewater gradient with the EriePr site upstream, 

WLSSD-P at the WWTP outfall, WLSSD-D downstream of the outfall, and RicesPt farthest 

downstream. Derived 17α-ethinylestradiol equivalents (EEQs) from the T47D-KBluc assay 

were compared to the range of EARs generated from the 16 ER agonist assays present in the 

ToxCast database (Fig. 4). Derived EEQs were above detection threshold at the two sites 

nearest the WWTP (WLSSD-P, WLSSD-D) in all three samples and below the detection 

threshold at the upstream and downstream site, aside from one sample (RicesPt 9/6/2012 

1015). If a median EAR cutoff of 0.01 is applied to the dataset, four samples are excluded, 

three of which had EEQs below detection. The remaining site (RicesPt 9/6/2012 1015) had 

no detection of compounds active in the ToxCast ER assays, but had 0.4 ng/L EEQs. For the 

eight sites with median EAR values above 0.01, two had estimated EEQs below detection. 

Overall, EAR prioritization identified all sites with EEQs>0.5 ng/L and all but one site with 

detectable EEQs, demonstrating high sensitivity (0.86) for predicting positive results and 

thereby supporting EARs as a useful screening level prioritization tool. Incidentally, the 

concordance of ER results also suggests that the most influential ER agonists are being 
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captured by the targeted analytical methods. We note, however, that the ER is the most well 

represented assay target in the ToxCast database and endocrine active compounds are also 

well represented in the suite of chemicals tested through the HTS assays. Biological targets 

with less assay and chemical coverage will need to be further investigated to verify the 

accuracy of other EAR estimates; nevertheless, chemical and assay coverage will only 

increase in the future.

Integrating EARs with Adverse Outcome Pathways

The AOP framework provides a means to link molecular level data (i.e., biological targets or 

pathways associated with high EARs generated from this study) to apical endpoints of 

regulatory concern (i.e., reproduction, growth, survival). Assay targets can reflect defined 

molecular initiating events (MIEs) or key events (KEs) whose perturbation has been credibly 

linked to adverse outcomes (AOs). Key events downstream of identified assay targets can 

also serve as potential biomarkers for subsequent monitoring efforts. Biological pathways 

prioritized through EAR analysis, including ER, TPO, and PPARγ, are associated with 

established AOPS and were further investigated to explore potential AOs and to identify KEs 

which could serve as verification of hazard in impacted ecosystems.

Assays associated with ER activation consistently showed the highest EARs across the 

dataset. This is not unexpected for sites in close proximity to WWTPs; for example, several 

previous studies have demonstrated the estrogenic nature of WWTP effluent within the St. 

Louis River.17, 58, 59 An AOP for estrogen receptor activation leading to altered reproduction 

in adult fishes and subsequent declining population trajectory has been detailed by Ankley 

et. al.15 At the organismal level, multiple AOs are identified, including reduced fecundity in 

female fish, altered gamete ratio in spawning males, and impaired spawning behavior in both 

male and female fishes. Though data gaps exist in the full mechanistic linkage of ER 

activation to some KEs in the AOP, biomarkers of effect are identified and could be applied 

to follow-up monitoring efforts. For example, production of the egg yolk precursor protein, 

vitellogenin (VTG), is linked to ER activation, and measures of VTG mRNA or plasma 

VTG have historically been used as a biomarker of estrogenic activity in both laboratory and 

field studies.59–61 In normal, unimpaired male fishes, VTG is not present or present only at 

very low concentrations, making this an ideal biomarker for identification of exposure to 

exogenous ER agonists in male fishes. The development of intersex male fish is another 

potential histological indicator of ER activation. Intersex in fishes has been reported at 

wastewater impacted sites, and has previously been used as an indicator of estrogenicity of 

effluents.62, 63 Though the described ER activation AOP is specific to fish, aspects of it 

likely are applicable to other aquatic egg-laying animals as well (e.g., amphibian, avian 

species) since ER signaling pathways are highly conserved across vertebrate classes.64 

Conversely, a functional ER has not been identified in invertebrates, suggesting they would 

be of limited utility for biomonitoring for the occurrence of estrogens in the field.

Another assay endpoint that was identified by elevated EARs was TPO inhibition. TPO is an 

enzyme involved in the synthesis of thyroid hormone from mono- and di-iodotyrosines, so 

its inhibition leads directly to reduced thyroid hormone production.65 TPO inhibition is a 

defined MIE in the publicly-available AOPWiki (https://aopwiki.org), linked to two 
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ecologically relevant AOPs: TPO inhibition leading to reduced young of year survival via 

anterior swim bladder inflation (https://aopwiki.org/aops/159) and TPO inhibition leading to 

altered amphibian metamorphosis (https://aopwiki.org/aops/175). In both, the final AO from 

an ecosystem level would be population decline, an endpoint of regulatory importance. 

Thyroid hormone concentrations in whole body66 or specific tissues65, 67 of fish and 

amphibians have been used for verification of TPO inhibition in laboratory studies and could 

serve as a biomarker for follow-up monitoring at specific sites in wild populations68–70 or in 
situ exposed organisms. Aquatic vertebrates would be considered the most susceptible class 

to TPO inhibition, as the thyroid axis is well conserved across vertebrates.71 Thyroid 

hormones have also been demonstrated to play a role in bivalves,71 indicating that some 

invertebrate taxa could potentially be affected by TPO inhibition. However, it is not 

currently known how well invertebrate TPO orthologs relate to rat TPO, which is the target 

for the TPO assay in the ToxCast database.

One final biological response prioritized through the EAR analysis was PPARγ activation. 

At present, there is one AOP related to PPARγ activation in the AOPWiki: PPARγ 
activation leading to sarcomas in rodents (https://aopwiki.org/aops/163). Cancer is not 

generally considered an ecologically relevant endpoint, and other potential effects of PPARγ 
agonists in aquatic vertebrates are not well-defined. However, PPARγ is involved in energy 

metabolism, namely adipogenesis (fatty acid storage), and glucose metabolism,72 so putative 

AOPs relevant to aquatic species such as fish could be proposed. Alterations to normal, 

homeostatic fatty acid storage or metabolism in aquatic vertebrates may adversely result in 

altered energy resource storage or allocation, which could plausibly impact individual 

fitness, leading to decreased resources available for survival or reproduction. For the 

purposes of possible follow-up environmental monitoring, an obvious, easily measured KE 

is not currently available for PPARγ activation, so the development of AOPs—and 

associated biomarkers—for PPAR activation is a research priority for our team.

The three highlighted biological targets (ER, TPO, PPARγ) were prioritized since 

concentrations of one or more chemicals detected in the environment were near 

concentrations known to induce biological activity in vitro. This suggests the potential for 

observed effects in wildlife at impacted sites; however, the study reporting environmental 

concentrations of compounds across the Great Lakes was designed as a surveillance study, 

capturing contaminant data from many locations but with little replication at most sites.1 As 

such, it would be premature to interpret these results through the lens of risk assessment. 

The results do provide potential targeted endpoints that can be examined in more detailed 

follow-up monitoring to identify whether specific biological activities are actually a concern 

in the prioritized sites. The EAR approach will always be limited by both occurrence and 

effects data, thus the potential to underestimate the biological effects of complex mixtures 

remains. Incorporating other effects-based monitoring methods, such as targeted bioassays 

or ‘omics approaches, in a tiered-approach can provide a secondary means to confirm 

predicted effects or identify novel chemicals or biological pathways of concern that may not 

be captured through EAR analysis.12

To conclude, the presented case study highlights the potential of using HTS effects databases 

as a tool for environmental monitoring. Exposure-activity ratios provide a rapid, efficient 
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tool for screening existing chemical monitoring data to prioritize sites, chemicals, and 

bioactivities of potential concern by leveraging HTS datasets to cast a wide-reaching net in 

terms of chemical availability and biological targets. While currently presented as a 

screening level assessment, the approach could be refined by including models to better 

characterize exposure of ecological receptors to environmental contaminants (e.g., 

bioaccumulation, metabolism) and to better characterize dosimetry of in vitro HTS test 

systems. Further refinements, along with an expected increase in HTS data sources, should 

only continue to increase the future utility of EAR screening for environmental monitoring.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Number of detected chemicals within each analytical method at each watershed reported 

in the chemical occurrence dataset. The value within each column represents the total 

number of samples from a watershed. B) Number of detected chemicals with available data 

in each ToxCast assay platform. See SI Figure S2 for more detailed information on chemical 

coverage across assay platforms.

ACEA = ACEA Biosciences; APR = Apredica; ATG = Attagene; BSK = BioSeek; CT = 

CeeTox; CLD = CellzDirect; NCCT = National Center for Computational Toxicology; NZF 
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= NHEERL zebrafish; NVS = NovaScreen; OT = Odyssey Thera; TZF = Tanguay Lab 

zebrafish; Tox21 = Tox21 Initiative
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Figure 2. 
A) Cumulative EARmixture (i.e., sum of EARmixture values across all assays) values within 

each watershed. The value within each row represents the total number of samples from a 

watershed. For graphical purposes, sites with EARmixture equal to 0 (three samples; all from 

St. Louis River) were removed. B) Cumulative EARmixture values for each site within the St. 

Louis River watershed. The value within each row represents the total number of samples 

from a site. For graphical purposes, sites with EARmixture equal to 0 or with only one sample 

are not shown. Site information is available from the original data source.1
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Figure 3. 
A) Mean EARmixture values within each assay category as defined by the 

‘intended_target_family’ annotation field (see SI Table S2). The number in each row is the 

number of assays in a category. B) Mean EARmixture values within the ‘nuclear receptor’ 

assay category as defined by the ‘intended_target_gene_symbol’ annotation field (see SI 

Table S2). The number in each row is the number of assays in a category. C) Mean 

EARmixture values for individual assays under the ‘ESR’ category.
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Figure 4. 
Comparison of exposure-activity ratios (EARs) generated from 16 estrogen receptor (ER) 

related assays in the ToxCast database and in 17α-ethinylestradiol equivalents (EEQs; ng/L, 

in red) derived from in vitro screening with T47D-Kbluc cell line (mean±SEM; n=3). 

Samples are grouped by collection date and ordered (left to right) from upstream to 

downstream along the wastewater gradient. For graphical purposes, a site with no EAR 

calculated was assigned a value of 0.001, and EEQs below detection threshold were assigned 

a value of 0. Site information is available from the original data source.1
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