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Abstract
Introduction  Allograft rejection is still an important complication after kidney transplantation. Currently, monitoring of 
these patients mostly relies on the measurement of serum creatinine and clinical evaluation. The gold standard for diagnos-
ing allograft rejection, i.e. performing a renal biopsy is invasive and expensive. So far no adequate biomarkers are available 
for routine use.
Objectives  We aimed to develop a urine metabolite constellation that is characteristic for acute renal allograft rejection.
Methods  NMR-Spectroscopy was applied to a training cohort of transplant recipients with and without acute rejection.
Results  We obtained a metabolite constellation of four metabolites that shows promising performance to detect renal allograft 
rejection in the cohorts used (AUC of 0.72 and 0.74, respectively).
Conclusion  A metabolite constellation was defined with the potential for further development of an in-vitro diagnostic test 
that can support physicians in their clinical assessment of a kidney transplant patient.

Keywords  Metabolomics · NMR-spectroscopy · Kidney rejection · Diagnostic model

1  Introduction

According to the Health Resources & Services Adminis-
tration, 19,061 patients have received a kidney in 2016 in 
the USA (Procurement and Network 2017). Despite great 
improvements in immunosuppressive treatment regimens, 

allograft rejection is still a substantial threat and one of the 
biggest concerns faced by both patients and their physicians.

Optimal therapeutic response to a rejection episode 
depends on reliable diagnostics in order to detect the con-
dition quickly. But even today, many nephrologists find the 
available diagnostic tool kit lacking. Standard parameters 
like serum creatinine indicate an impaired glomerular fil-
tration rate but are not specific for a rejection. Histopatho-
logical evaluation of ultrasound guided biopsies of the 
transplanted kidney represents the current gold standard 
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for diagnosing a rejection. However, the procedure is not 
without risk—hematoma, gross hematuria, hydronephrosis 
or even graft loss are rare but real complications (Preda 
et al. 2003; Tsai et al. 2016; Wilczek 1990). Furthermore, 
the method depends on the availability of an experienced 
pathologist and relies on the assumption that the tissue 
core is representative of the entire organ.

Therefore, great efforts have been made to find new 
biomarkers that complement the current diagnostic toolkit 
or may even replace graft biopsy in the future (Bassi et al. 
2017; Bell et al. 1991; Foxall et al. 1993; Le Moyec et al. 
1993).

From a practical point of view, appropriate single bio-
markers would certainly be helpful in clinical routine. 
Unfortunately, it is quite likely that for many diseases 
and conditions there is no single “silver bullet” biomarker 
elucidating the complex underlying pathophysiological 
processes. However, physicians have always integrated 
multiple sources of diagnostic information in their daily 
work: patient history, findings from physical examinations, 
laboratory parameters and imaging techniques are used 
in conjunction in order to find the correct diagnosis. The 
same principle can be transferred into the realm of labo-
ratory diagnostics to some extent: By quantifying a small 
panel of relevant metabolic markers and evaluating them 
in a quantitative model that assesses the likelihood of a 
certain condition allows the creation of a characteristic 
metabolite constellation. Modern tools from the realms 
of artificial intelligence and machine learning can help to 
identify important metabolites that are then combined in a 
final, ideally simple and robust, model. The modelling step 
is important because drawing correct conclusions from 
such panels becomes complicated very quickly as the num-
ber of variables increases and the relation between them 
becomes more complex. As a result, the physician is not 
represented with the raw values of such a metabolite con-
stellation but a metabolite rejection score that corresponds 
to the probability of a condition or its severity, depending 
on the model in question.

In this work, we describe our quest for a novel diagnos-
tic tool suited for supporting the physician in monitoring 
kidney transplant patients by building a metabolic marker 
constellation from patient samples that is indicative of organ 
malfunction—graft rejection in particular. While most labo-
ratory diagnostics is carried out in blood samples, it appears 
reasonable to use urine in the particular case of the kid-
ney because, a priori, it seems plausible that physiological 
changes in the kidney should have an immediate effect on 
the production and composition of urine.

As our analytical platform, we chose NMR-spectroscopy 
which has been successfully used as a research tool for 
decades. The method is capable of detecting hundreds to 
thousands of organic compounds in a single measurement 

without complicated pre-analytical manipulations making 
it ideal for a metabolomic approach to in-vitro diagnostics.

2 � Materials and methods

2.1 � Cohorts

Our overall strategy for building a diagnostic test based on 
metabolic constellations is to work with three independent 
sample cohorts: one for training the model, a second for test-
ing and a limited number of final tuning steps and, finally, 
a validation cohort. In this work, we describe the work of 
training and establishing the model while the clinical valida-
tion using a prospective cohort will be described separately.

For training and testing, we used two separate cohorts, 
both of which were collected at the transplant center of the 
University Hospital Regensburg, Germany. The work is 
covered by the ethics approvals 04/056 and 03/082 (both 
University of Regensburg, Germany) by the responsible IRB 
at the University.

Our training cohort consisted of 1883 urine samples taken 
from 180 renal transplant patients at the University Hospital 
Regensburg, Germany. The samples were collected between 
2008 and 2010 and had been biobanked for future use. In this 
work, we analyzed them retrospectively. In addition to the 
samples, we received basic patient characteristics like sex 
and age as well as the date of transplantation and, of course, 
the histopathological findings of the graft biopsies.

For the test cohort, 589 samples were prospectively col-
lected between 2015 and 2016 at the same center by taking 
urine samples from 178 patients visiting the kidney trans-
plant aftercare clinics for routine follow-up or because of 
specific health problems. Therefore, the samples are inde-
pendent in the sense that they have been collected over a 
completely different time period. The only clinical data we 
collected for this set was the date and result of the pathology 
reports on kidney graft biopsies performed at or shortly after 
the visit on which a urine sample was taken.

Hematuria is a frequent observation early after transplan-
tation and can interfere with our metabolic analysis. There-
fore, we only included in this work only samples that were 
taken at least 14 days post transplantation and leave it to be 
determined later, how early such a test can be used.

2.2 � Case/control definition

All transplant biopsies were evaluated by both an experi-
enced nephropathologist and a nephrologist and classified 
according to the BANFF97 schema (Racusen et al. 1999). 
Regarding the training cohort, a biopsy result was labeled 
case in case of an acute cellular rejection (BANFF 4, all 
grades) and control if no rejection was found (BANFF 1). 
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Antibody mediated rejections (humoral rejection, BANFF 
2), borderline changes (BANFF 3) and chronic rejections 
(BANFF 5) were excluded from the analysis unless found in 
conjunction with an acute cellular rejection. Urine samples 
were not necessarily all taken on the day of a graft-biopsy. 
All patient samples taken in a time window of up to 7 days 
before the biopsy (including the day of biopsy) were used 
in our analysis and labeled case or control according to the 
outcome of the corresponding biopsy. In addition, we also 
labeled all samples from patients who were never subjected 
to biopsy or whose biopsies were all negative as control.

In case of the test cohort, all samples associated with a 
confirmed positive or negative biopsy were labeled case or 
control, respectively (further referred to as strict setting). 
Furthermore, we also considered a variation of this defini-
tion for the analysis of the test cohort (further referred to as 
extended setting). Here, we additionally included samples 
that were not supported by a biopsy as control samples.

2.3 � Sample handling and preparation

Mid-stream spot urine samples were collected in stand-
ard plastic urine cups and aliquots of 1.8 ml were trans-
ferred into 2.0 ml sample tubes. The aliquots were frozen 
at − 20 °C within a few hours after collection. For NMR 
measurements, aliquots were allowed to thaw at room tem-
perature. Upon complete thawing, 600 µl of the urine sample 
were mixed with 150 µl of Axinon urine additive solution 
(numares AG, Regensburg, Germany) in a centrifuge tube. 
The samples were centrifuged @ 20,000×g for 10 min at 
20 °C and 600 µl of the supernatant was transferred to 5 mm 
NMR tubes and kept at 2–6 °C until measurement.

2.4 � NMR measurements

All measurements were carried out on a Bruker Avance 
II + 600 MHz NMR spectrometer using a PATXI 1H/D-
13C/15N Z-GRD probe. Samples were kept at 2–6 °C in 
the automated sample changer (SampleJet) and brought to 
the target temperature of 37 °C in the integrated pre-heating 
block before measurement. We used a standard pulse pro-
gram with 30° excitation pulse and pre-saturation for water 
suppression (zgpr30).

Samples with sufficient volume passing a visual inspec-
tion were measured in batches of up to 93 samples per rack. 
In addition to the patient samples, each rack included one 
Axinon urine calibrator sample and two Axinon urine con-
trol (numares AG, Regensburg, Germany) samples (posi-
tioned at the beginning and the end of a rack) in order to 
assure ideal measurement and reproducibility conditions 
throughout the run.

2.5 � Signal analysis

NMR spectra were referencing to TSP (trimethylsilylpropa-
noic acid) to ensure comparability on the ppm-axis. They 
underwent automatic phase correction and baseline cor-
rection before further analysis. Subsequently, we applied 
automatic standardization and calibration procedure to 
minimize between-device, between-day and between-run 
effects. Finally, we applied a quality control filter based on 
spectral properties, such as offset and slope of the baseline 
in selected spectral regions as well as properties of selected 
signals, e.g. signal position, shape and width.

We applied the instruments water suppression program, 
and excluded the region containing the residual water signal 
(4.5–5.0 ppm) from further analysis.

2.6 � Data processing and modelling

All statistical analyses were carried out with the R statistical 
software v3.0.2 (R Core Team 2014). Modelling and feature 
selection was carried out with package mlr v2.3 (Bischl et al. 
2016) for random forest models (using the integrated ran-
domForest package v4.6-7) and the function glm (general-
ized linear models) from stats for logistic regression. ROC 
(receiver operating characteristic) curves and AUC (area 
under the curve) computations were carried out using the 
package pROC v1.5.4.

Signal fitting was carried out in C# using the library 
NMath v5.2.0.3 (Centerspace Software, Corvallis, Oregon, 
USA) for numerical work.

3 � Results

3.1 � Strategy outline

In this work, we carried out two distinct phases as illustrated 
in Fig. 1. In the first phase, we used the popular spectral 
binning approach. The goal of this phase was to discover a 
set of candidate bin-features that seem to contribute to clas-
sification, lend themselves to proper quantification and can 
be positively identified. In the second phase, we switched 
to fitting the signals of interest in the candidate bins for 
robust quantification and re-built the classification model 
from scratch based on the properly quantified metabolites. 
Finally, we went through the process of choosing our final 
classification model by integrating statistical results with 
physiological considerations.

The first phase (Fig. 1a) started by binning the NMR 
spectra followed by data processing steps such as apply-
ing transformations, centering and scaling. After that we 
went through several iterations of statistical feature selection 
(“multiple feature selection”), feature filtering and ranking, 
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visual inspection/assessment of candidate bins and elimina-
tion of features that did not pass our criteria. Afterwards 
the preliminary bin-feature set was subjected to thorough 
metabolite identification efforts. In addition to the remain-
ing, positively identified, features we added metabolites 
to the set that had been previously described as candidate 
markers for kidney rejection or related kidney problems. The 
resulting final substance set was allowed to enter phase two.

The second phase (Fig. 1b) started by applying signal fit-
ting to the peaks of interest. The results underwent transfor-
mation, centering and scaling and were used as the input for 
the subsequent exhaustive modelling step. At this point the 
test cohort was used for the first time: in addition to assess-
ing the classification performance, independently, it helped 
in guiding the very last steps in picking the final model des-
tined to be implemented in an in-vitro diagnostic product.

3.2 � Data flow

As mentioned in Sect. 2, we subjected every NMR spectrum 
to a qualification step designed to reject spectra that are of 
inferior quality.

The training cohort initially comprised 1883 collected 
urine samples (see Fig. 2a). 1788 of the sample spectra 
successfully passed the qualification criteria and were inte-
grated with the clinical data. After applying the windows for 
defining case and control samples we were left with 1198 
classified samples (128 cases and 1070 controls). 882 (60 
cases and 822 controls) of those samples originated from 
the late phase (day ≥ 15 after transplantation) and were 
used in the two following modelling phases (bin-based and 

metabolite-based). Please note that depending on the combi-
nation of metabolites used to build a model, less data may be 
available as the underlying metabolite quantification (fitting) 
may fail to return a valid value.

The test cohort consisted of 589 original urine samples 
yielding 521 spectra after quality control and 489 classi-
fied samples (see Fig. 2b). In the strict setting, 60 samples 
(18 cases and 42 controls) were left in the late phase, while 
the extended setting yielded 411 samples (18 cases and 393 
controls).

In the following sections, all steps shortly described in the 
above strategy outline are explained in more detail.

3.3 � Modelling of spectral data

NMR spectra were segmented into bins of equal length 
yielding 377 bins. In order to account for the huge differ-
ences in urine concentration, the bins were normalized by 
the total integral of the respective spectrum. Furthermore, 
the bins (hereafter referred to as features) were further pro-
cessed (cubic-root transformation and autoscaling) for the 
subsequent statistical analyses (for detailed information see 
section’ Spectral binning & data processing’ in the Supple-
mentary Material).

In order to select only those features that are most useful 
for our modelling task, we applied feature selection using 
random forest (RF) models. This is a necessary step as 
many spectral features are uninformative or redundant. In 
this work, an iterative approach was used based on auto-
matic feature selection and manual elimination of bins by 
careful visual assessment. This procedure was carried out 

Fig. 1   Overview of our model-
ling strategy. a Process from 
binned spectra towards candi-
date substance set. b Modelling 
with fitted metabolites towards 
final candidate models

A B
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until all selected bins were deemed acceptable (for detailed 
information see sections ‘Multiple Feature Selection’ and 
‘Bin Feature Assessment and Feature Elimination’ in the 
Supplementary Material).

3.4 � Candidate marker set and quantification

In order to move forward from a black-box situation to a 
set of known metabolite markers, we next aimed at iden-
tification of the signals in the bins. Initial hypotheses were 
drawn from comparisons to the human metabolome database 
(HMDB) (Wishart et al. 2013) and proprietary reference 
spectra at numares. The initial candidates were evaluated 
for plausibility of being present in human urine and eventu-
ally confirmed or ruled out by spike-in experiments. This 
process was carried out until a substance assignment was 
possible with confidence. Finally, our candidate substance 
set comprised 8 distinct metabolite signals.

Of course, the downsides of spectral binning may result 
in missing some valid markers during feature selection, e.g. 
when interference or substantial background mask the con-
tribution of the metabolite resulting in a low classification 
contribution. Therefore, we carried out a thorough literature 
search for potential markers identified in the context of kid-
ney allograft rejection or other kidney problems. In the liter-
ature, there are reports that associate dimethylamine (DMA) 
and urea with kidney graft rejection in NMR based studies 
(Bell et al. 1991; Foxall et al. 1993; Le Moyec et al. 1993) 
both of which did not show up as significant in our own anal-
ysis above and were judged to be of reasonable bin quality. 
Accordingly, our set of candidate markers now comprised 
the following metabolites: Alanine, Citrate, Dimethylamine 
(DMA), Glucose, Glucuronate, Hippurate, Lactate, Phenyla-
cetylglutamine (PAQ), Trigonelline and Urea. In addition to 
these candidate markers, we also quantified creatinine which 
is required for normalization in urine.

For robust quantification we fitted pseudo-voigt functions 
to all candidate signals described above. This method allows 
to also determine goodness of fit and thus detect, when the 
quantification is unreliable or even impossible in a specific 
sample—e.g. due to interference by other metabolites. This 
is of particular importance for this work because we are aim-
ing at developing a test for real world diagnostics.

3.5 � Data processing

Before statistical modelling, the intensity distribution of 
metabolite peaks quantified by peak-fitting were explored by 
visual inspection (histograms) and several different transfor-
mations (log, log-modulus, arctan, cubic-root) were applied. 
We obtained the best results with respect to symmetrical 
distribution with log and cubic-root transformations. In con-
trast to spectral bins, the metabolite quantification method 

is not plagued by occasional negative values. Accordingly, 
we settled on the canonical log transformation. Normaliza-
tion to creatinine values was used to compensate for urine 
concentration and centering and scaling was used before 
moving forward.

3.6 � Exhaustive modelling on fitted signals

At this point, a new iteration of feature selection is necessary 
in order to find the final set of markers to include in the clas-
sification model. In contrast to the initial situation we now 
do not face a high-dimensional classification problem, 
because the feature space was reduced from 377 (bins) to 10 
quantified signals. This allows for an exhaustive selection 

strategy in which we evaluated all 
5
∑

i=1

�

10

i

�

= 637 models 

of up to 5 metabolites drawn from the 10 final metabolite 
candidates.

In the presence of only 10 independent variables a 
machine learning model such as a random forest model is 
probably overkill. Therefore, we decided to also fit a multi-
ple logistic regression at this stage and compared the perfor-
mance. It turned out that the random forest did not outper-
form the logistic regression model under these conditions. 
As the latter is much simpler, easier to explain and under-
stand intuitively, we followed the principle of parsimony and 
picked the logistic regression model over the random forest.

3.7 � Automated model filtering

Mathematically, it is easy to simply pick the best performing 
model (e.g. by cross-validated AUC), but in many situations, 
the performance estimate for the second, third or kth best 
performing models is not that far off.

In order to reach a decision of the final model suitable 
for our purpose we considered both statistical and biologi-
cal aspects. Upfront, we disregarded all models that did not 
achieve an AUC of ≥ 0.75 in the ROC analysis in the late 
phase training cohort. This step left us with 424 candidate 
models with AUC values ranging from 0.75 to 0.86 in the 
late phase training cohort.

At this point, it is hard to pick a single model solely based 
on performance, because we do not have the thousands of 
samples that would be required to narrow the confidence 
interval of performance measures to the point that would 
allow a clear cut decision. Therefore, we decide to open the 
test set and assess the performance of the candidate models 
in these independent samples.

Models that failed to perform with an AUC of ≥ 0.70 in 
the new samples (late phase only) of the two test sets were 
dropped. By doing so, 33 models were left for the strict and 
78 models for the extended setting of the test cohort.
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A

B

1883 samples collected
for training

1856 samples with 
NMR measurements

1788 samples 
passed QC

1198 samples with 
case/control assignment

1198 samples remained
as train set 

based on binning

Integrate clinical data and 
apply Banff + window filter

Apply 
spectral binning

Perform 
metabolite quan�fica�on

1188 samples remained
as train set based on 

quan�fied metabolites

128 case 
samples

(early phase: 68, 
late phase: 60)

1070 control 
samples

(early phase: 248, 
late phase: 822)

127 case 
samples

(early phase: 67, 
late phase: 60)

1061 control 
samples

(early phase: 248, 
late phase: 813)

589 samples collected
for tes�ng

579 samples with 
NMR measurements

521 samples 
passed QC

489 samples with 
case/control assignment

489/80 samples remained
as test set 

(extended/strict) 
based on binning

Integrate clinical data and 
apply Banff + window filter

Apply 
spectral binning

Perform 
metabolite quan�fica�on

484/80 samples remained
as test set 

(extended/strict) 
based on quan�fied metabolites

22/22 case 
samples

(early phase: 4/4, 
late phase: 18/18)

467/58 control 
samples

(early phase: 74/16, 
late phase: 393/42)

22/22 case 
samples

(early phase: 4/4, 
late phase: 18/18)

462/58 control 
samples

(early phase: 74/16, 
late phase: 388/42)
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3.8 � Manual model filtering

In an initial assessment of the metabolites, we investigated 
trigonelline as a potential biomarker for kidney rejection. 
Trigonelline is a natural component in green coffee beans 
indicating a correlation between the urinary trigonelline and 
the dietary intake of coffee. This implies that trigonelline 
may be useful as a biomarker for coffee consumption (Lang 
et al. 2011) even though small amounts of the molecule may 
also be produced by gut bacteria. To avoid any potential 
disturbances of the test system caused by coffee intake it was 
finally decided to exclude all models that used trigonelline 
as a feature, leaving a total of 33 and 60 candidates for the 
strict and extended setting, respectively.

Next, we examined the suitability of lactate as an element 
of our model. To begin with, lactate has been described in 
the literature in the context of kidney rejection (see Sect. 4.1 
below) adding to our own evidence. We also compared all 
non-trigonelline models containing lactate to their counter-
parts without lactate—i.e. models that differed in the set of 
features only in the presence or absence of lactate and found 
that on average models containing lactate as a feature per-
formed appreciably better than without (see Fig. 3a; median 
absolute difference between the AUC of the models with 
lactate and their counterparts without lactate was 0.096 for 
the strict setting). Thus, we excluded models not contain-
ing lactate yielding 33 and 54 candidates for the strict and 
extended setting, respectively.

During inspection of the remaining models, we observed 
that the well performing models either contained alanine or 
hippurate but almost never both which is not very surpris-
ing, because these two metabolites are significantly corre-
lated in our data. As the alanine containing models tended 
to perform slightly better than those containing hippurate 
(see Fig. 3b; median absolute difference between the AUC 
of the models was 0.035 for the strict setting), we picked 
alanine over hippurate at this step. By doing so, 11 models 
were left for the strict and 17 models for the extended setting 
in the test cohort.

Finally, we examined DMA and found the performance 
contribution to be of little practical value (see Fig. 3c): the 
median absolute difference between the AUC of the models 

containing DMA and their counterparts w/o the metabolite 
was 0.008. Therefore, it was decided not to include DMA. 
After this last manual filtering step, we were left with 7 
and 11 models for the strict and extended setting. All seven 
models from the strict setting were included in the list for the 
extended setting. Thus, we decided to use the intersection of 
the two lists for further analyses.

3.9 � Selecting the final model

At this point, our candidate model set was narrowed down 
to seven models that represent variations on a core feature 
set (alanine, citrate, lactate). Figure 4 depicts the relation 
between these final model candidates. All of these seven 
models show very similar performance so the last selec-
tion steps were purely based on biological and technical 
considerations.

While glucose should not be present in appreciable con-
centrations in the urine of healthy people, glucosuria is not 
that uncommon in the cohort of interest. That means that 
a test using glucose as a feature is prone to interference by 
glucosuria and thus undesirable. Therefore, we decided to 
drop all models containing glucose as a variable.

Glucuronate does not have that problem directly, but it’s 
signal is located in the immediate neighborhood of the glu-
cose signal requiring a simultaneous quantification of both 
metabolites in order to avoid interference between them. 
Furthermore, glucuronidation is a well known mechanism 
for renal elimination of xenobiotic substances from the body. 
A xenobiotic is a chemical compound that is not endog-
enously produced within an organism (such as drugs) and 
is therefore a foreign substance that can reach toxic concen-
trations. Glucuronidation is a major pathway of xenobiotic 
biotransformation where the drug in question is conjugated 
with glucuronate in order to increase their water solubility 
and thus allow them to be filtered or excreted by the kidney. 
In the NMR spectrum we cannot reliably distinguish free 
glucuronate from the glucuronides. On one hand, a molecule 
that is part of a renal elimination mechanism may be a valid 
indicator of a kidney impairment, on the other hand it is 
possible that we are seeing a confounding effect related to 
the drug load of the patient which could be related to rejec-
tion. Therefore, we decided not to keep this metabolite in 
the final set.

The situation for urea is different, because the molecule is 
a well known marker for kidney function, at least in serum, 
so it seems much more reasonable to include it in the model 
on physiological grounds (see below for detailed discussion 
in Sect. 4).

As a result of the statistical and biochemical/physio-
logical considerations explained above, we chose alanine, 
citrate, lactate, urea and creatinine (for normalization) 

Fig. 2   Data flow of analyzed samples in the training (a) and test 
cohort (b). Urine samples with sufficient volume for NMR measure-
ment that passed a visual inspection were measured and the spectra 
were subjected to automatic quality control. In order to classify the 
remaining valid spectra as either case or control, they were integrated 
with the clinical data. In case of the training cohort, samples were fil-
tered according to the biopsy result and the distance between the sam-
ple collection and the biopsy. All classified samples were then used 
for statistical modelling in two phases: first based on binned spectra 
and then based on quantified metabolites. At this point, two subsets 
were distinguished: samples from the early phase (i.e. day < 15 after 
transplantation) and late phase (i.e. day ≥ 15 after transplantation)

◂
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as our final feature set resulting in the following logistic 
regression model:

where ω = −  3.0048615 −  0.2527461  ×  Ialanine 
−  0.8224731  ×  Icitrate +  0.9502339  ×  I lactate 
+ 0.2529190 × Iurea and Ix is the creatinine normalized, log-
transformed, centered and scaled signal intensity of metabo-
lite x in the sample.

Score = 100 ×
1

1 + e−�

3.10 � Performance

In order to estimate the expected classification performance, 
we generated receiver operator characteristic (ROC) curves 
and computed the area under the curve as a measure of per-
formance for both the training and the test cohorts. For the 
training set, we achieved an AUC value of 0.76, and for 
the test set the observed values were 0.72 and 0.74 for the 
strict and extended setting (Fig. 5). Of course, it is problem-
atic to trust training set performance, because the danger of 
overfitting cannot be neglected, even if proper procedures 
are followed. Nevertheless, training set performance is an 
important indicator of the upper bound of performance that 
can be expected in independent data.

4 � Discussion

4.1 � Physiological assessment of markers

While statistical performance is important, patho-physiolog-
ical plausibility of a given model must be addressed in order 
to detect possible artifacts and generate an overall under-
standing of the predictor as a whole. Therefore, we evaluated 
all metabolites that were chosen in one of the competing top 
performing models with respect to their biochemical and 
pathophysiological roles. Of course, it is not a reasonable 
requirement that all markers used in the model have been 
described in the context of kidney graft rejection, previously, 
but we aimed for plausible roles in the rejection process or 
kidney function itself.
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Fig. 3   Manual model selection based on AUC comparison in the 
test set. All graphs show the effect on AUC of different variations of 
models. a Analysis of effect of adding Lactate. Models substantially 
improves in performance when lactate was added as another inde-
pendent variable—all data points are found above the diagonal. b 
Analysis of effect of exchanging Alanine and Hippurate: on average, 

AUC was greater, when Alanine was used as an independent variable 
instead of hippurate—the magenta points are mostly found above the 
blue points, although the absolute improvement is small. c Analysis 
of effect of adding DMA. Adding DMA to a model seems to improve 
performance (data pints above the black line). However the amount of 
performance gain is negligible at 0.01–0.04 points in the AUC​

Fig. 4   Final candidate models. After selecting by model performance 
and assessing some feature alternatives (e.g. alanine vs. hippurate) 
we were left with a core model that comprises the features alanine, 
citrate and lactate. In addition there are a few models that add urea, 
glucose and/or glucuronate to that core feature set
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Our urinary metabolic constellation attempts to address 
the complexity and multifactorial aspect of organ transplant 
complications. The individual biomarkers might represent 
the downstream products of cellular activity, lymphocyte 
invasion and the immediate molecular response to stresses 
associated with rejection episodes. The most relevant reso-
nances for evaluating renal function after transplantation in 
our hands were those of citrate, lactate, alanine, and urea 
normalized to creatinine excretion.

Urinary citrate excretion is a common tool in the differ-
ential diagnosis of renal tubular acidosis (Buckalew 1989). 
The key regulatory enzymes directly associated with citrate 
production are mitochondrial aspartate aminotransferase, 
pyruvate dehydrogenase, and mitochondrial aconitase. 
Low urinary citrate might therefore be an indicator of renal 
tubular acidosis, given our observation of a strong negative 
correlation with transplant rejection. In line with this conclu-
sion, Le Moyec et al. demonstrated that citrate is a urinary 
marker that can identify transplanted kidneys with a favora-
ble prognosis (Le Moyec et al. 1993). They analyzed urine 
from 39 patients who underwent renal transplantation by 
NMR spectroscopy. These findings were also supported in 
animal models, describing dose-related decreases in citrate 
excretion as indicator of mercury-induced nephrotoxicity in 
rats (Nicholson et al. 1985). Urinary citrate was also vali-
dated to be indicative for chronic kidney disease in general 
(Posada-Ayala et al. 2014).

In our cohorts, urinary lactate showed a strong positive 
correlation with rejection episodes. A shift towards anaero-
bic metabolism might indicate respiratory chain dysfunc-
tion in mitochondria of the kidney during rejection and a 
subsequent accumulation of lactate. Similar findings were 
reported by Thirumurugan et al. who compared urinary 
lactate levels in pediatric patients suffering from Fanconi 

syndrome with those of healthy children and with those with 
other renal diseases (Thirumurugan et al. 2004). Urinary lac-
tate was increased in Fanconi syndrome. The authors suggest 
that the increase might be associated with reduced lactate 
reabsorption in the proximal tubule. Hence, urinary lactate/
creatinine might reflect disordered proximal renal tubular 
function during cellular transplant rejection.

MacPherson et al. described that tubulitis during acute 
rejection induced altered aminoaciduria shortly before 
clinical manifestations of acute rejection became evident 
(MacPherson et  al. 1991). These alterations in urinary 
amino acid excretion occurred several days before changes 
in urinary protein excretion or the serum concentrations of 
urea and creatinine. Hence, the deteriorated alanine/creati-
nine ratio observed in our study might at least in part reflect 
tubular cell disturbances caused by acute tubulitis.

Blood urea nitrogen is a well-accepted indication of renal 
health. The liver produces urea in the urea cycle as a waste 
product of protein digestion. The main pathological cause of 
an increase in serum urea is a decrease in glomerular filtra-
tion rate, suggesting renal failure. The urinary urea concen-
tration positively associated with kidney transplant rejection 
in our study might be reflective of increases in the respec-
tive serum levels. These were described to be predictive for 
kidney transplant failure (Moore et al. 2011). The authors 
report on the development and validation of a composite 
risk score to predict kidney transplant failure. Serum urea 
in conjunction with eGFR, recipient age, race, albumin lev-
els, and prior acute rejection significantly predicted overall 
transplant failure.

In summary, our urinary markers indicate kidney trans-
plant rejection, because they might reflect tubular dysfunc-
tion on the mitochondrial level, which means a disturbed 
energy metabolism due to hypo-perfusion, organ swelling, 
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and respiratory chain dysfunction. This might be accom-
panied by renal tubular acidosis, deteriorated co-transport 
in the proximal tubule and decreased glomerular filtration. 
In contrast, we could not detect any indication that soluble 
lymphocytic metabolites are entering the urine in significant 
amounts during rejection. The biochemical mechanisms of 
invading lymphocytes on tubular function during rejection 
remain largely unclear.

4.2 � Outlook

In this work, we have presented our modelling strategy and 
its results in the training set as well as a test cohort. The 
latter was not used in the training process. However, we did 
use it in selecting the final model. Therefore, the next obliga-
tory step is the performance assessment of our metabolite 
rejection score in a fully independent, prospective clinical 
trial. The results of that study will be published separately.
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