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Abstract

Natural killer (NK) cells are innate lymphocytes with important roles in immunoregulation, 

immunosurveillance, and cytokine production. Originally defined on the functional basis of their 

‘natural’ ability to lyse tumor targets and thought to be a relatively homogeneous group of 

lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to 

the combinatorial expression of an array of activating and inhibitory receptors. Diversification of 

NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a 

heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we 

review the genetic, developmental, and environmental sources of NK cell diversity with a 

particular focus on deep profiling and single-cell technologies that will enable a more thorough 

and accurate dissection of this intricate and poorly understood lymphocyte lineage.

Summary:

The contexts that influence human NK repertoire diversification and their implications for human 

health and disease are reviewed.
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Introduction

Natural killer (NK) cells are a diverse group of innate lymphoid cells (ILCs) that can 

coordinate and execute the rapid elimination of neoplastic and virus-infected cells [1,2]. 

ILCs represent a group of largely tissue-resident common lymphoid progenitor-derived cells 

that do not express somatically-recombined antigen-specific receptors [3–7]. ILCs are now 
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recognized to play significant roles in immune homeostasis, and their characteristics and 

functions have been thoroughly reviewed elsewhere [4,5,7]. Here, we focus on 

“conventional” human NK cells, a subset of type I ILCs which have been primarily 

evaluated in the blood.

NK cells were first identified in both mice and humans in the 1970s on the basis of their 

ability to kill tumor cells without the requirement of prior priming [8,9]. Primary functions 

of NK cells include production of IFN-γ and other cytokines, immunoregulation through the 

perforin-dependent elimination of activated leukocytes, and immunosurveillance through 

cytotoxicity against tumors or virus-infected cells [2,10,11]. These functions have intriguing 

clinical implications. For example, NK cells may have protective roles in several 

autoimmune diseases by eliminating activated autoreactive lymphocytes [12–15]. Further, 

higher NK cell cytotoxicity is protective against the development of cancer [16]. This latter 

finding, considered along with the ability of NK cells to eliminate their targets in rapid 

succession, has led to much interest in the development of NK cell-based cancer therapies, 

including adoptive NK cell therapy and pharmaceuticals that modulate the activity of NK 

receptors (NKRs) [17,18]. That NK cells play an important role in the control of early viral 

infection, particularly by herpesviruses, is evident from severe herpesvirus infections in 

exceedingly rare cases of primary NK cell deficiency [19], as well as evidence of NK cell 

dysfunction in immunodeficiencies like X-linked lymphoproliferative disorder [20–22]. 

Evidence of strong antiviral responses by NK cells, combined with recent findings of 

memory-like responses by NK cells, has bolstered the argument that future vaccine 

development should seek to provide long-lasting NK cell immunity [1,23].

In a sense, NK cells can be considered immune intermediaries, with both lifetimes and 

receptor-to-pathogen ratios between their adaptive lymphocyte and common myeloid 

progenitor-derived counterparts [24]. NK cells combine diversity, on the order of 104 

subpopulations per person, with repertoire flexibility, being capable of altering receptor 

expression on the timescale of cellular processes [25]. Neither the clinical consequences of 

this diversity nor the functional characteristics of individual NK cell subsets have been fully 

elucidated. A better understanding of how this diversity influences NK cell responses and 

how it can be modulated is necessary for the development of therapeutic strategies 

employing NK cells. Here, we review the various contexts of NK cell diversification, as well 

as recent findings and future directions in the deep profiling strategies needed to dissect the 

functions of this complex group of ILCs.

Single-cell diversity of NK cells

Diversity is an essential characteristic of the immune system, as it must be prepared to 

respond to innumerable unknown pathogens. Leukocyte diversity is most often attributed to 

adaptive lymphocytes, which express somatically rearranged antigen-specific receptors, 

generating on the order of 106-108 distinct specificities per person [26]. NK cell diversity, on 

the other hand, is determined by the combinatorial expression of an array of germline-

encoded inhibitory and activating receptors. While self-tolerance of individual T and B cells 

is ensured through selection on a single cell surface receptor, the differential expression of 

NKRs necessitates a complex developmental process to ensure a tunable and self-tolerant 
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NK cell repertoire. These processes are referred to as NK cell education, arming, or 

licensing and are reviewed extensively elsewhere [27–31].

On a population level, NK cell diversity at the protein expression level arises in three main 

fashions: genetic diversity of killer immunoglobulin-like receptors (KIRs), stochastic 

expression of KIRs, and differential expression of other NKRs [32]. Early studies of NK cell 

diversity relied on multi-color flow cytometry to profile NK cell KIR repertoires [33–40], 

and a more comprehensive view has emerged in a recent study that employed cytometry by 

time-of-flight (CyTOF) [41]. CyTOF is a flow cytometry-based platform where, instead of 

labeling cells with fluorophore-conjugated antibodies, cells are labeled with heavy metal 

isotope-conjugated antibodies. This allows for the simultaneous assessment of ~40 

parameters with a mass cytometry readout without the need for compensation of spectral 

overlap [42,43]. While this technology vastly improves the number of markers evaluated, 

downsides include the inefficient capture of events, such that only ~20% of live cells are 

captured as singlet events, and its slow speed [42–44]. Currently, inroads are being made to 

add a similar number of parameters to conventional flow cytometry platforms, but any high 

dimensional analysis involves analytic complexity, often involving multiple parallel analytic 

techniques to feel confident in results obtained [44].

Recently, our group used CyTOF to evaluate 28 NKRs by CyTOF, identifying between 

6,000 and 30,000 distinct NK cell subsets per donor and >100,000 distinct subsets in the 22 

donors studied based on a Boolean analysis of subsets based on yes/no expression patterns 

of the different receptors [41]. Additionally, our study utilized twin donors to demonstrate 

that inhibitory NKR diversity was more genetically controlled than activating NKR 

repertoires, which were under more environmental influence [41]. This diversity indicates 

that some subsets could be better tuned to detect certain types of infections or malignancies, 

based on NKR expression levels relative to ligand expression patterns during infection or 

malignancy. While this raises interesting possibilities, there are several important caveats 

when interpreting these data. There are more NKRs that can be added to this marker panel, 

and increases in the number of markers evaluated could increase the number of distinct NK 

cell subsets detected. Further, while this study reveals a high degree of phenotypic diversity 

among human NK cells, this may not reflect the same degree of functional diversity. It will 

be important for future studies to evaluate functional markers as well to assess the 

relationship between phenotypic and functional diversity. Lastly, by interrogating proteomic 

diversity, this study only analyzes one metric of NK cell diversity. Other methods, including 

scRNA-seq and scATAC-seq, should be utilized to gain a more comprehensive 

understanding of NK cell diversity. This study, nonetheless, presents significant insight into 

the magnitude of NK cell repertoire diversity and provides a methodological foundation for 

future deep functional profiling of individual NK cell subsets.
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Mechanisms of NK cell diversification: genetic and environmental 

determinants

Development and functional specialization of NK cell subsets

NK cells develop in the bone marrow and secondary lymphoid tissues in discrete stages that 

have been well characterized [45–51]. After several precursor stages, immature NK cells 

gain expression of CD56, CD94/NKG2A, and several activating receptors including NKp46, 

NKp30, and NKG2D. These cells, called CD56bright NK cells, are highly proliferative, 

capable of producing high amounts of IFN-γ, and express IL-7Rɑ and KIT, two surface 

markers associated with non-NK ILCs [3,52,53]. In humans, CD56bright NK cells are 

hypothesized to give rise to CD56dim NK cells during the process of education; this involves 

a decrease in CD56 expression coupled with increased expression of CD16 and acquisition 

of KIRs [45,48,54]. CD56dim NK cells are potently cytotoxic, but have substantially lower 

proliferative and cytokine-producing capacity than their CD56bright counterparts. Further 

maturation of CD56dim NK cells is generally indicated by the loss of CD62L and acquisition 

of CD57.

That CD56bright NK cells are precursors to CD56dim NK cells in humans remains unclear. 

This hypothesis, originally advanced in 1986 [55], is supported both by the observations that 

CD56bright NK cells have longer telomeres than CD56dim NK cells [52], and that in vitro 
stimulation of CD56bright NK cells with IL-2 results in acquisition of CD16 and KIR 

expression and loss of IL-7Rɑ and KIT [52]. However, a recent study used genetic 

barcoding of hematopoietic stem cells in macaques and demonstrated that CD56bright and 

CD56dim NK cells have distinct developmental precursors [56]. Considered along with new 

findings of NK/ILC1 plasticity [57–59], these data suggest that the ontological relationships 

between human NK cells and ILCs may be more nuanced than originally appreciated.

Outside of these major conventional NK cell subsets, two other classes of NK cells bear 

mention. First, some NKG2ChiCD57hi NK cells that are expanded by HCMV infection 

display enhanced IFN-γ production and cytotoxic capacity upon secondary challenge by the 

homologous pathogen and are called ‘adaptive’ NK cells due to their memory-like properties 

[1,33,60–63]. Understanding the development and function of adaptive NK cells is of 

considerable interest as their memory-like properties could be harnessed for therapeutic 

benefit in vaccines or cancer immunotherapy. Secondly, while we have only discussed the 

properties of circulating NK cells, there are numerous subsets of NK cells resident in various 

human tissues. These largely tissue-resident NK cells have diverse functions in reproduction 

and tissue remodeling, and their ontogeny and diversity have been reviewed elsewhere 

[64,65].

Below, we discuss the genetic and environmental factors that influence the combinatorial 

expression of various NKRs. These findings are summarized in Figure 1.

KIR diversity and NK cell education

The KIRs, encoded by 14 genes and 2 pseudogenes clustered on chromosome 19, represent 

an important family of NKRs. KIRs are HLA class I binding receptors and are the second 
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most polymorphic gene family in the human genome, after HLA [66]. KIRs are named 

according to the relative length of their cytoplasmic tail, with ‘S’ denoting a short tail that 

generally confers activating activity, and ‘L’ denoting a long tail that corresponds to 

inhibitory activity. Importantly, KIRs are expressed stochastically by NK cells and this, 

combined with the polygenic and polymorphic nature of KIRs, contributes significantly to 

NK cell diversity [33,35,67].

KIR-HLA interactions represent the main mechanism by which NK cells are tolerized to and 

sense perturbations in the self-HLA environment [68,69]. Although the majority of NK cells 

express at least one inhibitory KIR for a self-HLA molecule [31], significant proportions of 

NK cells do not express any self-specific inhibitory KIR [27,70]. To compensate for this, 

most KIR-negative NK cells express CD94/NKG2A, an inhibitory receptor that binds to the 

ubiquitously expressed HLA-E [36,71–73]. Therefore, the vast majority of NK cells retain 

mechanisms to recognize cells that have downregulated HLA class I due to pathogen 

infection. Nonetheless, approximately 10% of NK cells in a given individual express neither 

CD94/NKG2A nor self-specific KIR [35,74]. Some of these inhibitory NKR-deficient NK 

cells are capable of promoting autoimmunity due to their expression of granzyme and 

perforin. [75,76]. The process that renders NK cells responsive to ‘missing self’ involves 

functional calibration to self-HLA, and is called education, licensing, or arming [27–31]. 

Interestingly, recent data suggest that NK cells can also be educated through CD94/NKG2A, 

and that this form of education results in higher phenotypic diversity, IFN-γ production, and 

cytotoxic capacity [77].

Despite the apparently stochastic nature of KIR expression during NK cell development, 

certain KIR-expressing NK cells are favored for survival or expansion based on their ability 

to interact with their cognate HLA molecule. For instance, there is a preponderance of 

human NK cell repertoires with a bias for expression of the KIRs that are capable of binding 

to the HLA molecules expressed in that individual (for instance, KIR2DL1 recognizes HLA-

C2, and in individuals homozygous for HLA-C2, there is an increase in the frequency of 

KIR2DL1-expressing NK cells) [33,78–80]. This biased repertoire is dependent on human 

cytomegalovirus (HCMV) infection, suggesting that the NK cells expressing KIRs specific 

for the HLA expressed in that individual are selected for during the response to HCMV 

infection [33,78–80].

In addition to HCMV infection inducing expansions of NK cells expressing self-specific 

KIRs, other viral infections have been associated with skewing of the KIR repertoire. In the 

setting of HCMV seropositivity, chronic Epstein-Barr virus (EBV) infection results in a NK 

repertoire more dramatically skewed towards self-specific KIRs [81]. In the absence of 

HCMV infection, infectious mononucleosis during primary EBV infection causes transient 

fluctuations in the KIR repertoire, but does not result in stable KIR skewing [82,83]. 

Additionally, Chikungunya virus (CHIKV) selectively modulates the NK KIR repertoire by 

preferentially expanding those cells expressing HLA-C-specific KIRs, such as KIR2DL1, 

specific for HLA-C2 alleles, and KIR2DL2/DL3, specific for HLA-C1 alleles [84].

Notably, HIV-1 infection results in the expansion of KIR3DS1- and KIR3DL1-expressing 

NK cells in individuals expressing the cognate HLA-Bw4–80I epitope [85,86]. In these 
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individuals, KIR3DS1/DL1 is associated with slower progression to AIDS and 

KIR3DS1/DL1 copy number is inversely correlated with the set point viral load [86–92]. It 

remains unclear how an activating and an inhibitory NKR with virtually identical 

extracellular domains both correlate with better clinical outcomes, but recent evidence 

suggests that this paradox may be explained by heretofore unrecognized KIR3DS1 ligands, 

the involvement of HIV peptides in modulating the KIR3DS1/HLA-Bw4–80I interaction, 

and the level of education through KIR3DL1 [32,93–95].

CD57 and CD62L: markers of maturation

CD57 is a carbohydrate epitope created by the enzymatic activity of beta-1,3-

glucuronyltransferase and has long been appreciated as a marker of differentiation, 

maturation, and activation on NK and T cells [96–99]. On NK cells, CD57 expression is 

limited to CD56dimCD16+ NK cells, is correlated with lower proliferative capacity upon 

exposure to cytokines or neoplastic cells, and is associated with increased cytolysis and IFN-

γ production [97,100–102]. CD62L, on the other hand, is inversely associated with NK cell 

maturation. CD62L (also known as L-selectin) is a homing receptor important in 

lymphocyte-endothelial cell interactions. During NK cell development, CD62L is first 

expressed by CD56bright NK cells and is gradually lost during the processes of education and 

differentiation [103–106]. This process, perhaps analogous to the shedding of CD62L by T 

cells following activation, could prime NK cells to leave secondary lymphoid tissues and 

enter the circulation to mediate innate immune responses.

As markers of differentiation, CD57 and CD62L expression by NK cells is modulated by 

various viruses. Chronic infection with HCMV, EBV, hepatitis B virus (HBV), and hepatitis 

C virus (HCV) have all been reported to result in increased expression of CD57 by NK cells 

[82,83,107,108]. Notably, primary EBV infection induces a transient decrease in CD57 

expression on NKG2A+ NK cells, likely due to expansion of CD57- NK cells which either 

contract or acquire CD57 over time [82]. Although CD57 expression is generally considered 

to correlate with greater functional capacity, a CD57- NK cell subset was identified as the 

predominant population that degranulates and produces IFN-γ after co-culture with latent 

EBV-infected lymphoblastoid cell lines (LCLs) [109]. Additionally, loss of CD62L 

expression is characteristic of a CD56bright subset of tonsilar NK cells that accumulates 

during chronic EBV infection and restricts EBV-induced B cell transformation [110]. These 

findings collectively suggest that viral infections and NK cell maturity have a nuanced 

relationship at various stages of NK cell development.

C-type lectin receptors

NK cells express several members of the NKG2 C-type lectin receptor family. NKG2A and 

NKG2C form heterodimers with CD94 and bind the non-classical HLA molecule HLA-E 

[72,111]. NKG2A is an inhibitory receptor, whereas NKG2C is an activating receptor; 

similar to the role of inhibitory and activating KIR binding the same HLA ligand, the role of 

HLA-E inducing two ostensibly contradictory signaling pathways remains unclear [112–

116]. However, NKG2C and NKG2A are rarely co-expressed on CD56dim NK cells, 

suggesting that the contradictory functions of NKG2A- and NKG2C-expressing NK 

populations may promote immune balance [60,117]. Recognition of HLA-E expression 
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through NKG2A/C is thought to be a secondary mechanism by which NK cells can monitor 

expression of classical HLA class I molecules, as HLA-E binds peptides derived from the 

leader sequence of classical HLA class I molecules [118]. NKG2A is expressed on all 

CD56bright NK cells and is gradually lost during ostensible differentiation to CD56dim NK 

cells [117,119].

NKG2D is an activating receptor that is more distantly related to the NKG2 family, forms a 

homodimer, and is reported to bind several ligands, including MICA, MICB, and ULBP1–6 

[120–122]. As expression of these and other putative NKG2D ligands is associated with 

DNA damage, cellular stress, and malignant transformation [123–126], NKG2D is a critical 

NKR in the control of tumorigenesis [127–129].

Among the most dramatic and well-studied virus-induced NK cell expansions is that of 

NKG2C+ NK cells in HCMV infection. First identified by Gumá and colleagues in 2004, up 

to 25% of NK cells in HCMV seropositive individuals express NKG2C, compared to ~2% in 

HCMV seronegative donors [60]. Expanded NKG2C+ NK cells also tend to be CD57+ [62], 

mediate superior ADCC, and produce higher levels of IFN-γ and TNF. Notably, in NKG2C+ 

NK cells in HCMV seropositive individuals, IFN-γ and TNF promoters are stably 

hypomethylated [61,130–133]. This epigenetic reprogramming may provide a mechanistic 

explanation for the memory-like phenotypes observed in these NKG2C+ NK cells.

Expansions of NKG2C+ NK cells have also been reported in the context of 

immunodeficiency [134], organ transplantation [63,135–137], hantavirus infection [138], 

CHIKV infection [84], HIV-1 infection [139], and chronic HBV and HCV infection 

[107,140,141]. It remains unclear, however, if NKG2C+ NK cell expansions induced by 

viruses other than HCMV are the result of a direct impact of the virus on NKG2C 

expression. Unfortunately, most studies that demonstrated expansion of NKG2C+ NK cells 

during infection by viruses other than HCMV did not stratify donors based on HCMV 

seropositivity. It is conceivable, therefore, that the observed NKG2C+ expansions are 

actually the result of a subclinical HCMV reactivation [142]. Primary EBV infection does 

not alter NKG2C expression in the NK cell repertoire, thus supporting the hypothesis that 

NKG2C expansions are an HCMV-specific phenomenon [82,83,143].

NKG2A+ NK cells have also been reported to expand in the context of viral infection, 

particularly by EBV. Primary EBV infection expands a population of early-differentiated 

CD56dimNKG2A+KIR- NK cells that do not contract and gradually gain CD57 expression 

and lose CD62L expression over time [82,83,109,144,145]. Accumulation of this subset 

inversely correlates with EBV DNA levels in peripheral blood mononuclear cells (PBMCs), 

and is endowed with increased IFN-γ production and cytotoxic degranulation against 

autologous LCLs [82,109]. EBV-induced NKG2A+ expansions are not limited to CD56dim 

NK cells, as a distinct CD56brightIFN-γhiNKG2A+ NK cell subset accumulates in the tonsils 

of EBV seropositive individuals [110]. Although it is unknown whether other viruses cause 

NKG2A+ NK cell expansions, NKG2A+ NK cells are implicated in better control of HIV-1 

infection in in vitro models [146], due to an HLA-E-presented HIV peptide that prevents 

inhibitory interaction with NKG2A [147].
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Several viral infections have been associated with changes in NKG2D expression by NK 

cells. There is an increase in NKG2D+ NK cell frequency in EBV seropositive individuals, 

and such an increase is apparent as soon as 10 days after first EBV exposure in an in vitro 
model of infection [109,143,148]. NKG2D, along with NKG2A, is one marker represented 

on the predominant NK cell subset that produces IFN-γ and degranulates in response to 

coculture with EBV-infected LCLs [109]. HCV, on the other hand, appears to have a more 

nuanced impact on NKG2D expression by NK cells. Acute HCV infection induces an 

increase in NKG2D expression by both CD56bright and CD56dim NK cells [149]. However, 

patients with chronic HCV infection have lower frequencies of NKG2D+ NK cells which 

have impaired cytotoxic potential and lower IFN-γ production; this may be due to increased 

levels of circulating IL-10 and TGF-β during chronic HCV infection [150]. Importantly, 

HCV-induced NKG2D downregulation can be reversed by addition of IL-15 in vitro, 

representing a potential way to bolster current treatment of chronic HCV infection.

Natural cytotoxicity receptors

Natural cytotoxicity receptors (NCRs) are members of the Ig-superfamily and represent a set 

of recently evolved NKRs [151]. Some NCRs, including NKp30, NKp46, and NKp80, are 

expressed on both activated and resting NK cells, whereas others, including NKp44, are 

upregulated after stimulation [152,153]. NCRs have been reported to be critical both in the 

control of viral infection and tumors. For example, higher NCR expression correlates with 

enhanced control of and delayed progression during HIV infection [154,155], and deletion 

of single NCRs impairs NK cell cytotoxic capacity against tumor cells [156,157]. There are 

many putative NCR ligands that have not been confirmed by independent research groups, 

and several conflicting reports on the role of particular NCRs in a given viral infection 

[120,158–162]. Refined studies of NCR signaling and structural analysis of NCR-ligand 

interactions will be necessary to dissect the complex roles of this receptor family in NK cell 

biology.

The impact of particular viruses on NK cell expression of NCRs remains poorly studied. 

During acute HCV infection, both NKp30 and NKp46 are upregulated exclusively on 

CD56bright NK cells [149]. Additionally, NK cells stimulated with EBV-infected LCLs ex 
vivo have increased frequencies of NKp30+ cells [143,148]. NCR expression is also altered 

on CD56neg NK cells in the setting of chronic infection. CD56neg NK cells are an aberrant 

subset of NK cells that are found in low frequencies in healthy individuals, but expand 

during chronic HIV and HCV infection. These cells are likely derived from CD56dim NK 

cells, as they express CD16 and KIRs, but have impaired capacity for cytokine production, 

cytolysis, and proliferation [163]. Although early studies on CD56neg NK cells may be 

unreliable as a result of incomplete exclusion of monocytes during flow cytometric gating 

analysis, more recent studies have confirmed that CD56neg NK cells express lower levels of 

NKp30 and NKp46 in chronic HIV infection [164–167].

Other NKRs

Expression of several other NKRs have been reported to be influenced by different viral 

infections. 2B4 (also called CD244 or SLAMF4) is an NKR that interacts with CD48, which 

is expressed by all hematopoietic cells [168–170]. Although murine 2B4 has predominantly 
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inhibitory function [171,172], human 2B4 is conventionally considered to be an activating 

receptor that may function as a co-receptor for other activating NKRs like NKp46 [151,173]. 

Exposure of human NK cells to EBV-infected LCLs or the EBV-producing Akata cell line 

result in higher frequencies of 2B4+ NK cells [109,143], and a 2B4+ subset is responsible 

for greater IFN-γ production and cytotoxicity in this setting [109]. Additionally, acute HCV 

infection induces upregulation of 2B4 on both CD56bright and CD56dim NK cells [149].

Parallel to the Fas/FasL system, TNF-related apoptosis-inducing ligand (TRAIL) is a ligand 

for five death receptors that mediates apoptosis [174]. As such, TRAIL represents one 

effector mechanism for NK cells. TRAIL is required for IFN-γ-dependent suppression of 

tumor growth in vivo [175], and blockade of TRAIL activity in encephalomyocarditis virus 

(ECMV)-infected mice resulted in higher viral titers and earlier death [176]. TRAIL is 

upregulated by human NK cells during acute HCMV, EBV, and HCV infection, perhaps 

representing one mechanism by which NK cells provide early control of infection by these 

viruses [143,149,177].

DNAM-1 (also called CD226) is an activating NKR and adhesin that binds Nectin-2 

(CD112) and Necl-5 (PVR), which are upregulated on several tumors [178-180]. DNAM-1 

is also involved in the NK cell response to HCMV, HIV, and HCV infection [149,181–183]. 

Primary EBV infection has recently been reported to upregulate DNAM-1 on NK cells, 

although the functional consequences of this upregulation are unknown [143,148].

LILRB1 (also known as LIR1 or ILT2) is an HLA class I-binding inhibitory NKR, although 

KIRs and CD94/NKG2A are thought to dominate HLA class I-mediated inhibition of NK 

cells [184–186]. LILRB1 expression correlates with CD57 expression, suggesting that 

LILRB1 may be a marker of NK cell differentiation [107]. Despite its role as an inhibitory 

receptor, LILRB1+ NK cells are implicated in better control of HIV-1 infection [187]. 

However, this may simply reflect the higher cytotoxic potential of more mature NK cells. 

LILRB1 is also upregulated on NK cells during infection with HBV, HCV, and EBV 

[107,145].

NK diversification and epigenetic reprogramming

While the NK cell repertoire is remarkably malleable and influenced by viral infections, it 

remains stable in the absence of environmental perturbations [188]. This suggests that 

epigenomic modifications may be involved in the processes of NK cell maturation and 

diversification. Although this ostensible epigenomic reprogramming remains poorly 

understood in conventional NK cells, there is evidence that epigenetic modifications could 

represent one mechanism that accounts for the rapidity of NK cell responses. During 

development, murine NK cells have a long-range acetylation profile across the Ifng locus 

that is rapidly modifiable by cytokine stimulation [189]. Such hyperacetylation should 

presumably result in rapid and robust IFN-γ production in appropriate activating contexts. 

Additionally, HCMV-expanded NKG2Chi NK cells display complete demethylation of the 

IFNG promoter, which is required to induce stable IFN-γ production after engagement of 

NKG2C or 2B4 [61]. Clues to epigenetic regulation of NK cell effector function may also be 

present in studies of T cells. For example, H3K9 acetylation of the GZMB (encoding 

granzyme B) and PRF1 (encoding perforin) promoters increases granzyme B and perforin 
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expression and enhances CD8+ T cell-mediated cytotoxicity [190]. Stat4-dependent 

recruitment of Brahma-related gene 1 (Brg1), a chromatin remodeling complex [191], 

remodels nucleosomes in the IFNG promoter of Th1 cells [192]. IFN-γ expression by 

CD56dim NK cells may be regulated by a similar mechanism, as CD56dim NK cells express 

high levels of Stat4 and Brg1 [105]. How CD56bright and CD56dim NK cells tightly and 

differentially regulate IFN-γ expression would provide valuable understanding of the 

mechanisms governing functional specialization of NK cell subsets.

Epigenetic reprogramming of adaptive NK cells, on the other hand, has been more 

thoroughly characterized. A recent pair of studies has demonstrated that HCMV drives the 

differentiation and diversification of adaptive human NK cells through epigenetic silencing 

of several signaling proteins and transcription factors [131,132]. These studies have provided 

a model for adaptive NK cell diversification whereby engagement of DAP12-coupled 

activating receptors results in epigenetic imprinting of the ZBTB16 locus, resulting in loss of 

PLZF expression. PLZF-deficient NK cells also display stochastic hypermethylation of 

promoters encoding signaling proteins SYK, EAT-2, DAB2, and FcεRγ, resulting in 

diversification of the adaptive NK cell repertoire. Lower expression of these signaling 

proteins results in lower expression of NCRs NKp30 and NKp46, as well as decreased 

signaling through SLAM family receptors, including 2B4 [133]. The transcriptional profiles 

and epigenomic changes induced by other viruses remain unknown, and could represent 

valuable insights into the diversification and maintenance of the conventional NK cell 

repertoire.

How does immune experience diversify NK cells?

Although the virus-induced shifts in expression of particular NKRs have been fairly well-

characterized, the impact on NK repertoire diversity and the nature of the NK diversification 

process remain poorly understood. While there are many methods to assess diversity, the 

Inverse Simpson Index is commonly used to quantify the diversity of leukocytes as well as 

the microbiome, in part because it does not require normally distributed data [41]. It 

measures two metrics of a sample to quantify diversity: richness, the number of individual 

subpopulations per sample, and evenness, the degree to which each subpopulation is 

represented in the sample. In theory, education, differentiation, and maturation of NK cells 

should all serve to increase NK repertoire diversity, because all three processes result in the 

expression of previously un-expressed NKRs (including KIRs, CD57, and CD94/NKG2C), 

thereby increasing repertoire richness. However, if a lymphocyte undergoes a clonal 

expansion in response to a particular pathogen, the diversity of that lymphocyte class should 

decrease by the Inverse Simpson Index, because evenness is decreasing with no apparent 

change in richness. There is evidence that viruses other than HCMV, like EBV, HIV, and 

CHIKV, induce clonal-like expansions of NK cells from a well-differentiated NK cell 

repertoire [81,84–86,193]. Thus, exposure of a mature NK cell repertoire to these viruses 

might be expected to decrease NK cell diversity [65].

There are suggestions that this is not the case. First, NK cell diversity increases with age. 

Although differences in the structure of the human NK cell repertoire between cord blood 

and adult peripheral blood are largely limited to maturity-related markers like CD57 and 
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NKG2A [194], NK cell diversity is higher in adult peripheral blood than in cord blood 

[188]. NK cell diversification with age could be a physiologic process, or represent the 

accumulation of diversity induced by exposures to new pathogens. The latter hypothesis is 

supported by the recent observation that NK cell diversity increases after short-term 

exposure to cells infected with HIV-1 or West Nile Virus [188]. As it does not seem likely 

that interacting with virus-infected cells should increase the evenness of NK cell 

subpopulations, it is reasonable to suspect that these viruses cause a process akin to 

differentiation where NK cell repertoire richness increases. While this could represent an 

adaptation to generate a variety of NK cell subsets, some of which might be better tuned to 

respond to the viral threat, there are several noteworthy considerations when interpreting 

these data. The viral exposures were performed in vitro, and whether viral exposure in vivo 
has a similar impact on NK cell diversity remains an open question. Additionally, the Inverse 

Simpson index represents only one method to measure diversity, may be sensitive to the 

particular NKRs used in the diversity calculation, and may not reflect different functional 

phenotypes of samples [32]. Nonetheless, the receptor-ligand interactions and signaling 

modalities that govern rapid virus-induced NK cell diversification in vitro or maturity-

related diversification in vivo could represent important factors influencing NK cell 

repertoire stability and function, as well as potential viral evasion strategies. The existing 

data on immune experience largely reflect studies of the effects of viral infection. It will be 

of interest in future studies to evaluate the impact of malignancy on the phenotypic and 

functional diversity of the NK cell repertoire.

Importance of NK cell diversity in health and disease: lessons learned from 

deep profiling

It is appreciated that NK cells have critical roles in the control of early viral infection and 

malignant transformation [1,2,10,24,195], and the importance of functional specialization of 

the major NK cell subsets in human health and disease is also well characterized [132,196]. 

To our knowledge, only one study to date has examined how NK cell repertoire diversity 

impacts viral susceptibility. This study, performed by our research group, used CyTOF to 

demonstrate, surprisingly, that NK cell diversity correlated positively with risk of HIV-1 

acquisition in a cohort of Kenyan women [188]. Risk of HIV-1 acquisition was correlated 

neither with CD4 or CD8 T cell diversity nor with expression of specific NK cell receptors. 

These results are counterintuitive, as lymphocyte diversity is conventionally considered to be 

beneficial by allowing lymphocytes to recognize and respond to a greater breadth of 

potential novel pathogens. There are two notable caveats to this study: its data are generated 

from a small cohort (HIV-1 acquisition, n = 13; matched controls, n = 23) and diversity may 

be a confounder that correlates with some unidentified metric that itself represents the link to 

increased viral susceptibility.

The caveats notwithstanding, one way to explain the paradox presented by this study is to 

posit that NK repertoire diversity is inversely related to repertoire flexibility. Therefore, 

greater NK cell diversification could impair the ability of the repertoire to respond to and 

control a novel pathogen, thereby increasing viral susceptibility. Though this hypothesis 

remains unconfirmed, there are suggestions in the literature that corroborate this assertion. In 
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particular, it appears that murine cytomegalovirus (MCMV)-induced adaptive murine NK 

cells have decreased capacity to control heterologous infections by influenza virus or 

Listeria monocytogenes compared to their naive counterparts [197]. This underscores the 

antigen-specificity of adaptive NK cell responses and supports the notion that virus-induced 

repertoire diversification may be akin to lineage commitment, where differentiated NK cells 

are unable to respond to de novo pathogens and thus impair the functional capacity of the 

repertoire as a whole.

Conclusion: future directions in single-cell technologies

Despite the progress that has been made in deep profiling NK cells to understand the genetic 

and environmental determinants of their diversification, much uncertainty still remains as to 

the mechanisms of NK diversification and its role in human health and disease. What 

epigenetic mechanisms promote NK cell repertoire stability? What are the receptor-ligand 

interactions and signaling pathways that govern virus-induced NK cell diversification? 

Which NK cell subsets are signatures of certain viral infections, and do these signatures 

represent possible viral evasion strategies? Can we identify specific subsets of NK cells that 

are best adapted to promoting immune homeostasis or controlling particular viral infections 

or cancers? Does NK cell diversity decrease repertoire flexibility and promote viral 

susceptibility?

The advent of single-cell technologies for deep profiling of NK cells has made answering 

such questions imminently possible. Our group and others have recently pioneered the use of 

mass cytometry to better dissect NK cell diversity [41,109,143,188,198,199]. Single-cell 

resolution deep sequencing and proteomics methods will also facilitate further complex 

interrogation [200]. These methods should provide a deeply needed understanding of the 

links between NK cell phenotype and functional capacity that will be essential for future NK 

cell-based therapeutic developments.
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NK natural killer

ILC innate lymphoid cell

IFN-γ interferon gamma

NKR natural killer cell receptor

KIR killer immunoglobulin-like receptor

CyTOF cytometry by time-of-flight
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CD cluster of differentiation

IL interleukin

HLA human leukocyte antigen

HCMV human cytomegalovirus

EBV Epstein-Barr virus

CHIKV Chikungunya virus

AIDS acquired immunodeficiency syndrome

HIV human immunodeficiency virus

HBV hepatitis B virus

HCV hepatitis C virus

LCL lymphoblastoid cell line

MIC MHC class I-related protein

ULBP UL16 binding protein

ADCC antibody-dependent cellular cytotoxicity

TNF tumor necrosis factor

TGF transforming growth factor

PBMC peripheral blood mononuclear cell

NCR natural cytotoxicity receptor

TRAIL TNF-related apoptosis-inducing ligand

DNAM DNAX accessory molecule

LILRB1 leukocyte immunoglobulin-like receptor B1

PLZF promyelocytic leukemia zinc finger protein

MCMV murine cytomegalovirus
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Figure 1: 
Human NK cell repertoire shifts and expansions induced by particular viral infections. The 

inexperienced NK cell repertoire begins as a collection of relatively homogenous cytokine-

producing CD56bright NK cells, and CD16+KIR+ cytotoxic CD56dim NK cells. These 

subsets differentiate and diversify in response to various viral infections. EBV expands a 

population of early-differentiated CD16+KIR-NKG2A+ CD56dim NK cells which gradually 

acquire KIRs through education. HCMV, on the other hand, induces expansion of late-

differentiated CD57+NKG2C+ NK cells. Chronic infection, in particular by HIV or HCV, 

can induce the formation of anergic CD56neg NK cells. It is important to note that, while 

specific expansions or subsets are depicted as single cells, virus-induced changes in NKR 

expression typically correspond to repertoire-wide changes and not necessarily specific 

populations. Here, a darker arrow corresponds to a more conclusive relationship between the 

two NK cell subsets. For example, it remains unclear if CD56bright NK cells represent 

CD56dim precursors in vivo.
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