
Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 511

Application of Information Technology n

Data Extraction and Ad Hoc
Query of an Entity–
Attribute–Value Database

PRAKASH M. NADKARNI, MD, CYNTHIA BRANDT, MD, MOH

A b s t r a c t Entity–attribute–value (EAV) tables form the major component of several
mainstream electronic patient record systems (EPRSs). Such systems have been optimized for
real-time retrieval of individual patient data. Data warehousing, on the other hand, involves
cross-patient data retrieval based on values of patient attributes, with a focus on ad hoc query.
Attribute-centric query is inherently more difficult when data are stored in EAV form than when
they are stored conventionally. The authors illustrate their approach to the attribute-centric query
problem with ACT/DB, a database for managing clinical trials data. This approach is based on
metadata supporting a query front end that essentially hides the EAV/non-EAV nature of
individual attributes from the user. The authors’ work does not close the query problem, and
they identify several complex subproblems that are still to be solved.

n J Am Med Inform Assoc. 1998;5:511–527.

A clinical patient record needs to store several thou-
sand possible facts for patients across all specialties.
For any given patient, however, the number of actual
findings may not exceed a few dozen. A conventional
(‘‘orthodox’’) database table design (one fact per col-
umn) is unsuitable for such data, because of database
vendor limitations on the number of columns per ta-
ble and the need to continually add new tables or col-
umns whenever new facts need incorporation. Most
mainstream electronic patient record systems (EPRSs)
deal with this problem through the entity–attribute–
value (EAV) representation. In this methodology (also
referred to as row modeling), the fact descriptors (at-
tributes) are treated as data, so that the addition of
new facts does not make database restructuring nec-

Affiliation of the authors: Yale University, New Haven, Con-
necticut.

This work was supported in part by grant G08-LM-05583 from
the National Library of Medicine and by departmental grants
from the Yale Cancer Center, the Yale Clinical Trials Office, and
the Yale Department of Anesthesiology.

Correspondence and reprints: Prakash M. Nadkarni, MD, Cen-
ter for Medical Informatics, Yale University School of Med-
icine, P.O. Box 208009, New Haven, CT 06520-8009; e-mail:
^prakash.nadkarni@yale.edu&.

Received for publication: 3/2/98; accepted for publication:
7/1/98.

essary. An EAV table of patient information records
an entity (e.g., the patient, clinical event, or date), the
attribute, and the associated value of that attribute.

The following example, which does not describe
physical implementation, illustrates the EAV concept.
A ‘‘conventional’’ table of laboratory values would
have patient ID and date followed by numerous col-
umns for individual tests, such as hemoglobin, potas-
sium, and alanine transaminase. Each column would
contain values for the appropriate test. A particular
row would record all tests done for a given patient at
a particular date and time and would appear as fol-
lows:

(^patient XYZ&, 1/5/98 12:00 AM, 12.5 gm/dl, 4.9
Meq/L, 80 IU . . .)

Tests not done on that patient would have the corre-
sponding columns empty (null). In an EAV design, the
patient ID and date columns appear as before, but
instead of numerous columns with the names of tests
hard-coded, there would be only two more columns,
‘‘LabTestName’’ (the attribute) and ‘‘Value.’’ Thus, to
record lab tests for a patient, there would be quad-
ruples of the following form:

(^patient XYZ&, 1/5/98 12:00 AM, ‘‘Hemoglobin,’’ 12.5
gm/dl)

(^patient XYZ&, 1/5/98 12:00 AM, ‘‘Potassium,’’ 4.9
Meq/L)



512 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

and so on. One row is created for each test performed.

An EAV design represents a column-to-row transfor-
mation, because each row of such a table stores one
fact about a patient at a particular instant in time. Ex-
amples of EPRSs with a major EAV component in-
clude the 3M clinical data repository,1 which is based
on the pioneering HELP system,2,3 and the Columbia-
Presbyterian data repository.4,5

Electronic patient record systems focus on real-time
retrieval (as well as real-time updates or additions) of
individual patient data for clinical decision support.
In contrast, a clinical data warehouse focuses exclu-
sively on data retrieval, in batch mode. The basic clin-
ical warehouse operation involves identifying a set of
patients matching a particular profile in terms of dem-
ographic criteria, clinical history and findings, labo-
ratory parameters, or particular medical and surgical
interventions. Once these patients are identified, data
on particular attributes can be extracted for analysis.
Alternatively, patients from this set can be recruited
for a prospective study. In summary, EPRS queries can
be described as primarily entity (patient)-centric and
clinical warehouse queries as attribute-centric.

In a warehouse setting, ad hoc query capability is es-
sential: Query performance is important, but less so
than ease of query formulation. As we shall see, the
problem of attribute-centric query is a complex one
and far from being solved. This paper describes our
approach to tackling the attribute-centric query prob-
lem in the context of ACT/DB,6 a client-server data-
base for managing clinical trials data. Deployed at the
Yale Cancer Center and the Yale Clinical Trials Office,
ACT/DB currently uses an Oracle 7 server and Mi-
crosoft Access clients.

In this paper, we confine ourselves to relational da-
tabase technology and to the relational component of
existing EPRSs. (For efficient retrieval of individual
patient events, systems such as the 3M clinical data
repository, which use relational database engines, re-
dundantly store patient event data using nonrela-
tional representations such as ASN.1 structures.
However, such representations cannot be used ad-
vantageously by an attribute-centric query process.)

Background

Issues Involved in the Attribute-centric Query of
Clinical Databases

We first discuss the factors that make ad hoc query of
complex clinical databases far more difficult than that
of conventional databases.

The Heterogeneous Data Problem

In an operational clinical database, whether EPRS or
warehouse, data are stored in both conventional and
EAV forms (e.g., patient demographics are usually
stored conventionally). Furthermore, all patient data
are rarely stored in a single general-purpose EAV ta-
ble. Special-purpose EAV tables (row-modeled tables)
may store restricted kinds of homogeneous data—
e.g., laboratory values, pharmacy orders and medi-
cations, billable surgical and medical interventions,
and general clinical observations. In a special-purpose
EAV table, the name of a laboratory test or medication
is treated as an attribute.

As we will show, queries on EAV data are quite dif-
ferent from those on non-EAV data. For data display
or export to analytic packages, it is essential to per-
form row-to-column transformation of EAV data as
needed, so that all attributes are presented conven-
tionally. For this purpose, one must keep track of
which attribute is stored in which table and whether
it is in EAV or conventional form. The larger the sys-
tem, the more difficult the tracking task becomes. For
example, the Columbia-Presbyterian Medical Center
Medical Entities Dictionary currently tracks 43,000 at-
tributes7; the 3M clinical data repository schema has
approximately 100 EAV plus conventional patient
data tables.

Complex Boolean Queries on EAV versus
Conventional Data

Complex Boolean queries of a conventional table (for
example, ‘‘identify all patients where sex is female
AND age >=35 AND city = ‘New York’’’) can be cre-
ated easily by database neophytes through graphic
front ends such as GQL and Microsoft’s MS Query.
The EAV equivalent is significantly more complicated,
because each attribute-value pair for a patient is
stored as a separate row in a table. When performing
a similar complex Boolean query on a single EAV ta-
ble, the conceptual AND, OR, and NOT operations
must be translated into the row-based operations of
set union, set intersection, and set difference, respec-
tively.

The set operations, which are more complex as well
as relatively inefficient, have received little support
from database vendors because of their relative infre-
quency in traditional business applications. While
specified in ANSI SQL-92, many well-regarded en-
gines (e.g., Microsoft/Sybase SQL Server) do not di-
rectly support intersection and difference. One must
achieve the equivalent result through self-joins (if the
same EAV table is used more than once) and nested



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 513

subqueries, respectively. This requires relatively ad-
vanced structured query language (SQL) skills. Self-
joins, for example, employ the same table under mul-
tiple aliases, which are temporary names used to
avoid ambiguity.8

Support for SQL-92, even if universally available,
would help only SQL programmers. It would not
translate into improved end-user query productivity,
discussed later under ‘‘Challenges.’’ This is because
set operations do not readily translate into a visual/
graphic metaphor. In commercial ‘‘visual’’ query tools
such as MS Query and GQL (which are intended
for end-user deployment), for example, unions and
nested subqueries lack graphic counterparts and have
to be achieved by switching to ‘‘programmer mode’’
and writing explicit SQL.

Limits on the Number of Tables or Aliases
per Query

Consider a query that asks for, say, 20 attributes on a
set of patients (specified by Social Security number or
medical record unit number). If all the data were in a
conventional table, one would simply select those 20
columns. In the EAV situation, one cannot simply
write a single SQL SELECT statement involving a join
of 20 aliases. Most database engines limit the number
of tables or aliases per statement (e.g., Sybase’s cur-
rent limit is 169).

Such limits are enforced because memory require-
ments and execution times go up nonlinearly with the
number of aliases. (For example, in our informal tests
on a high-end PC with 128 MB of RAM, a five-table/
alias join yielding a one-million-row result was per-
formed with Microsoft Access in less than a minute.
A 20-table join (with much smaller tables) that was
expected to yield only 50 result rows never completed
even when run overnight in Access, and Oracle for
Windows NT on a 64 MB machine did not perform
any better.) We later describe how the program code
discussed in the present paper works around such
limits.

The Missing Data Problem

Consider the 20-attribute scenario in the above ex-
ample, where some attributes have not currently been
recorded for particular patients. With a conventional
table, the query would not need to be modified in any
way, and all patient records would appear in the out-
put with the missing attributes as blanks (nulls) in the
appropriate columns. In the EAV context, however,
missing data introduce a complication: With standard
(inner) joins of the EAV tables, any patient records

with at least one missing attribute will not appear in
the result table.

With EAV tables, forcing display of patient records
with partial data requires full outer joins.10 A full outer
join specifies that both tables on either side of a join
should have all their rows preserved. However, while
SQL-92 specifies the syntax for full outer joins, this is
not directly supported by the major database vendors
currently. To achieve an equivalent result requires
multiple steps, each involving intricate programming.

Failure of Static (Precompilation) Strategies

Given these issues, it is clear that, without special
tools, the design of SQL queries for heterogeneous
clinical databases requires hand-crafted code written
by persons who are experts in both SQL and the da-
tabase schema. It is possible to achieve some perfor-
mance gains by precompiling this code into database-
specific ‘‘stored procedures’’ that can then be executed
as needed. Unfortunately, this solution can be fragile.
A database schema is never static: Attributes are often
migrated across tables to improve efficiency or sim-
plify the schema. For example, the number of data
tables in the 3M clinical data repository may decrease
in future versions, with more facts being migrated to
a general-purpose ‘‘observations’’ table (S. M. Huff,
personal communication). Consequently, carefully for-
mulated procedures written for an older version of
the schema will have to be rewritten to work with the
newer version.

In any case, SELECT statements involving unions,
self-joins, and nested subqueries (which are the basis
of set operations) are difficult for the database engine
to optimize.11 Therefore, any performance gains of
precompiled SQL over dynamically interpreted SQL
are expected to be modest.

Challenges

Given programmers with enough expertise in SQL
and schema knowledge, and enough time to write,
debug, and maintain queries and stored procedures,
answers can always be extracted from a heterogene-
ous clinical database. However, we now encounter
two major hurdles in the accessibility of the data:

n The people who understand the data best (in terms
of clinical science or epidemiology) are not the ones
most qualified to query it.

n Even competent SQL programmers must spend
much time exploring the data dictionary to deter-
mine the location and nature of individual attri-
butes and dealing with the intricacies of data ex-



514 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

traction in the EAV context. The error-proneness
and tedium of the code that they must compose
manually contribute to a backlog with respect to the
outputs that end users want from the system.

As is well known, the traditional strength of relational
database technology over nonrelational approaches
has been ‘‘empowerment’’ of relatively nonsophisti-
cated users with respect to ad hoc query (e.g., with
graphic tools). However, in the case of heterogeneous
clinical databases, such empowerment is illusory be-
cause of the complexity of the coding required. Some
form of electronic assistance is clearly necessary to im-
prove the ease (and hence throughput) of query com-
position. In ACT/DB, the component that assists at-
tribute-centric query is called Query Kernel (QK).
Before we go on to QK’s operation, we first consider
how the basic EAV architecture can be adapted to im-
prove the efficiency of attribute-centric query.

Efficiency Considerations for Attribute-centric
EAV Schemas: Datatypes

Some EPRSs use a single EAV table to store all values
as strings, whether the values are intrinsically text,
numeric, or date. (The PTXT strings of the original
HELP system were of this nature.) This is perfectly
adequate for EPRS applications involving simple
look-up of a patient’s data. For attribute-centric query
based on values of attributes (e.g., abnormally high
values for a particular laboratory test), however, such
a design is unsuitable. This is because ASCII strings
representing numbers have a different sort order from
true numbers (i.e., an index on the value field is es-
sentially useless). In addition, if statistical aggregates
are to be computed, further inefficiency results be-
cause the strings need to be converted to numbers on
the fly.* If, instead, values are stored in their intrinsic
data type instead of as strings, it is possible to achieve
fast searches by creating compound indexes on a com-
bination of the attribute ID and the value. Other clin-
ical researchers have also improved query efficiency
by converting data into its intrinsic type,12 although
their work does not address EAV representation.

Designed for attribute-centric query, ACT/DB uses six
general-purpose EAV tables, depending on whether

*Arden Syntax medical logic modules, which operate on EPRS
data, use a rich set of statistical operators. Because they operate
on a single patient’s data at a time, any inefficiency resulting
from string-to-number conversion is not particularly noticeable.
However, it is quite another proposition to scan an entire da-
tabase looking for all patients whose minimum serum alanine
transaminase values were above a particular value (e.g., pa-
tients presenting with chronic active hepatitis).

the data type of the value is integer, real, date, short
string (less than 256 characters), long text, or binary
data such as images. (The last two data types cannot,
of course, be indexed.) The ACT/DB database also in-
troduces enumerated, ordinal, and Boolean data types
as subtypes of the integer data type (i.e., they are
stored in the same table). An enumerated data type is
a range of integers, each being associated with a de-
scriptive phrase—e.g., ‘‘Type of Transfusion’’ may be
1-Whole Blood, 2-Plasma, 3-RBC, 4-WBC, 5-Platelet,
or 6-Other. An ordinal data type is similar, except that
the numbers can be compared for relative
magnitude—e.g., ‘‘Tumor Progression’’ may be 0-
Cure, 1-Decrease, 2-No Change, or 3-Increase. Boolean
data types allow only two values, ‘‘True’’ and ‘‘False.’’

The concept of data types is critical to ACT/DB be-
cause their use assists in determining the semantic
correctness of a query formulation. Thus, aggregate
functions such as average and standard deviation are
permissible only for numeric attributes, and compar-
ison operators other than equality and inequality can-
not be used for enumerated attributes.

Relational databases permit strong typing of columns
in conventional tables, and advances in newer sys-
tems are aimed at encouraging and enhancing such
typing, e.g., through the use of domains or object clas-
ses.13 Such power should not be discarded in the EAV
context by converting data to least-common-denomi-
nator string form if the only expected benefit is sim-
plification of the task of programming storage man-
agement.

Previous Work Addressing Attribute-centric
Query

Most ad hoc query of clinical databases has focused
on patient-centric queries. The Web-accessible Colum-
bia-Presbyterian Medical Center Query Builder,14 for
example, works off the medical center’s data reposi-
tory and generates both Health Level 7 and Arden
Syntax15 for several categories of data, e.g., patient
demographics, laboratory values, medications, and
diagnoses. Detailed descriptions of true clinical data
warehouses (which store multiple kinds of clinical
data, possibly combined with nonclinical data, within
the same database) have not been published so far.
The Intermountain Health Care Data Warehouse
Project deploys a number of separate ‘‘data marts,’’
each containing a particular category of data.16 (The
difference between a mart and a warehouse is one of
scale and scope. A data mart, which contains a subset
of the enterprise’s data, is specialized for answering
queries specific to that subset. A warehouse contains
all the organization’s data.)



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 515

Data warehousing technology is relatively new. Be-
cause of its initial deployment in business applica-
tions, textbooks describing warehouse design, such as
Kimball,17 completely ignore the problem of general-
purpose EAV data tables, which store heterogeneous
facts in a single table. By heterogeneous, we mean that
the same table stores disparate facts such as history
findings, examination findings, and laboratory results.
Here, the nature and number of facts that will be
stored for a given entity (the patient) cannot be pre-
dicted in advance—they depend on a particular pa-
tient’s ailment. The problem of numerous and varying
attributes per entity appears to be unique to databases
that reflect rapidly evolving or highly heterogeneous
domains.†

Design Objectives

Query Kernel aims to address the problems of attri-
bute-centric query identified earlier. It is designed to
improve productivity by facilitating the creation and
execution of syntactically and semantically correct
queries through a graphical user interface (GUI).
While it is aimed primarily at analysts or biostatisti-
cians who are familiar with data analysis but not nec-
essarily experts in SQL, experienced SQL program-
mers can use it productively as well. The basic
premise of QK is that, from the user’s viewpoint, it
should not matter whether an attribute’s data are
stored in general-purpose EAV tables, special-purpose
EAV tables, or conventional tables. It should be pos-
sible to freely select any combination of attributes,
and responsibility for generating the correct code
(performing set operations, creating full outer joins
and smaller intermediate sets, etc.) should be borne
by QK and not by the user.

System Description

The ACT/DB Query Kernel: Principles and
Metadata

In order to meet its design objectives, QK uses a data
dictionary (metadata) that is the foundation of both
the user interface and code generation. Before describ-

†Many business data tables are row-modeled and can be re-
garded as special-purpose EAV tables. In a Sales table, for ex-
ample, the names of product items are not hard-coded in col-
umns any more than are the names of medications in a
prescriptions table. Instead, we record a product ID or medi-
cation ID. However, the number of attributes that describe a
given Sale—customer, product category, quantity purchased,
discount, etc.—is fixed and unvarying for the most part. That
is, a Sales table, while row-modeled, is homogeneous.

ing the structure of the metadata, we discuss an im-
portant component of it—namely, the description of
where a particular attribute is located.

Location of Data: Views

Data within ACT/DB are stored in several related ta-
bles. For example, the general-purpose EAV tables do
not actually store the patient ID, study ID, and date/
times of a patient event. This information is stored in
an event header table, which has a machine-generated
unique identifier (event ID) as primary key. The gen-
eral-purpose EAV tables have an event ID field that
points to this event record.

For the purpose of an attribute-centric query, the
schema of a database can be simplified through the
creation of a series of ‘‘views.’’ Views are a standard
relational database mechanism for combining parts of
different tables and presenting them as though the
combination were a single table. Query Kernel uses a
set of views to locate patient data for individual at-
tributes. The requirements of these views are as fol-
lows:

n Every view should combine entity information (pa-
tient ID, time stamps, etc.) with attribute and value
information. For EAV views, the attribute and value
will be in two separate columns, while for conven-
tional views, they happen to be the same column.

n Every attribute in the system must be associated
with one, and only one, view.

n There can be any number of instances of a given
attribute per patient, either because there are mul-
tiple data points per patient or as a consequence of
the join operation used to create the view. For ex-
ample, one view in ACT/DB combines basic patient
demographics (name, date of birth, sex, etc.) with
study enrollment data (primary diagnosis, date of
informed consent, etc.). If a given patient is enrolled
in multiple studies, there will be multiple instances
of (identical) demographic data for that patient.

The advantage of defining such views is that they are
much fewer in number than the tables on which they
are based. For example, QK uses only nine views—
six general-purpose EAV views corresponding to each
of the data-type-specific tables, two views for special-
purpose EAV tables (patient selection criteria and on-
protocol therapies), and the demographics-enrollment
view mentioned above. This number is not expected
to grow in the foreseeable future. (ACT/DB uses the
two relatively small special-purpose EAV tables only
because they serve to test code that will possibly be
ported to other systems, where such tables are used



516 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

extensively, e.g., for laboratory values and medica-
tions. It is not reasonable to expect the administrators
of such systems to undertake the nontrivial task of
moving all data from these tables into general-pur-
pose EAV tables just for the benefit of a query tool.
Instead, the query tool must adapt itself to the attri-
butes and data, as and where it finds them.)

Structure of the Metadata

The metadata record the following information for
each attribute.

n The name of the attribute, a description, and its da-
tatype. Name and description are used for keyword
searching of the metadata to select individual at-
tributes.

n The event type. This is the nature of the time-ori-
ented event (none, instant, period) that it repre-
sents. Event type determines the number of time
stamps associated with that attribute: zero, one, or
two, respectively. Basic demographic data are not
time-stamped. Most attributes are of the instant va-
riety, having a single time stamp recording the time
of the event. A few attributes are of the period va-
riety, with two time stamps representing the start
and end of the event.

n The name of the view where it occurs, and whether
this table or view represents an EAV or conventional
form of storage.

n The names of the attribute and value fields in this
view, and the attribute ID (typically a long integer
identifier) for this particular attribute, if EAV. (For
example, all general-purpose EAV views in ACT/
DB have the attribute column name ‘‘QuestionoID’’
and the value column name ‘‘Value.’’) If the attri-
bute is non-EAV, the attribute ID is null and the
attribute and value fields are identical.

n If the data type is Enumerated or Ordinal, the ID
of the controlled-vocabulary group (‘‘Choice Set’’) that
defines the set of integers for that attribute, with
their associated descriptive phrases. This informa-
tion is used to populate the contents of a pull-down
list when the user chooses an enumerated or ordi-
nal attribute. This way, the user can work, as far as
possible, with the symbolic (i.e., meaningful) rep-
resentations of the integers rather than with their
internal representations.

n If it happens to be a laboratory test, a lab test ID
pointing to the laboratory tests table. The metadata
also record whether the normal range for this at-
tribute is age-dependent and whether it is sex-depen-

dent. (This is used to retrieve queries specified in
terms of ‘‘normal’’ ranges for age and sex, as de-
scribed later.)

n Information specifying the higher-order grouping of
the attribute within forms used in the study. (Since
the same attribute can be used in multiple studies,
this information is retrieved only if we are perform-
ing study-specific data extracts.)

Population of the Metadata

The number of attributes in a system can be very
large. Clearly, if the metadata required by QK for
every attribute had to be entered by hand, consider-
able manual effort would be involved. Query Kernel
therefore captures its metadata from other parts of the
ACT/DB system. Every production EAV system must
maintain a controlled vocabulary of attributes, and
ACT/DB is no exception. Special-purpose EAV data
tables are also managed with their own controlled vo-
cabulary tables—e.g., for laboratory tests or medica-
tions, where the names of medications or tests are
treated as attributes. Metadata capture works as fol-
lows:

n For conventional (non-EAV) views that do not use
controlled vocabulary items, QK uses the host da-
tabase engine’s built-in system dictionary to cap-
ture all the column definitions in each view.

n For EAV views, QK records against each view the
name of the associated controlled vocabulary table
and the names of the attribute ID field (a long in-
teger), the attribute name field, and the attribute
description field (if available) in this table.

Currently, the metadata are not updated automati-
cally (e.g., whenever new attributes are added to the
system’s controlled-vocabulary tables or migrated
from one place to another). Instead, it is re-created on
demand through a button-click. The volume of the
metadata is currently small enough (around 1,000 at-
tributes) that re-creation takes less than 15 seconds. If,
however, the number of attributes grows by an order
of magnitude or more, we will have to devise a more
efficient means of synchronizing the metadata with
the contents of their source vocabularies. One such
means may be through the creation of an ‘‘intelligent
software agent’’18 to monitor changes to the state of
the controlled vocabulary tables and make the re-
quired adjustments to the metadata tables.

Output Operations

The QK kernel code is used for two related but dis-
tinct operations—true ad hoc query, which may or



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 517

may not be study-specific, and creation of study-spe-
cific data extracts on the client for export to statistics
packages or generation of formatted hard-copy re-
ports. As will be discussed shortly, the output of the
first operation can feed into the second. The primary
difference between the two operations is that a single
data-extract specification creates a single output file (a
database table on the client) generally containing a
large number of attributes (typically 50 or more). The
values in the output are the original raw data only. A
single ad hoc query operation, on the other hand, can
create zero, one, or multiple output tables in a single
operation, and the output can contain statistical ag-
gregates, raw values, or both.

We first discuss the principles and interface of the ad
hoc query operation.

Ad Hoc Query

Query Kernel’s ad hoc query can best be understood
by analogy. Consider a simple flat file containing a
patient ID and a large number of attributes. To extract
data on a subset of patients from such a file, the basic
operation (as phrased in SQL) is:

SELECT PatientoID, ^attributes to be displayed&
FROM Dataotable
WHERE ^patient selection criteria based on attri-
butes&

The ad hoc query process in effect creates the illusion
of a single patient data table containing a very large
number of attributes, with their associated time
stamps. The user specifies selection criteria and (op-
tionally) output attributes. Query Kernel uses the se-
lection criteria to identify a set (subgroup) of patients.
If no output attributes are specified (i.e., only patient
ID is desired), no output tables are created, and the
set of IDs is saved under a user-specified name for
later use. Such a set is typically used in the data ex-
traction operation, where extraction can be limited to
a particular set of patients. (The default is all patients
in the study.)

If one or more output attributes are specified, then
one or more output tables are created. All attributes
without time stamps and all statistical aggregates
(which yield a single value per patient) are placed in
a single table, one row per patient, along with the
patient IDs. Each attribute value that is time-stamped
is placed in its own separate table, along with patient
IDs and associated time-stamp values. Query Kernel
segregates time-stamped raw attribute data into in-
dividual tables because multiple values occur per pa-

tient, and the number of values per patient (or per
attribute) is generally not constant.

The ad hoc query interface is shown in Figure 1. This
is based on a ‘‘Tab Control’’ with multiple pages. We
now describe each of the components.

Choosing a Question‡

Clicking on the ‘‘Choose Question’’ button (top left)
opens a dialog box (not shown) where the user spec-
ifies one or more keywords with wild-card patterns if
desired, optionally combined in complex Boolean
fashion. (The graphical interface actually generates
the wild cards and Boolean expression based on the
user’s selections.) The user next brings up a list of
matching attributes with a button click and selects one
of them. This attribute, the ‘‘chosen question,’’ can be
used repeatedly in the selection criteria as well as in
the output attributes. (For example, one may display
both means and standard deviations for values of a
particular laboratory test.) When an attribute is added
to the criterion list, the attribute’s metadata are stored
with the criterion, to facilitate the task of later code
generation.

The user does not need to know whether the attribute
is stored in conventional or EAV form. Thus, the con-
ventional attributes ‘‘Last Name’’ and ‘‘Race’’ are
available, as are the EAV attributes ‘‘Blood Hemoglo-
bin’’ and ‘‘Serum Potassium.’’ When an attribute is
selected, its associated metadata are captured and
stored but are not shown to the user.

Selection Criteria

Each selection criterion (also shown in Figure 1) is
identified by the following fields:

n A serial number, used when criteria are to be com-
bined in complex Boolean fashion, as discussed
later.

n The attribute/question name.

n A relational operator, chosen from the pull-down box
below the criterion list. If no operator is chosen, it
defaults to equality. The available choices are de-
termined by the data type of the current attribute.
For example, only ‘‘=’’ and ‘‘< >’’ are available for
Boolean and enumerated attributes. For string data
types, the operator LIKE, which allows wild cards,
is also available.

‡Note that ‘‘question’’ and ‘‘attribute’’ are synonymous, but
non-informaticians are more comfortable with the former term.



518 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

F i g u r e 1 Specifying selection criteria in the Ad Hoc Query form. This and the next figure deal with patients in a
prospective breast cancer study. The selection criteria are patients who had menarche at age 16 years or later, no
pregnancies, irregular menses, and a history of either estrogen replacement therapy or oral contraceptive use. This is
specified by the compound selection criterion ‘‘1 & 2 & 5 & (3 u 4)’’ in the lower middle of the figure, where the numbers
refer to individual selection criteria. The rightmost column in the figure, ‘‘Enumerated/Ordinal Values,’’ is used to
display (and manipulate, if necessary) the internal integers corresponding to symbolic phrases for such data types.
Thus, the number 2 corresponds to the symbolic phrase ‘‘irregular’’ for the attribute ‘‘menses.’’

n A value, usually entered by the user, except for Bool-
ean, enumerated, and ordinal data types, where the
user can choose from the Value pull-down box. This
box’s contents change dynamically to hold a show
a list of the descriptive phrases associated with the
‘‘Choice Set’’ of the attribute for the currently se-
lected criterion, along with their corresponding in-
ternally used integers. When the user chooses a
phrase from the box, the corresponding integer
value is saved for later use (shown in the Enumer-
ated/Ordinal Values column of Figure 1). In addi-
tion, for attributes that are laboratory tests, the
choice ‘‘normal’’ becomes available. (We discuss the
use of ‘‘normals’’ later.)

A series of values can also be specified as comma-
separated items, and a range can be specified as
two values separated by a tilde. These cause QK to
generate SQL code containing IN and BETWEEN
clauses, respectively.

To use IN or BETWEEN for enumerated or ordinal
data types, the field in the Enumerated/Ordinal
Values column can be edited directly, e.g., by typing

in a list of integers with separating commas. This
is the only instance where the user must work with
the internal rather than the symbolic representation
of the data type elements. For these data types, the
integers are used instead of the symbolic phrases
because symbolic phrases may contain commas
(e.g., ‘‘multiorgan disease, both sides of dia-
phragm’’ for a Hodgkin’s disease grading) that
could confuse the program’s parser.

n An aggregate function (optional). This lets the user
specify criteria based on aggregates. For example,
to identify patients having a consistently high se-
rum alanine transaminase value, one might specify
the aggregate MIN, the relational operator ‘‘>,’’ and
the value ‘‘NORMAL.’’§

§For criteria without aggregates, QK generates a standard
SELECT . . . FROM . . . WHERE statement. Criteria with aggre-
gates cause appending of a GROUP BY . . . HAVING clause.
Structured query language has been greatly criticized for its
non-orthogonality when aggregate functions are involved, and
QK hides such non-orthogonality from the user.



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 519

F i g u r e 2 Specifying output attributes for patients identified by the criteria of Figure 1. These are the medians of the
histologic tumor grade, nuclear grade, and pathology grade (all of which are ordinal data types), and the average and
standard deviation of both the estrogen receptor and progesterone receptor histologic scores. Tumors are studied at
multiple times during the course of follow-up and may be collected from multiple sites (e.g., primary, recurrent primary,
or metastatic). Since all the output attributes are aggregates (one value per patient), they will be placed in a single
output table (given the name ‘‘BreastoCaoPath’’). The field names in this output table have been specified by typing
in and are slightly more mnemonic than the default field names, which are created by concatenating the aggregate
name and the attribute name.

The aggregates supported are MIN, MAX, COUNT,
AVG, STD (standard deviation), EARLIEST, and
LATEST. The last two, which are not part of SQL,
have been borrowed from the latest draft specifi-
cation of the Arden Syntax for medical logic mod-
ules.19 They refer to the chronologically first and
last values of an attribute (when multiple values
are present because of repeated sampling) and
are meaningful only for time-stamped attributes
when starting and ending date/times have been
specified.

As in the case of relational operators, the list of
available aggregate functions is constrained by the
data type of the current criterion’s attribute (e.g.,
AVG and STD are available only for numeric attri-
butes). If no aggregate operator is supplied, a pa-
tient will be selected if even a single value for that
patient matches the criterion.

n Starting and ending date/times (optional). These
may be specified to limit the search to a chronologic
range.

Combining Criteria

To combine criteria, their serial numbers are used,
along with the Boolean operators & (AND), u (OR),
and – (AND-NOT, for set differences) and parentheses
to disambiguate complex expressions as necessary
(e.g., (1 & (2 u 3)) – 4). If no compound criterion is
specified, all criteria are ANDed with each other.

Output Attributes

The page where output attributes are specified is
shown in Figure 2. Each output attribute is defined
by the following properties:

n The name of the attribute. As stated at the start of
this discussion of ‘‘Ad Hoc Query,’’ the patient ID
and time stamp fields will always be generated ap-
propriately in the output, and so do not have to be
specified.

n An aggregate function, if desired. As stated earlier,
an attribute may be used multiple times with dif-
ferent aggregate functions.



520 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

In addition to the functions mentioned under ‘‘Se-
lection Criteria’’ above, the Median can also be spec-
ified. The median is preferable to the average for
attributes with highly skewed frequency distribu-
tions (e.g., white blood cell count in cancer pa-
tients), and its omission from SQL (no relational da-
tabase engine supports it) significantly weakens
SQL’s power for statistical analysis.

Query Kernel computes the medians for an attri-
bute (grouped by patient ID) through SQL code de-
scribed in the legend of Figure 3. (This code uses
the ‘‘template’’ feature described later.) This code is
tolerably fast but understandably less efficient than
if ‘‘median’’ were a built-in SQL function. (The rea-
son we do not allow the median to be specified in
the selection criteria is that here every single in-
stance of the attribute (i.e., for all patients in the
system or study) needs to be processed. This may
slow performance to unacceptable levels with large
data sets.)

n The name of the output table for each attribute and
the name of the field in the table. Default names are
suggested for each table and field, based on a com-
bination of the attribute name and the aggregate,
but these can be overridden by the user.

n Whether the attribute is mandatory or optional. In an
output set, some (mandatory) attributes may be crit-
ical to a particular analysis, and there is no point
in listing data for patients who lack even a single
value of that attribute. Other (optional) attributes
would be useful if available, but it doesn’t critically
matter if they are not.

For example, suppose that drug XYZ is suspected
of causing cholestatic jaundice. As a selection cri-
terion, we specify patients who have received at
least 20 doses of XYZ. The desired output attributes
are the following laboratory tests: alkaline phos-
phatase, direct bilirubin, 5-nucleotidase, and leu-
cine aminopeptidase. We may decide that patients
lacking information on either of the first two pa-
rameters are not worth including in an analysis.
The latter two tests, while useful for obstructive
jaundice, are not always available because they are
seldom performed for screening, so patients lacking
data on either of these tests may still show up.
Therefore, we designate the first two attributes as
mandatory and the last two as optional.

Selection Criteria and Output Options

The output attribute values may be restricted by a
range of dates. The user may limit the selection of
patients to those enrolled in a specified study or set

of studies by selecting studies from a list box. As de-
scribed earlier, the user may save the set of patients
identified by the selection criteria for later use. Enu-
merated or ordinal attributes may be displayed either
in their symbolic form or in numeric form; the latter
is more suitable for graphing (especially with ordinal
attributes).

Display of Ad Hoc Query Data

The tables specified by the user are created on the
client. These may be viewed directly by users expe-
rienced in the use of Microsoft Access. However, the
list of tables already in the schema is quite large. As
a convenience, QK provides a ‘‘show data’’ page
where a list of all tables generated for the present
query is displayed. After the user selects a table, its
contents (with column headers) are displayed in
spreadsheet form within a scrolling window. Output
is ordered by patient, start of event, and end of event
(where applicable).

Saving a Query and Running a Saved Query

A query specification can be saved for later reuse un-
der a user-specified name. The specification is saved
in three tables. A top-level table stores the query name
and user-supplied description, along with settings
such as whether a patient set is to be created, the Bool-
ean expression that combines selection criteria, and
the list of studies, if any, that can restrict the scope of
the query. Two tables, which are related many-to-one
to this table, store the individual selection criteria and
the output attributes, respectively. The user can later
load a saved query by name, optionally edit its spec-
ifications, and run it.

The ability to save queries and run them later is useful
when the same set of queries need to be run repeat-
edly through a clinical trial. We also foresee saved
queries as the basis for eventually implementing (non-
real-time) event monitors within ACT/DB.

Code Generation

Query Kernel generates SQL based on the selection
criteria, output attributes, and options specified by the
user to retrieve data appropriately. Many of its oper-
ations use tables on the server and client with a pre-
determined structure: These tables hold intermediate
results and are emptied prior to being reused.

While QK checks extensively for errors prior to code
generation, semantic checking is nonetheless limited:
Nonsensical selection criteria, such as ‘‘pregnant
males,’’ will still pass through, although they will ob-
viously not return any results.



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 521

F i g u r e 3 Template for computing the median values of an attribute (for each patient). The SQL code inserts sorted
PatientoID and attribute values into a table, TempMed1, that automatically creates sequentially numbered records (with
the sequence number the RecID field). The maximum and minimum RecIDs for each patient are then determined, and
the ‘‘middle’’ RecIDs computed. For patients with an odd number of values, there is a single ‘‘middle’’ value, while
for patients with an even number of values, there are two ‘‘middle’’ values. The values corresponding to these RecIDs
are then extracted into another table, TempMed2, and the median for each patient is determined by taking the average
of the two values (for even numbers) or using the single value (for odd numbers).



522 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

Code generation in QK uses SQLGEN, a subroutine
library to facilitate client-server development.20 The
SQLGEN routines take care of such details as gener-
ating quotes around string values and omitting them
from numeric values. They are extensively used, for
example, in composing the WHERE clauses for indi-
vidual selection criteria.

Identifying Patients on the Basis of Selection
Criteria

For each individual selection criterion, QK generates
and executes SQL code that creates a temporary table
on the client, containing only matching patient IDs.
Individual tables are then combined using set inter-
section, union, or difference, based on the contents of
the Boolean expression, using a simple parser and
stack evaluator.21 The stack evaluator is based on
work done previously by the first author of this pa-
per.22

Creation of Output Tables

Query Kernel segregates the output attributes into
two sets—those that are guaranteed to occur once per
patient (either because the attribute is not time-
stamped or because an aggregate function is used)
and those that are not. The former attributes are des-
tined for a single table. The latter will go into their
own individual tables, because (as stated earlier) the
number of values per patient (and per attribute) will
generally not be the same.

Query Kernel identifies all patient records that have
at least one value for a mandatory parameter and
saves them to a temporary table. All output tables are
then filtered by removing records of patients who are
not in this set. Also, the non-time-stamped output ta-
ble is built up with inner joins for mandatory attri-
butes, followed by left outer joins for optional attri-
butes.

Templates

In order to perform many of its SQL generation tasks,
QK uses templates. A template is SQL text that contains
placeholders, which are replaced at run time by pa-
rameters passed to the template. For example, for the
template ‘‘Select ;1 from ;2 where ;3’’ and the pa-
rameters ‘‘LastoName, FirstoName,’’ ‘‘Patients,’’ and
‘‘Investigator = ‘Klein’,’’ the template expands to ‘‘Se-
lect LastoName, FirstoName from Patients where In-
vestigator = ‘Klein’.’’ A template generally contains
multiple SQL statements, separated by semicolons
(and is executed one statement at a time). It can also
contain C-style comments, which are stripped off be-
fore execution of the SQL code. (Because numeric pa-

rameters are not mnemonic, comments are essential
for the developer to document the template.)

Templates are a macro-substitution mechanism (sim-
ilar to C’s sprintf function) that get around some of
the limitations of stored procedures, which are fairly
rigid in what parameters can be passed to them. (For
example, stored procedures will not allow table or
field names to be passed as parameters, because these
must be known at compile time, not run time.) Be-
cause templates are stored as data, they make the code
generator easier to maintain and debug. Template
processing is handled by the SQLGEN library. The
template for median computation is illustrated in Fig-
ure 3.

Handling Laboratory Data: Defining ‘‘Normal’’

When retrieving patient data for laboratory tests, one
is often interested in identifying only patients whose
values are in particular ranges (i.e., normal, below
normal, or above normal) for one or more tests. The
most important determinants of ‘‘normal range’’ for a
test are the performing laboratory and the age and sex
of the patient. (Query Kernel does not handle the
physiologic conditions of pregnancy and lactation.)

When an attribute happens to be a laboratory test,
ACT/DB tracks the performing laboratory ID in the
event record. (This defaults to zero to indicate a ‘‘ge-
neric’’ laboratory.) The database stores a table of nor-
mal values for laboratory tests by age, sex, and labo-
ratory. To identify all patients with a ‘‘high’’ value for
a particular parameter, QK does the following:

n The view containing the data (and the laboratory ID)
is restricted by the attribute of interest.

n The patient demographics table (which contains date
of birth and sex) is optionally restricted by age and
sex (e.g., we may be searching for female patients
over 45 years of age). Age is determined by the dif-
ference in years between the date of birth and the
date the laboratory test was performed (the ‘‘start
of event’’ field in the view containing the data).

n The laboratory test ranges table is restricted by the
attribute/laboratory test of interest and optionally
by age and sex criteria.

n The three tables above are then joined, and the out-
put is restricted to those rows where the value is
greater than the upper range of normal.

The template that identifies patients based on an ag-
gregate function applied to normal (e.g., AVG (attri-
bute) > NORMAL) is illustrated in Figure 4.



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 523

F i g u r e 4 Template for identifying patients based on the concept of ‘‘normal’’ laboratory values. The template code
joins three tables or views—the view containing the laboratory values, the patient (demographics) table, and the Lab
otestoranges table that contains normal values for each test, by laboratory ID and the age and sex of the subject. The
join would return multiple rows per patient, so the output is restricted by use of the age and sex for each patient. The
num-ber of rows from the patient demographics table may be further limited if the user has specified that only patients
of a particular age range or sex are to be considered.

Currently, the handling of normal values by QK is
limited in that it does not allow expressions such as
‘‘values that are two times the normal value.’’ For
such purposes, values must be explicitly supplied as
numbers. (The button labeled ‘‘Show Normal Values
for Selected Test’’ on the Selection Criteria page
shown in Figure 1 is designed to assist the user. When
clicked it will go to the appropriate page and display
the normal values for the current attribute arranged
by age, sex, and laboratory.)

Query Kernel does not handle multiple units for the
same laboratory test. This is not a significant draw-
back, because accredited laboratories are standardized
with respect to test units.

Data Extracts

In data extraction, the user extracts all of the (typi-
cally) several hundred attributes measured in a study
into as few output tables as possible. An extract is

intended for export to analytic packages or reporting
tools, which require that data be structured in con-
ventional rather than EAV form. Whereas in ad hoc
query the user picks one attribute at a time, in data
extraction the user selects entire groups of questions
through a different interface. (In ACT/DB, attributes
are grouped by the study designer into functional and
logical categories such as hematology and physical ex-
amination as part of the study protocol.)

Typical study designs require redundant sampling of
certain attributes at multiple phases of the study, with
some attributes being sampled more often than oth-
ers. In addition, some patients may have more data
than others because, for example, they require a
greater number of chemotherapy cycles for an ade-
quate response. This results in an unequal number of
data points across attributes per patient. If one at-
tempted to put the entire study data into a single out-
put table structured in conventional form (one column
per attribute), then in most cases that file would not



524 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

be strictly rectangular. There would be numerous
‘‘missing values,’’ which were merely artifacts of the
sampling process.

The simplest way to avoid such artifacts is to generate
one output table per logical attribute group. This,
however, can yield a large number of output files and
complicates analysis that involves comparing attri-
butes that lie in different output files. If we know that
certain groups always occur together in a particular
study (e.g., routine clinical chemistry, hematology,
and physical examination are always gathered every
cycle) then such co-occurring groups can be extracted
together. (In ACT/DB, group co-occurrence informa-
tion is part of the study protocol definition.) This way,
the number of output files is minimized.

Data Structures and Code Generation

Query Kernel includes a batch facility that lets the
user generate multiple extracts at a time. Each extract
is defined by an extract name, a description, a flag
indicating whether the data will be exported to a sta-
tistical package, the list of attributes to be exported,
and an output table name. When the same set of ex-
tracts is run repeatedly for different subgroups of pa-
tients, the output table names can be changed for each
run.

Attributes are segregated into four sets: attributes
stored conventionally with and without time stamps,
and attributes stored in EAV form with and without
time stamps. (Conventional time-stamped attributes
do not currently exist in ACT/DB, but the algorithm
considers this possibility anyway because it may be
ported to other systems.) For a given extract, one or
more of these sets may be empty. The attributes of
each set are merged to create a temporary table, and
the temporary tables are then joined to create the final
extract.

Conventional attributes are segregated by the view
where they occur, so that all the desired attributes in
a single view can be extracted through a single SQL
SELECT statement. For EAV attributes, on the other
hand, extraction initially occurs one attribute at a
time.

Unlike the case of ad hoc query, full outer joins are
used throughout the data extraction operation. As
mentioned earlier, a single extract can have numerous
attributes or fields (up to 255). To bypass the problem,
mentioned earlier, of practical limits on the number
of aliases per join, the extraction algorithm works as
follows:

n All combinations of patient ID (i.e., all patients in
the trial or the subgroup) and phase ID for the set
of selected attributes are generated using a ‘‘Car-
tesian join’’ mechanism8 and stored in a temporary
server table.

n For each attribute that must be extracted, this tem-
porary table is ‘‘left outer joined’’ with a selection
on the patient data view that holds the attribute
and the result captured on the client. This way, even
if information on a particular attribute has not been
recorded at all, all combinations of patients and
phases will still appear, with the attribute column
holding null values. The result is a set of modestly
sized temporary tables on the client with program-
generated names, one table per attribute.

n These tables are combined into one table using stan-
dard inner joins and a stepwise join that combines
a maximum of five tables at a time and creates a
new table. The resultant tables are then combined
with each other, and so on, until finally only a sin-
gle table is left. At each step, the number of new
tables created is CEILING (N/5) where N was the
number of tables created in the previous step. Thus,
for an extract that will eventually contain 132 at-
tributes, the number of new tables in each step are
27, 6, 2, and 1. At the end of each step, temporary
tables created during the previous step are erased.

Status Report

Query Kernel was created some time after ACT/DB’s
initial production deployment. We have considerable
practical experience with the data extract module, em-
ploying it on a regular basis. The ad hoc query mod-
ule is in pilot deployment: We have tested it on the
protocols within the system. We expect that the func-
tionality and user interface of this module will evolve
over the next year as it is used by an increasing num-
ber of our scientific collaborators at Yale and else-
where. Some features may also change on the basis of
user feedback.

Discussion

While the work embodied in QK does not represent
any major conceptual breakthroughs, our implemen-
tation using sufficiently rich metadata to direct the ad
hoc query of heterogeneous clinical databases appears
to be original. Metadata as stored in the system data
dictionary are used by all SQL-based database engines
to process queries on conventional database architec-



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 525

tures, and QK represents an extension of such func-
tionality. An advantage of generating SQL dynami-
cally through the metadata is that the user is protected
against changes in the schema.

The ideas behind QK have been partially inspired by
the concept of the ‘‘universal relation’’ of Ullman.23

This work was aimed at creating the illusion of a sin-
gle table within a database and sparing the user the
task of having to specify intertable joins during ad hoc
query. The ‘‘universal relation’’ concept has since been
partially discredited. For example, certain queries
(e.g., those using self-joins) cannot be specified un-
ambiguously without the use of explicit joins and ali-
ases.24 Also, Ullman failed to anticipate the power of
today’s query GUIs (such as Microsoft’s Visual-
Query-By-Example technology) and did not consider
EAV data, which adds many complications to the
query process.

Unlike the ‘‘universal relation,’’ QK is not intended to
provide a front end to any arbitrarily complex rela-
tional schema. It is constrained to operating on a sin-
gle entity within the schema (in this case, the patient).
It takes advantage of the fact that a clinical event has
a very simple conceptual structure, in that a single
event is associated with any number of findings de-
scribed by attribute-value pairs.

The role of QK should be regarded as complementary
to the use of analytic tools such as multidimensional
database engines.25 The latter will work well on ho-
mogeneous tables such as laboratory tests or prescrip-
tion/refill data but are not suited for heterogeneous
tables such as clinical observations.

Limitations and Future Work

We must emphasize that the work described in this
paper does not represent a complete and final solution
to the heterogeneous data query problem. Outstand-
ing issues that need to be addressed are discussed be-
low.

Optimization of the Query Process

The current approach of QK to identifying a set of
patients on the basis of compound selection criteria—
extracting individual sets of patients on the basis of
each individual criterion before combining them us-
ing a stack evaluator—is somewhat simplistic. Cer-
tain criteria (e.g., sex = female) result in relatively
large intermediate sets. Because the intermediate re-
sult sets are downloaded on the client machine before
they are processed further, this can stress the client-
server communications link in a low-to-moderate-
bandwidth setting.

It is possible to optimize this operation by generating
SQL that judiciously combines multiple criteria in a
single SELECT statement that operates on server ta-
bles so that the intermediate sets are guaranteed to be
of modest size. For this strategy to work successfully,
ACT/DB needs to maintain statistics that can be con-
sulted by QK. In particular, counts of values for the
attributes that are in EAV form need to be stored. The
EAV design is essentially the database equivalent of a
sparse-matrix representation, and some attributes are
sparser than others. For example, a significant pro-
portion of patients would have values for Hemoglo-
bin, but a much smaller number would have values
for anti-DNA antibodies. Similar statistics (such as the
number of rows in tables) are used by existing data-
base engines to perform ‘‘cost-based optimization’’
when processing queries on conventional tables. An
interesting research direction will be to control the Or-
acle server’s cost-based optimization by making QK
generate ‘‘hints’’ along with SQL. (Hints are pseudo-
comments read by the SQL parser and passed to the
optimizer.)

An alternative approach to stored statistics is to dy-
namically determine the potential row count of indi-
vidual selection criteria before deciding whether they
could be usefully combined. As the volume of data
grows, the overhead of prior determination of row
counts will be offset by increased efficiency when re-
trieving the actual data.

If the data within ACT/DB increase by a couple of
orders of magnitude, such optimization will be man-
dated.

Enrichment with Semantic Information

Semantics can be used to enrich querying in two dis-
tinct ways. First, it is possible to prevent obviously
nonsensical queries (e.g., identify pregnant males)
through a set of rules. We are in the process of incor-
porating rules into ACT/DB for the purposes of cross-
field validation, and queries can benefit from such
rules as well. Of course, the question then arises as to
how extensive rule coverage should be. After all, QK
is intended for use by those who have a reasonable
knowledge of clinical medicine.

Second, attributes often form a hierarchy, especially in
the domain of disease and medications. For example,
the attribute ‘‘Cephalosporin’’ represents a parent
concept that can have the children ‘‘Cefazolin,’’ ‘‘Cef-
triaxone,’’ and so forth. One might want to query the
database for cephalosporin usage (or beta-lactam, or
antibiotic usage) when the medication data records
the actual drugs rather than the drug family.



526 NADKARNI, BRANDT, Query and Data Extraction from an EAV Database

Support of such queries requires the use of a medical
entities dictionary. The National Library of Medicine’s
Unified Medical Language System26 has the founda-
tions of a semantic network (where concepts are clas-
sified into broad categories). In addition, the UMLS
records explicit links (such as parent-child relation-
ships) between concepts as described by human data
curators, as well as pair-wise frequency of co-occur-
rences of concepts as recorded by a computerized scan
of biomedical literature. (Co-occurrences have been
used for automated knowledge discovery through the
clustering of algorithms to create ‘‘concept spaces.’’27)
We expect to eventually incorporate such a dictionary
into ACT/DB, most likely by building on the existing
infrastructure of the UMLS.

Support of Temporal Primitives for Query

Temporal databases are an active area of research. The
only well-known clinical system employing a rich set
of temporal functions (and handling period data ro-
bustly) is Das and Musen’s CHRONUS system.28,29

(However, TimeLine SQL, the language created for
CHRONUS, is significantly different from the draft
ANSI version of SQL-Temporal, which is intended for
incorporation into SQL-3.30,31) Support of period data
is not yet part of the latest draft version of Arden
Syntax but is planned for a future release.19

It is clear that QK would benefit enormously from the
ability to specify temporal relationships between in-
dividual selection criteria (e.g., that a particular symp-
tom occurred within a certain time period after ad-
ministration of a particular medication). Such ability
would result in output that is more concise and would
enhance the specificity of queries. Adding such sup-
port is not a trivial undertaking: Our long-term goal
is to combine the functionality of SQL-Temporal with
Arden Syntax (the latter has a few useful functions
not defined in the former).

Limitations of the Graphic Metaphor

The operations performed by QK are not possible
through SQL generation alone. In many cases, the ex-
ecution of procedural subroutines using the client pro-
gramming language (Visual Basic for Applications) is
interspersed with that of generated SQL code. We
have not tried to create a brand-new programming
language that would seek to conceal the difference be-
tween EAV and non-EAV data; the GUI takes care of
that. However, a GUI, while easier to use than a lan-
guage, is ultimately less expressive than the latter
(‘‘what you see is all you get’’). Query Kernel employs
only a subset of SQL; for example, expressions in-
volving mathematical functions other than the statis-
tical aggregates are not available.

We have deliberately limited ourselves in this matter
and avoided reinventing the wheel. The output cre-
ated by QK is not intended to be the final output that
all users could ever want. In many cases, the output
of QK is only the starting point for some other oper-
ation, such as a cosmeticized report, statistical analy-
sis, graphing, or further querying—in all cases, using
standard, off-the-shelf tools. However, it is possible
that certain relatively modest programming enhance-
ments will result in a significant increase in function-
ality. (For example, the aggregate functions have been
implemented because they are, in most cases, part of
SQL itself, and users/programmers who manipulate
conventional tables expect to be able to use them.)
Greater testing of QK with more users will determine
the nature of such enhancements.

While QK does not close the attribute-centric query
problem, many of its existing features should prove
instructive to researchers who are grappling with sim-
ilar problems.

Dr. Vincent de Vita, Director, Yale Cancer Center, first identified
the need for a clinical trials database. Dr. Perry Miller, Director,
Yale Center for Medical Informatics, defined the need for a ro-
bust means of handling laboratory values generated from mul-
tiple laboratories. Dr. Lee Schacter of the Yale Cancer Center,
Dr. John Fisk of Vanderbilt University, and Dr. Rajani Nadkarni
of Medical Oncology Associates, New Haven, provided valu-
able inputs on the specifications of the Query Kernel. The Prin-
cipal Investigator for the Breast Cancer Protocol used to illus-
trate Figures 1 and 2 is Dr. Michael Reiss of the Yale Cancer
Center.

References n

1. The 3M Clinical Data Repository. Murray, Utah: 3M Health
Information Systems, 1998.

2. Huff SM, Haug DJ, Stevens LE, Dupont CC, Pryor TA.
HELP the next generation: a new client-server architecture.
Proc 18th Symp Comput Appl Med Care. 1994:271–5.

3. Huff SM, Berthelsen CL, Pryor TA, Dudley AS. Evaluation
of a SQL model of the HELP patient database. Proc 15th
Symp Comput Appl Med Care. 1991:386–90.

4. Friedman C, Hripcsak G, Johnson S, Cimino J, Clayton P. A
generalized relational schema for an integrated clinical pa-
tient database. Proc 14th Symp Comput Appl Med Care.
1990:335–9.

5. Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P.
Using metadata to integrate medical knowledge in a clinical
information system. Proc 14th Symp Comput Appl Med
Care. 1990:340–4.

6. Nadkarni PM, Brandt C, Frawley S, et al. ACT/DB: a client-
server database for managing entity-attribute-value clinical
trials data. J Am Med Inform Assoc. 1998;5(2):139–51.

7. Cimino JJ, Clayton PD, Hripcsak G, Johnson SB. Knowl-
edge-based approaches to the maintenance of a large con-
trolled medical terminology. J Am Med Inform Assoc. 1994;
1:35–50.



Journal of the American Medical Informatics Association Volume 5 Number 6 Nov / Dec 1998 527

8. Date CJ, McGoveran D. A guide to the SQL standard. Read-
ing, Mass.: Addison-Wesley, 1992.

9. Sybase Inc. System 11 Reference. Vol 1. Emeryville, Calif.:
Sybase, 1996.

10. Melton J, Simon AR. Understanding the new SQL: a com-
plete guide. San Mateo, Calif.: Morgan Kaufman, 1993.

11. Celko J. Everything you know is wrong. DBMS Magazine.
1996;9(9):18–20.

12. Prather JC, Lobach DF, Hales JW, Hage ML, Fehrs SJ, Ham-
mond WE. Converting a legacy system database into rela-
tional format to enhance query efficiency. Proc AMIA Annu
Fall Symp. 1995:372–6.

13. Darwen H, Date C. Introducing the Third Manifesto. Da-
tabase Programming and Design. 1995;8(1):10–14.

14. Wilcox A, Hripcsak G. CPMC Query Builder. Available
at: http://www.cpmc.columbia.edu/arden/qbr/. Accessed
Sep 1998.

15. Hripcsak G. Writing Arden Syntax Medical Logic Modules.
Comput Biol Med. 1994;24(5):331–63.

16. Wang P, Pryor TA, Narus S, Hardman R, Deavila M. The
Web-enabled IHC enterprise data warehouse for clinical
process improvement and outcomes measurement. Proc
AMIA Annu Fall Symp. 1997:1028.

17. Kimball R. The Data Warehousing Toolkit. New York: John
Wiley, 1997.

18. McKie S. Software agents: application intelligence goes un-
dercover. DBMS Magazine. 1995;8(4):56–60.

19. Ludemann P, Wilcox A, Hripcsak G. Standard specification
for defining and sharing modular health knowledge bases
(Arden Syntax for Medical Logic Modules), version 4. Phil-
adelphia, Pa.: American Society for Testing Materials,
1997. Also available at: http://www.cpmc.columbia.edu/
arden/.

20. Nadkarni PM, Cheung KH. SQLGEN: an environment for

rapid client-server database application development. Com-
put Biomed Res. 1995;28(12):479–99.

21. Aho AV, Sethi R, Ullman JD. Section 2.3: Syntax-Directed
Translation. Compilers: Principles, Techniques, Tools. Read-
ing, Mass.: Addison-Wesley, 1988:33–40.

22. Nadkarni PM. Concept Locator: A client-server application
for retrieval of UMLS Metathesaurus concepts through
complex Boolean query. Comput Biomed Res. 1997;30:
323–36.

23. Ullman JD. Principles of database and knowledge-base sys-
tems. Rockville, Md.: Computer Science Press, 1989.

24. Date CJ. Selected Database Readings, 1985–1989. 7th ed.
Reading, Mass.: Addison-Wesley, 1990.

25. Elkins SB. Open OLAP. DBMS Magazine. 1998;11(4):34–8.
26. Lindberg DAB, Humphreys BL, McCray AT. The Unified

Medical Language System. Methods Inform Med. 1993;32:
281–91.

27. Chen H, Ng TD, Martinez J, Schatz BR. Concept space ap-
proach to addressing the vocabulary problem in scientific
information retrieval: an experiment on the worm com-
munity system. J Am Soc Inform Sci. 1997;48(1):17–31.

28. Das AK, Musen MA. A temporal query system for protocol-
directed decision support. Methods Inform Med. 1994;33(4):
358–70.

29. Das AK, Musen MA. A comparison of the temporal expres-
siveness of three database query methods. Proc 19th Annu
Symp Comput Appl Med Care. 1995:331–7.

30. Snodgrass RT, Boehlen MH, Jensen CS, Steiner A. Adding
Transaction Time to SQL Temporal: ANSI Experts’ Contri-
bution. Geneva, Switzerland: International Organization for
Standardization, 1996.

31. Snodgrass RT, Boehlen MH, Jensen CS, Steiner A. Adding
Valid Time to SQL Temporal: ANSI Experts’ Contribution.
Geneva, Switzerland: International Organization for Stan-
dardization, 1996.


