Skip to main content
. 2018 Sep 11;13(9):e0202403. doi: 10.1371/journal.pone.0202403

Table 3. Relationship between real and predicted range sizes based on a linear regression model.

a is the intercept, b is the slope of the regression. R2 is the coefficient of determination. R2 values higher than 0.8 are highlighted. Higher R2 associated with a≈0 and b≈1 denotes best models for range-size prediction.

LPT Balance
Environm.
Variables
Modelling
procedures
a b R2 A b R2
All ES 107.4087 0.7586 0.974 107.4087 0.7586 0.974
All Mahal -103.1712 0.9338 0.954 129.8441 0.8254 0.943
All MXLQ 261.7759 1.5257 0.955 584.5047 1.1697 0.958
All MXDEF 169.613 1.3059 0.961 590.3274 1.0117 0.962
All SVM 145.9529 1.5522 0.939 716.1815 1.1428 0.949
6 PCA ES 234.4172 1.0185 0.972 234.4172 1.0185 0.972
6 PCA Mahal 956.7514 1.4758 0.943 1071.594 1.1754 0.942
6 PCA MXLQ 484.8208 1.4689 0.940 773.1833 1.16 0.959
6 PCA MXDEF 416.2603 1.4710 0.945 752.6322 1.1566 0.958
6 PCA SVM 676.0404 1.7828 0.901 1261.578 1.1252 0.919
4 PCA ES 291.2412 1.1855 0.971 291.2412 1.1855 0.971
4 PCA Mahal 628.8269 1.7099 0.926 1142.131 1.2586 0.954
4 PCA MXLQ 682.4333 1.5067 0.943 927.4211 1.2327 0.954
4 PCA MXDEF 658.1231 1.5100 0.940 922.4394 1.237 0.953
4 PCA SVM 1040.6258 1.7033 0.894 1306.712 1.2166 0.936