Table 1. Posterior inferences of the coefficients (on the logit-scale) in the best Bayesian zero-one-inflated beta distribution model on blue sharks’ proportion of time spent at the surface (0–1 m).
Model component | Effect | Estimate | SE | 2.5% quantile | 97.5% quantile |
---|---|---|---|---|---|
logit(mean) | Intercept | -1.110 | 0.005 | -1.570 | -0.686* |
as.factor(Shelf)—on | 1.889 | 0.006 | 1.386 | 2.407* | |
as.factor(Time bin) - 3 | -0.236 | 0.003 | -0.464 | -0.013* | |
logit(Pr(y = 0)) | Intercept | -0.364 | 0.007 | -0.939 | 0.208 |
as.factor(Shelf)—on | -5.757 | 0.031 | -8.799 | -3.828* | |
as.factor(Time bin) - 3 | 0.643 | 0.009 | -0.118 | 1.419 | |
logit(Pr(y = 1)) | Intercept | -71.576 | 0.863 | -160.022 | -17.622* |
as.factor(Shelf)—on | 34.001 | 0.662 | -0.438 | 102.495 | |
as.factor(Time bin) - 3 | 32.529 | 0.648 | 0.714 | 103.489* | |
d | 1.828 | 0.004 | 1.509 | 2.120* | |
σ | 1.273 | 0.006 | 0.817 | 1.815* |
d—Regression coefficient in the linear predictor for the sum of the two shape parameters in the beta distribution
σ—Posterior mean of the variance of the random effect
* indicates a significant difference when the quantile range does not overlap zero