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Abstract

Individuals vary substantially in their tendency to take risks. In the last two decades, a large 

number of neuroimaging studies in humans have explored the neural mechanisms of several 

cognitive processes that contribute to risk taking. Here I focus on functional and structural MRI 

studies that investigated uncertainty processing, one of the main features of risk behavior. Using 

decision making and learning paradigms, these studies implicated a network of brain areas, 

including posterior parietal cortex, anterior insula, anterior cingulate cortex and ventrolateral 

prefrontal cortex, in various aspects of uncertainty processing. Individual differences in behavior 

under uncertainty are reflected in the function and structure of some of these areas, and are 

integrated into value representations in ventromedial prefrontal cortex and ventral striatum, 

reinforcing the potential contribution of all of these brain structures to individual tendencies to 

take risks.

In August 1974 Philippe Petit, a young Frenchman, fixed a rope between the tops of the 

Twin Towers in New York, a quarter mile above the ground, and crossed it back and forth 

several times (Petit 2002). When Petit set out on this adventure, he took a risk. The outcome 

of his action was highly uncertain and could have been either highly positive - rewarding 

sensations of accomplishment, recognition and fame - or devastating. Fortunately for Petit, 

his endeavor was successful.

Some degree of risk-taking is generally deemed important for achieving progress in any 

creative activity, including, for example, in science (Rzhetsky, Foster, Foster and Evans 

2015) or business (March and Shapira 1987). Extreme avoidance of risk is associated with 

trait anxiety (Maner and others 2007) and is a characteristic of anxiety-based disorders, such 

as obsessive compulsive disorder (Pushkarskaya and others 2015) and posttraumatic stress 

disorder (Ruderman and others 2016). Excessive risk-taking, however, is also maladaptive 

and is linked to other mental disorders, including schizophrenia and bipolar disorder (Reddy 

and others 2014). Increased risk-taking tendencies are also at the core of many harmful 

behaviors, such as substance abuse (Wagner 2001), reckless driving (Zuckerman and 

Kuhlman 2000) and unsafe sex (Donohew and others 2000).

What gives rise to risk behavior? Why do some people put their health, wealth and 

wellbeing at risk, while others avoid even the slightest uncertainty? Psychologists have been 

studying these questions for decades. In recent years they have been joined by 
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neuroscientists, in an attempt to reveal the neural mechanisms underlying risk-taking 

behavior. A useful approach to studying these mechanisms is to examine the neural bases of 

several rudimentary mental processes that contribute to risk-taking behavior, including, but 

not limited to, sensitivity to rewards and punishments, self-control, and the processing of 

uncertainty.

Individual sensitivities to rewards and punishments likely play a role in risk-taking 

behaviors, which typically carry both positive and negative consequences. High sensitivity to 

rewards may lead a person to focus more on the rewarding aspects of a risky activity than on 

its possible adverse outcomes. Such an individual will be more drawn to that activity 

compared to a person who is less susceptible to reward. Conversely, sensitivity to 

punishment will attract the individual’s attention to the potential negative consequences of a 

risky activity, decreasing the likelihood that she will take part in that activity. An important 

aspect of these positive and negative outcomes of a risky action is that they typically occur at 

different points in time. For example, smoking a cigarette is immediately rewarding to a 

smoker, but its health hazards will only occur in the future. Conversely, a risky business 

decision may have an immediate cost, but pay off in the future. Thus, self-control, or the 

ability to forgo immediate rewards in order to avoid future large costs, may hinder some 

risky behaviors, while accepting immediate costs to achieve future large gains, may be 

associated with other types of risk taking.

But perhaps the hallmark of risky behaviors is that they involve uncertain outcomes. How an 

individual handles uncertainty will therefore strongly affect her tendency to engage in risky 

behaviors. A person who is tolerant of uncertainty will be more likely to take risks compared 

to one who finds uncertainty distressing. The processing of uncertainty is complex in itself 

and can be further decomposed into subprocesses. Most notably, economists distinguish 

between uncertainty with known outcome probabilities, termed risk1 (Box 1), and 

uncertainty with unknown outcome probabilities, referred to as ambiguity (Box 1), a 

distinction that is proving useful in studying risk-taking behavior. Individuals vary 

substantially in how they perceive outcome probabilities (subjective probability), how they 

tradeoff outcome magnitude against its probability (risk attitude) and how they treat 

ambiguity around outcome probabilities (ambiguity attitude). In this review I will survey the 

neuroanatomical substrates of the different cognitive processes that make risky behaviors in 

humans, focusing on uncertainty processing and individual differences in uncertainty 

attitudes. As we will see, prior research has made substantial stride in unraveling important 

uncertainty-related neural mechanisms, but many open questions remain for future research.

Methodological issues of studying decision making under uncertainty

Risk-taking behavior inevitably involves uncertainty. Uncertainty, however, is not unique to 

risky behavior – it exists everywhere, in virtually any decision we make. Whether you 

choose a course from a menu, contemplate a retirement plan or entertain the idea of a 

bungee jump, the outcome of your choice is never certain. A large number of human 

1Note that this economic definition of risk is separate, and narrower, from the day-to-day usage of the word. In this review I use the 
term “risk” in this narrow economic sense, and the terms “risk taking” or “risk behavior” for the broader meaning of risk.
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neuroimaging studies investigated the neural basis of decision making under uncertainty. 

Many early studies employed learning tasks, in which participants learned to associate 

stimuli with uncertain rewards or punishments and to select the stimuli that lead to better 

outcomes. A widely used example of such task is the Iowa Gambling Task (IGT; Bechara, 

Damasio, Tranel and Damasio 1997). In the IGT participants are presented with four decks 

of cards, and on each trial draw a card from a deck of their choice. Each card is associated 

with either a gain or a loss. In two of the decks, most of the cards lead to large gains, but 

every now and then a card leads to an even larger loss, resulting in an overall loss in the long 

run. In the other two decks cards lead to lower gains, but even lower losses, resulting in a net 

gain. At the beginning of the task, participants have no information about outcome 

probabilities, which means that their initial decisions are made under complete ambiguity 
(Box 1). With time, ambiguity is reduced and healthy participants learn to limit their card 

choices to the “good” decks. Bechara and colleagues (Bechara, Damasio, Tranel and 

Damasio 1997), have shown that patients with brain lesion in ventromedial prefrontal cortex 

(vmPFC, Figure 1) are impaired on this task, supporting a role for vmPFC in risk-taking 

behavior and decision making in general. The complexity of the task, however, makes it 

difficult to delineate the specific role of vmPFC or the specific impairment in vmPFC-

lesioned patients. In particular, learning from feedback is an important feature of the IGT, 

and reduced earnings on the task may result from a general learning impairment. 

Alternatively, deficient performance on the IGT may be due to overestimation of the positive 

value of potential gains, or underestimation of the negative value of potential losses. 

Therefore, while the IGT has been highly valuable in highlighting one of the central brain 

structures involved in decision making, many subsequent neuroimaging studies have opted 

for simpler designs, to allow for delineation of the neural bases of the various underlying 

cognitive processes.

Some of these subsequent studies eliminated the learning aspect of the task. For example, 

Preuschoff and colleagues (Preuschoff, Bossaerts and Quartz 2006) asked participants to bet 

on whether the first or second of two consecutively presented cards would be of a higher 

number (Figure 2A). Cards were withdrawn from a deck of 10 cards, numbered 1–10, with 

no repetition. In this way, participants experienced varying levels of uncertainty during the 

anticipatory period between the presentation of the first and second cards. For example, if 

the number on the first card was 1 or 10, participants could predict with certainty that the 

second card would bear a higher or lower number respectively. Conversely, uncertainty was 

maximal if the first card was numbered 5 or 6. Tobler and colleagues (Tobler, O’Doherty, 

Dolan and Schultz 2007) used a simple paradigm, in which unique stimuli were associated 

with a particular reward and a particular probability (Figure 2B) in an initial training session. 

Following training, single stimuli, with fully established associations, were presented in the 

main experiment. Knutson and colleagues (Knutson, Taylor, Kaufman, Peterson and Glover 

2005) devised a task in which reward was obtained if participants pressed a button within a 

particular time window. The timing of the task was adjusted individually for each 

participant, yielding trials with varying probabilities for success, and therefore varied 

probabilities for reward.

Several studies adopted the behavioral economics approach of “revealed preference” 

(Samuelson 1948). In these studies participants choose between options that vary on their 
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potential outcomes, as well as on the probability for obtaining these outcomes, and thus need 

to tradeoff reward and probability (Figure 2C). Based on these observed choices, the 

researchers can estimate individual risk attitudes (Box 1). Consider for example the choice 

between receiving $5 for sure and playing a lottery that offers 50% chance of winning $10 

(but also 50% of winning nothing). Both options are of the same expected value (Box 1), but 

the lottery is risky. An individual who is not affected by risk (risk neutral) will be indifferent 

between these options. Conversely, a risk-averse individual would prefer the sure $5, 

whereas a risk-seeking individual would opt for the lottery. To simplify the design and the 

interpretation of the neural results, some of these studies keep one of the options constant 

across trials, such that any change in neural activation from trial to trial can be directly 

related to changes in only one option. For example, Levy and colleagues (Levy, Snell, 

Nelson, Rustichini and Glimcher 2010) asked participants to make a series of choices 

between risky options. One option was always a probability of 0.5 to win $5, whereas the 

other option varied in its outcome probability (0.13–0.38) and outcome magnitude ($5-$65). 

No feedback was provided during the experiment. Instead, after the completion of the scan a 

few trials were randomly selected and played for real money. This experimental feature 

incentivizes participants to reveal their true preferences (Hertwig and Ortmann 2001) - since 

participants do not know beforehand which trials would be selected, they have to treat each 

and every trial as if they will be paid according to their choice on that trial. Using these 

various techniques, functional and structural MRI studies have begun to unravel the neural 

processing of uncertainty and the neuroanatomical substrates of individual differences in 

uncertainty processing.

Functional studies of decision under risk

Several brain areas were implicated in the processing of risk, or uncertainty with known 

probabilities (Box 1). First, outcome probability is reflected in activation magnitude in 

ventral striatum (Tobler, O’Doherty, Dolan and Schultz 2007), and vmPFC (Knutson, Taylor, 

Kaufman, Peterson and Glover 2005). Activity in both of these brain areas scales positively 

with probability, compatible with the role of these areas in the encoding of subjective value 
(Box 1) or the desirability of anticipated outcomes. Of course, increasing the probability for 

obtaining reward (or decreasing the probability for incurring a punishment) will make an 

available option more desirable, naturally leading to enhanced activation in value-related 

regions. In theory, this effect of probability may be incorporated in the way the subjective 

value of an option is perceived, and does not require a separate neural encoding of 

probability. There is, however, evidence for neural encoding of the level of risk regarding 

outcome receipt, which is separate from the encoding of value. As seen in Figure 3, these 

two quantities can be distinguished from each other if measured over the full range of 

probabilities. As probability increases from 0 to 0.5, both subjective value and risk increase 

monotonically. Conversely, when probability increases beyond 0.5, risk decreases 

monotonically, while subjective value continues to increase. Increased activation to 

increased risk was observed in several brain regions (Figure 1), including the lateral 

orbitofrontal cortex (OFC) / ventrolateral prefrontal cortex (vlPFC) (Tobler, O’Doherty, 

Dolan and Schultz 2007; Huettel, Song and McCarthy 2005), as well as in bilateral ventral 
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striatum (Preuschoff, Bossaerts and Quartz 2006), anterior insula (Huettel, Song and 

McCarthy 2005), and posterior parietal cortex (PCC; Huettel, Song and McCarthy 2005).

The studies described so far focused on commonalities across participants to highlight brain 

circuits that participate in the processing of probability and risk. To understand the neural 

basis of individual propensity to engage in risky behavior, however, it is crucial to examine 

individual differences in activation patterns. To do this, the idiosyncratic risk attitude of each 

participant is estimated based on their behavior on the experimental task (Box 1), allowing 

researchers to look for psychometricneurometric matches, or correspondence between 

behavior and neural patterns across participants. Not surprisingly, value-related activation 

patterns in lateral (Tobler, Christopoulos, O’Doherty, Dolan and Schultz 2009) and medial 

(Levy, Snell, Nelson, Rustichini and Glimcher 2010) prefrontal regions were modulated by 

individual risk attitudes. Interestingly, activity in left PPC in response to choices that 

involved risky lotteries was also correlated with risk preference across participants (Huettel, 

Stowe, Gordon, Warner and Platt 2006). Although in humans the PPC has not received much 

attention in the context of risk-taking and decision making, substantial evidence from 

electrophysiological studies in monkeys support its role in these processes (Louie and 

Glimcher 2010; Louie, Grattan and Glimcher 2011; Platt and Glimcher 1999; Sugrue, 

Corrado and Newsome 2004). This notion is reinforced by recent structural MRI findings, as 

described below.

Risk and brain structure

Recent studies have begun to unravel neuroanatomical features that are predictive of 

individual traits and capabilities (Kable and Levy 2015; Kanai and Rees 2011). Such 

associations between structure and behavior are important, because unlike functional 

activation patterns, structural measures do not depend on the particular experimental 

paradigm, and are therefore likely to represent stable behavioral traits. Using voxel-based 

morphometry (VBM), Gilaie-Dotan and colleagues (Gilaie-Dotan and others 2014) 

identified a region in right PPC whose gray-matter volume is predictive of individual risk 

attitudes. Two groups of participants made a series of choices between risky options (Figure 

2C) and went through anatomical MRI scans. The first group was tested in New York, and 

provided data for a whole-brain exploratory analysis. Based on participants’ choice 

behavior, their risk attitudes were estimated with a standard economic model (Box 1). These 

attitudes were then used in a whole-brain VBM analysis, which revealed a single region, 

within right PPC, whose volume was significantly correlated with risk attitudes. Individuals 

with more gray-matter volume in this region were more tolerant of risk (or less risk averse) 

(Figure 4A). A similar result was obtained when risk attitudes were estimated simply based 

on the proportion of trials in which participants chose the risky option, demonstrating that 

the results did not depend on the specific assumptions used to calculate risk attitudes. 

Following the exploratory analysis, data from a second, independent group of participants, 

scanned in Philadelphia, was used for a confirmatory analysis (Figure 4B). The gray matter 

volume from the region identified in the first group was measured in participants of the 

second group and used to successfully predict these participants’ risk attitudes. Conversely, 

the gray-matter volume of a control area in the vicinity of primary motor / primary 

somatosensory cortex did not yield significant predictions. This finding is consistent with 
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behavioral reports suggesting that, at least to some extent, risk preferences are stable across 

time (Harrison, Johnson, McInnes and Rutstrom 2005). One should be cautious, however, in 

making inferences from these VBM results about the underlying neural architecture, as the 

relationships between the microstructure and structural MRI measures are still poorly 

understood (Kanai and Rees 2011). It should also be stressed that, just like fMRI results, 

VBM results cannot inform us about causality. While it could be the case that structure gives 

rise to risk attitudes, it is also possible that environmental factors affect both, or even that 

behavior shapes structure.

Subjective probability and ambiguity

An individual’s willingness to take risks relies on how they balance the magnitude of a 

potential outcome with the probability that the outcome will occur. But how the individual 

perceives outcome probability will also contribute to her willingness to take a risk. 

Substantial research in economics suggests that people typically weigh outcome 

probabilities in a non-linear manner. As Kahneman and Tversky described in their Prospect 

Theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992), when participants are 

presented with explicit probabilities (e.g. “50% chance”) they tend to overweigh low 

probabilities and underweigh high probabilities, in the form of an inverted S-shaped function 

(Figure 5). When probabilities are learned by experience, from repeated sampling, an 

opposite effect is observed, where small probabilities are underestimated and large 

probabilities overestimated, in the form of an S-shaped function (Hertwig, Barron, Weber 

and Erev 2004). fMRI data suggest that the inverted s-shaped non-linear weighting of 

explicit probabilities is reflected in striatal activation (Hsu, Krajbich, Zhao and Camerer 

2009), compatible with the role of this brain area in representation of subjective value. There 

is also evidence for a similar effect in the left dorsolateral prefrontal cortex (DLPFC; Tobler, 

Christopoulos, O’Doherty, Dolan and Schultz 2008). Interestingly, after some experience 

with these outcome probabilities, nonlinear s-shaped probability weighting is observed in 

ventrolateral prefrontal cortex (Tobler, Christopoulos, O’Doherty, Dolan and Schultz 2008).

Note that in most of the studies surveyed so far outcome probabilities were precisely known. 

In these studies participants either saw explicit symbolic presentations of the probability 

information (Gilaie-Dotan and others 2014), or acquired this information in a training 

procedure, in which they experienced the potential outcomes repeatedly (Tobler, O’Doherty, 

Dolan and Schultz 2007). In some of the studies, however, outcome probability was not 

precisely known (Knutson, Taylor, Kaufman, Peterson and Glover 2005). Indeed, in real life 

we can rarely estimate the probabilities for potential outcomes of our actions in a precise 

way. We know the probability of getting heads when tossing a coin, and can calculate the 

precise probability for choosing the winning numbers in the New York Mega Millions 

lottery, but what is the chance that the chosen course at the restaurant will be satisfying? 

That drinking and driving will end in an accident? While some probability estimates can 

usually be generated, these estimates are seldom exact. Rather, outcome probabilities are 

usually at least somewhat ambiguous (Box 1). From a decision-theory point of view, 

ambiguity, or the precision in which outcome probabilities are stated, should not affect 

choice. A long line of research, however, suggests that in many cases individuals are 

strongly affected by the presence of ambiguity. In particular, when choosing between 
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possible gains, many individuals tend to avoid ambiguity, even at a large financial or other 

costs (Ellsberg 1961; Camerer and Weber 1992; Fox and Tversky 1995; Heath and Tversky 

1991; Trautmann, Vieider and Wakker 2008). Importantly, how an individual treats known 

probabilities (what economists call “risk”) tells us very little about how she treats ambiguity 

(Cohen, Jaffray and Said 1987; Tymula, Rosenberg Belmaker, Ruderman, Glimcher and 

Levy 2013). Similarly, ambiguity and risk attitudes seem to follow separate, independent, 

developmental trajectories (Blankenstein, Crone, van den Bos and van Duijvenvoorde 2016; 

Tymula and others 2012). This suggests that ambiguity attitudes (attitudes towards unknown 

probabilities) may contribute to risk-taking behavior, independently from pure risk attitudes 

(attitudes towards known probabilities).

Several neuroimaging studies have examined decision making under conditions of 

ambiguity. Ambiguous options are created by withholding some of the information about 

outcome probability, either by providing partial information, or by physically occluding a 

graphic stimulus that conveys outcome probability (Figure 6). Some of these studies 

compared complete ambiguity (i.e. no information about outcome probability) to no 

ambiguity (i.e. full information about outcome probability; Figure 6A; Hsu, Bhatt, Adolphs, 

Tranel and Camerer 2005; Huettel, Stowe, Gordon, Warner and Platt 2006). There is 

evidence for increased processing of ambiguity compared to risk in lateral OFC, which is 

correlated with the level of ambiguity aversion across participants (Hsu et al 2005). Taken 

together with the involvement of lateral OFC in encoding the level of risk (Tobler, 

O’Doherty, Dolan and Schultz 2007; Huettel, Song and McCarthy 2005), these findings 

suggest a general role for lateral OFC in uncertainty processing. In experimental designs that 

resolved ambiguity at the end of each trial, activity in the neighboring region of ventrolateral 

prefrontal cortex (vlPFC) was associated with ambiguity preference across participants 

(Huettel 2006; Bach, Hulme, Penny and Dolan 2011), pointing to a potential role of this 

brain region in resolving ambiguity or in attempting to make sense of an ambiguous 

situation (although the direction of the correlation was inconsistent across studies). More 

recent studies included conditions of partial ambiguity by parametrically modulating the 

information provided in each trial (Figure 6B). Compatible with the effect of ambiguity on 

value, there is evidence for decreased activation in response to increasing ambiguity in the 

value-related vmPFC (Pushkarskaya, Smithson, Joseph, Corbly and Levy 2015). Moreover, 

activity in the vmPFC, as well as in the striatum, is correlated with subjective value, which 

takes into account individual ambiguity (as well as risk) attitudes (Levy, Snell, Nelson, 

Rustichini and Glimcher 2010).

Learning under uncertainty

In the studies described above each choice situation (trial) was examined in isolation from 

other choices. To prevent learning, many of these studies also intentionally refrained from 

providing information about decision outcomes. While this feature of the experimental 

design is important for a clean delineation of uncertainty attitudes, real-life decisions are 

affected by context and changes in the environment, including the previous choices that the 

individual made and the outcomes she has experienced. Failing to adapt to changes in the 

environment and to learn from the outcomes of previous decisions may lead to unnecessary 

risk-taking. If consuming a certain food, for example, leads to nausea, it may be wise to 
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avoid that particular food, and if a financial investment pays off, it may be worthwhile to 

make similar future investments. Kuhnen and Knutson (Kuhnen and Knutson 2005) 

examined how neural activation is associated with switches between subsequent decisions in 

an investment paradigm. In that paradigm, participants chose on each trial whether to invest 

in risky stocks or in a safe bond whose outcome was certain. The good stock was superior to 

the bad one in that it was more likely to lead to a positive outcome and less likely to lead to a 

negative outcome. Participants knew all this, but did not know which of the two stocks was 

the good one – they had to learn from experience. During this learning process, activity in 

ventral striatum was associated with switching from choosing a bond on the previous trial to 

choosing a stock on the current trial. Conversely, activity in anterior insula increased the 

likelihood of choosing a bond, but only when the prior choice was a stock. Thus it is 

possible that the ventral striatum facilitates switching from risk averse to risk seeking 

behavior, whereas anterior insula facilitates the opposite switch. Kuhnen and Knutson have 

also compared the choices of their participants to the ones that an ideal Bayesian learning, 

aimed at maximizing expected value, would make. This comparison showed that ventral 

striatum activity increased the likelihood of choosing a stock where the ideal learner would 

choose the bond (risk-seeking “mistake”), after previously choosing the bond, whereas 

anterior insula activity increased the likelihood of a risk-averse “mistake” (choosing a bond 

where the ideal learner would choose a stock), following a stock choice. Moreover, 

individual differences in the frequency of switching from a stock to a bond, as well as the 

frequency of “risk-averse” mistakes are reflected in anterior insula activation. Interestingly, 

anterior cingulate cortex (ACC) exhibited increased activity when the model predicted 

maximal response conflict – i.e. when it was unclear whether the stock or the bond had 

higher expected value. More recent studies of learning under uncertainty implicated the 

same brain area in encoding the level of ambiguity in the environment (Behrens, Woolrich, 

Walton and Rushworth 2007; Payzan-LeNestour, Dunne, Bossaerts and O’Doherty 2013) 

(those studies used the term “estimation uncertainty” for ambiguity). These findings in the 

ACC are consistent both with a long line of research implicating the ACC in conflict and 

error monitoring (Carter and others 1998; Shenhav, Straccia, Cohen and Botvinick 2014) 

and with recent studies that implicated the ACC in foraging decisions (Kolling, Behrens, 

Mars and Rushworth 2012). The latter function is especially interesting in the context of 

risk-taking behavior, because, rather than a choice between a limited number of options, as 

in the typical laboratory experiment, risk behavior often entails a decision to explore 

multiple novel options (foraging). Indeed, a recent study suggested that the same brain area 

is involved in adapting risk attitudes to changing conditions (Kolling, Wittmann and 

Rushworth 2014).

Reward and punishment sensitivity

Risk taking is influenced not just by how the individual perceives and treats uncertainty, but 

also by how she perceives and treats the potential rewards and punishments that may result 

from the risky behavior. If the reward of a risky action is perceived as highly positive, or the 

potential punishment as only slightly negative, the subjective value of the action will be 

higher. For example, a person who emphasizes the positive effect of a drug of abuse and 

plays down its potential harms will be more likely to engage in drug abuse compared to 
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someone who focuses on the negative potential results of drug use. There is now substantial 

evidence for a “valuation system” in the brain that encodes the desirability of expected and 

experienced outcomes (Bartra, McGuire and Kable 2013; Clithero and Rangel 2014; Levy 

and Glimcher 2012). Activity in this systems, that consists of at least the vmPFC and ventral 

striatum, scales with the value of both rewards and punishments (Tom, Fox, Trepel and 

Poldrack 2007) of various categories (Chib, Rangel, Shimojo and O’Doherty 2009; 

FitzGerald, Seymour and Dolan 2009; Levy and Glimcher 2011; Lin, Adolphs and Rangel 

2012; McNamee, Rangel and O’Doherty 2013). Other factors that affect the subjective 

desirability of a prospect are also reflected in activation of these areas, including the delay to 

reward (Kable and Glimcher 2007), self-control (Hare, Camerer and Rangel 2009), and, as 

mentioned above, risk and ambiguity (Levy, Snell, Nelson, Rustichini and Glimcher 2010). 

There is evidence for integration of potential gains and losses in these areas. Thus, when 

choosing whether or not to accept risky gambles with 50–50 chance of a gain or a loss, 

activity in both vmPFC and ventral striatum scales with both the potential gain and the 

potential loss (Tom, Fox, Trepel and Poldrack 2007). Importantly, individual ratios of 

sensitivity to gains and sensitivity to losses correlated with the ratio of neural modulation by 

gain and loss magnitudes. Further support for the notion of value integration in vmPFC 

comes from a study showing interactive integration of the values of probabilistic 

combinations of monetary rewards and electric shocks, which participants chose whether to 

accept (Park, Kahnt, Rieskamp and Heekeren 2011). While the neural mechanisms of value 

integration are not fully understood, this integration mechanism may play a role in risk-

taking behavior.

Summary and open questions

A network of brain areas contribute to risk-taking behavior. Not surprisingly, individual 

preferences for risk and ambiguity, as well as for rewards and punishments, are reflected in 

activation patterns in value-related areas, most notably the vmPFC and the ventral striatum. 

While this modulation of the subjective value representation may have practical implications 

for improving predictions of future risk taking, a more interesting question from a 

neurobiological point of view is what sources provide input to the valuation areas. A series 

of functional neuroimaging studies implicated the anterior insula, anterior cingulate cortex, 

PPC and lateral OFC / vlPFC in processing various aspects of uncertainty, and showed that 

individual uncertainty attitudes are reflected in activation patterns in these areas. Moreover, 

the neuroanatomy of the PPC is itself predictive of individual risk attitudes, suggesting that 

this brain region may be associated with stable trait-like risk-taking propensity. Several 

additional neural structures that have not been surveyed here are likely also linked to risk-

taking behavior. This includes the right DLPFC, whose disruption with transcranial 

magnetic stimulation (TMS) has been shown to increase risky choices (Knoch and others 

2006), and the amygdala, which has a central role in emotional processing (Phelps and 

LeDoux 2005). Future research will need to identify the parts of this network that play a 

causal role in risky behavior, and characterize the orchestrated contribution of the various 

components to such behavior. Many additional questions remain open. Most importantly, it 

is not clear whether the findings from the laboratory experiments, most of which employed 

paradigms with either monetary or hypothetical “points” outcomes, can generalize to more 
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realistic decisions and to other decision domains. While there is some evidence for 

consistent risk attitudes across rewards domains, specifically food and money (Levy and 

Glimcher 2011), there is also behavioral evidence for domain-specific uncertainty attitudes 

(Weber, Blais and Betz 2002), and substantial evidence for different risk and ambiguity 

attitudes for gains and losses (Tymula, Rosenberg Belmaker, Ruderman, Glimcher and Levy 

2013). Whether the same neural mechanisms support vastly different risk-taking behaviors, 

such as financial investments and medical decisions remains to be seen. Another interesting 

question is how much of this neural architecture is hard-wired, and how much may be 

shaped by experience. As decreased or increased risk-taking behavior is closely linked to 

psychopathology and substance abuse, understanding the relevant neural circuitry, its 

variations in pathological conditions, and how it may be modified by behavioral and 

pharmacological interventions is of high public-health value.
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Box 1:

Economic theory in the research of risky behavior

In recent years neuroeconomic studies have turned to ideas and techniques from the field 

of economics for deconstructing risk-taking - and decision making in general - into their 

constituent components (Glimcher 2008; Glimcher and Fehr 2014). A basic concept in 

risky choice is that of expected value (EV), a concept that was first raised by Pascal 

(Pascal 1966). Pascal suggested that the desirability of any option that the decision maker 
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considers is equal to the value of that option multiplied by the probability of obtaining 

that value:

Expected Value = Pro f itability × Value

By that account, to make a choice between several options, the decision maker needs 

simply to compute the expected value of each option and choose the option of the highest 

value. This simple concept is, of course, too simple. Bernoulli (Bernoulli 1738/1954) has 

made this point using an example of a very poor fellow that obtains a lottery ticket with 

an equal probability to win either twenty thousand ducats or nothing. Should this man 

evaluate his chance of winning at ten thousand ducats (its expected value), asks 

Bernoulli? Or should he be willing to accept a smaller amount, say nine thousand ducats, 

in exchange for the lottery ticket? The intuitive answer, that this man should accept the 

nine thousand ducats, suggests that expected value is not a sufficient quantity for decision 

making. Rather, the expected utility or subjective value of an option should be 

considered. A subjective-value function that is concave in respect to the objective value 

(the amount of ducats) can account for the risk preference we expect the poor fellow to 

exhibit (Figure B1, blue curve). What happens in a concave value function is that 

subjective value increases more slowly than objective value. In the example in Figure B1, 

when the amount of money is doubled from 10,000 to 20,000 ducats, the subjective value 

only increases by 1.6. But the subjective value function can vary for different individuals, 

based on their wealth, as well as personal preferences and other characteristics. A power 

function of the following form:

Sub jectiveValue = Pro f itability × Valueα

could account for individual differences in risk preferences with a single parameter (α). 

Risk-averse behavior will be described with an α that is smaller than 1, while an α that is 

larger than one will capture risk-seeking behavior (Figure B1).

Following Bernoulli, in the 20th century, Samuelson (Samuelson 1938) has introduced the 

powerful idea of revealed preferences. What Samuelson realized was that by making 

some very simple assumptions, for example that if a person prefers an apple to an orange 

she will not also prefer an orange to an apple, one can make robust predictions about 

choice behavior. Based on a set of such simple assumptions, or “axioms”, Von Neumann 

and Morgenstern (Von Neumann and Morgenstern 1944) developed their Expected 

Utility (EU) theory. What they showed was, that if a decision maker obeys these simple 

axioms, her behavior appears “as if” she attempts to maximize some utility (or subjective 

value) function.

A common strategy for estimating risk attitudes is therefore to fit choice behavior with 

such a utility function, for example the power function above, and derive the a risk 

parameter (α in the case of a power function) that best describes each individual’s 

behavior. Note that in this approach, risk attitude results from the way the outcome 

magnitude is perceived, rather than from how outcome probability is perceived. A 

somewhat different, but related, approach to risk was developed in the finance literature, 
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which conceptualizes risk as a cost due to the variance of potential outcomes (Markowitz 

1991). For a risk averse individual, the higher the variance the higher the cost. While a 

debate about which approach is more useful still exists, both models make similar 

predictions under many conditions, and the studies described here have used both.

Regardless of whether we follow the economic or the financial approach, if people indeed 

obeyed the simple axioms that Von Neumann and Morgenstern posited, we could have 

stopped here, with little need for further research of decision making. Soon after Von 

Neumann and Morgenstern developed their theory, however, it became clear that the 

axioms are often violated. One of the earliest demonstrations of such violation was 

provided by Daniel Ellsberg (Ellsberg 1961). Ellsberg proposed the following thought 

experiment: a participant is presented with two urns, one with 50 blue chips and 50 red 

ones (the 50–50 urn) and another with 100 blue and red chips in an unknown or 

ambiguous proportion (the ambiguous urn). The participant is first asked to pick a color 

(red or blue) and then asked to state whether he would rather bet on drawing his chosen 

color from the 50–50 urn for a prize of $10 or from the ambiguous urn for a prize of $15. 

For the 50–50 urn, the probability of drawing either blue or red is 0.5; for the second urn 

the probabilities are not known. Since the subject chooses the winning color, however, the 

probability of winning by betting on the ambiguous urn is still 0.5. This is because even 

if, in the worst case, all of the chips were of a single unknown color it was the subject 

who randomly picked that color. The choice is thus between $10 at a probability of 0.5 

(with the 50–50 urn) and $15, also at a probability of 0.5 (with the ambiguous urn). 

Therefore, regardless of the form of their particular utility functions, rational decision 

makers should prefer to bet on the ambiguous urn. Ellsberg has anticipated that many 

individuals would prefer to avoid the ambiguous urn, even at a substantial monetary cost, 

a prediction that has since received strong support from numerous empirical studies 

(Camerer and Weber 1992). It is important to remember, however, that although irrational 

in the lab, ambiguity aversion may, in many cases protect us from unnecessary risk 

taking. Thus, depending on the specific conditions, both too weak and too strong 

ambiguity aversion may be maladaptive. Importantly, since risk and ambiguity attitudes 

are not strongly correlated across individuals, both may independently contribute to risk-

taking behavior.
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Figure 1. 
A schematic representation of central brain areas involved in risk taking behavior. ACC, 

anterior cingulate cortex; AI, anterior insula; DLPFC, dorsolateral prefrontal cortex; OFC, 

orbitofrontal cortex; PPC, posterior parietal cortex; vlPFC, ventrolateral prefrontal cortex; 

vmPFC, ventromedial prefrontal cortex; VS, ventral striatum.
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Figure 2. 
Examples of stimuli used to elicit risk attitudes. (A) Betting on whether the second of two 

consecutively presented cards will be higher or lower (adapted from Preuschoff et al, 2006). 

(B) Presentation of stimuli that were previously associated with outcomes of particular 

magnitudes and probabilities (adapted from Tobler et al, 2007). (C) Choice between a lottery 

and a certain amount. The lottery could be of varying outcome probability (left) and 

magnitude (adapted from Gilaie-Dotan et al, 2014).
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Figure 3. 
Risk and subjective value as a function of outcome probability. While subjective value 

increases monotonically with reward probability, risk first increases and then decreases. This 

can be used to distinguish between neural encoding of probability (or value) and neural 

encoding of risk.
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Figure 4. 
A region in right posterior parietal cortex (PPC) predicts individual risk attitudes. (A) 

Exploratory analysis. Left: whole-brain VBM revealed a single brain region whose volume 

correlates with individual risk tolerance. Right: illustration of the association between gray-

matter volume and risk tolerance. (B) Confirmatory analysis in an independent group of 

subjects. The gray-matter volume from the region identified in the exploratory analysis 

predicted risk attitudes in the new sample (left), while gray-matter volume from a control 

area did not (right).
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Figure 5. 
Subjective probability. When probability information is explicitly conveyed, low 

probabilities are typically overestimated, whereas high probabilities are underestimated.
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Figure 6. 
Stimuli used to elicit ambiguity attitudes. (A) Complete ambiguity. Comparison of 

ambiguity with no ambiguity. Top: adapted from Hsu et al, 2005; Bottom: adapted from 

Huettel et al, 2006. (B) Partial ambiguity. By occluding part of a risky lottery, some of the 

information about outcome probability is withheld, creating partial ambiguity (adapted from 

Gilaie-Dotan et al, 2014).
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