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Abstract

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for 

charging tRNA with cognate amino acids during protein translation. Non-canonical functions are 

increasingly recognized, and include transcription and translation control and extracellular 

signaling. Monoallelic mutations in genes encoding several ARSs have been identified in axonal 

Charcot-Marie-Tooth (CMT2) disease, whereas biallelic mutations in ARS loci have been 

associated with multi-tissue syndromes, variably involving the central nervous system, lung, and 

liver. We report a male infant of non-consanguineous origin, presenting with successive onset of 

transfusion-dependent anemia, hypothyroidism, cholestasis, interstitial lung disease, and 

developmental delay. Whole-exome sequencing (WES) revealed compound heterozygosity for two 

variants (p.Tyr307Cys and p.Arg618Cys) in MARS, encoding methionyl-tRNA synthetase. 
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Biallelic MARS mutations are associated with interstitial lung and liver disease (ILLD). 

Interestingly, the p.Arg618Cys variant, inherited from an unaffected father, was previously 

reported in a family with autosomal dominant late-onset CMT2. Yeast complementation assays 

confirmed pathogenicity of p.Arg618Cys, yet suggested retained function of p.Tyr307Cys. Our 

findings underscore the phenotypic variability associated with ARS mutations, and suggest genetic 

or environmental modifying factors in the onset of monoallelic MARS-associated CMT2.
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INTRODUCTION

Aminoacyl-tRNA synthetases (ARSs) function at the first step of protein translation, 

catalyzing the ligation of amino acids to their cognate tRNAs. Each enzyme catalyzes the 

esterification of a specific amino acid to a hydroxyl group at the 3′-end of a cognate transfer 

RNA (Schimmel 1987). ARSs are mostly specific to either the cytoplasm or the 

mitochondria, the latter appended with the number “2” as in MARS2; three are bifunctional 

(Antonellis and Green 2008). A subset of ARSs form macromolecular complexes with ARS-

interacting multifunctional proteins (AIMP1, AIMP2, and AIMP3) (Lee et al. 2004). Apart 

from their traditional canonical functions, non-canonical functions of ARSs and ARS 

macromolecular complexes are becoming increasingly recognized. These include roles in 

transcription and translation control, signal transduction, cell migration, angiogenesis, 

inflammation, and tumorigenesis (Castranova et al. 2016, Young, Lee, and Kim 2016).

Monoallelic mutations in cytoplasmic and bifunctional ARSs have been identified in axonal 

peripheral neuropathies (i.e., AARS [MIM 601065], YARS [MIM 603623], GARS [MIM 

600287], KARS [MIM 601421], WARS [MIM 191050]) (Antonellis et al. 2003, Jordanova 

et al. 2006, Latour et al. 2010, McLaughlin et al. 2010, Tsai et al. 2017), whereas biallelic 

mutations in mitochondrial ARSs have classically been associated with a wider variety of 

syndromes, with multi-tissue involvement (i.e., SARS2 [MIM 612804], MARS2 [MIM 

609728]; and RARS2 [MIM 611524]). However, recent publications have challenged the 

dichotomous disease classification associated with cytoplasmic versus mitochondrial ARSs. 

It is now recognized that biallelic mutations in cytoplasmic ARSs can affect multiple tissues 

(Oprescu et al. 2017). Examples include biallelic variants in LARS with infantile liver 

failure syndrome [MIM 615438] (Casey et al. 2012); in AARS with early infantile epileptic 

encephalopathy-29 [MIM 616339] (Simons et al. 2015); and in KARS with autosomal 

recessive deafness [MIM 613916] (Santos-Cortez et al. 2013).

Here, we report compound heterozygosity for two MARS variants in an infant with 

interstitial lung and liver disease [MIM 615486]. Interestingly, one of the mutations, 

inherited from an unaffected father, was previously reported in a family with autosomal 

dominant late-onset CMT2 [MIM 616280], highlighting the complexity of genotype-

phenotype correlations.
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PATIENT DATA

The patient (II-3 in Fig. 1A) was the youngest among 3 siblings born to healthy unrelated 

parents of Jewish Moroccan/Tunisian/Persian descent. The patient was delivered at term by 

repeat Cesarean-section at birthweight of 2600 grams, following an unremarkable 

pregnancy. Soon after birth he developed Coombs-negative transfusion-dependent anemia, 

necessitating frequent red blood cell (RBC) transfusions. At approximately age 3 months the 

infant presented with elevated liver enzymes, direct hyperbilirubinemia and 

hypoalbuminemia. Urine organic acids demonstrated markedly elevated tyrosine 

metabolites, indicative of liver dysfunction. Liver biopsy showed swollen hepatocytes, 

diffuse macrovascular and sinusoidal steatosis, and pericentral, portal and sinusoidal fibrosis 

(Fig. 2). Additional endocrine and metabolic investigations revealed peripheral 

hypothyroidism, and were otherwise within normal limits. Brain magnetic resonance 

imaging (MRI) was normal. At four months of age the patient exhibited respiratory 

deterioration and subsequently became oxygen-dependent. A chest radiograph followed by 

high-resolution chest computed tomography (CT) revealed advanced interstitial disease (Fig. 

2). Bronchoalveolar lavage (BAL) showed multiple foamy macrophages, without evidence 

of alveolar proteinosis. The patient was fed via a nasogastric tube followed by insertion of a 

gastrostomy tube at 8 months. He was slow to gain weight, below the 3rd percentile for both 

weight and length. At 8 months, the patient had significant motor developmental delay: he 

could not support his head and was unable to roll over. However, he did track objects, had a 

social smile, and was able to reach for and grasp objects.

The patient was treated with hydroxychloroquine in an effort to ameliorate the ongoing 

inflammatory process and to slow down the progression of interstitial lung disease. 

Following molecular diagnosis, exogenous methionine supplementation was initiated due to 

plasma methionine levels in the lower limit of the normal range (8 uM, normal range 7–47 

uM) and based on studies in yeast where attenuated MARS activity could be rescued with 

methionine supplementation (Hadchouel et al. 2015). Approaching his first birthday, the 

infant’s condition improved. He was weaned off daytime oxygen, hospitalizations became 

less frequent, and steady weight gain was documented. Head control and motor strength 

improved with intensive physical and occupational therapy, and the patient learned to 

support his head and roll from abdomen to back.

MATERIALS AND METHODS

Genetic analysis

The family consented for genetic testing according to a local IRB approved protocol. Exonic 

sequences from DNA extracted from whole blood of individual II-3 were enriched with the 

SureSelect Human All Exon 50 Mb V4 Kit (Agilent Technologies, Santa Clara, California, 

USA). Sequences were generated on a HiSeq2500 (Illumina, San Diego, California, USA) as 

125-bp paired-end runs. Read alignment and variant calling were performed with DNAnexus 

(Palo Alto, California, USA) using default parameters with the human genome assembly 

hg19 (GRCh37) as reference. Exome analysis of the proband yielded 50.4 million mapped 

reads with a mean coverage of 74X. Following alignment to the reference genome [hg19] 

and variant calling, variants were filtered out if the total read depth was less than 8X, and if 
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they were off-target (>8bp from splice junction), synonymous, were predicted benign by 

MutationTaster, or had minor allele frequency (MAF) >0.01 in the ExAC database (Exome 

Aggregation Consortium, Cambridge, MA, URL: http://exac.broadinstitute.org).

Segregation analysis

Amplicons containing the potential pathogenic variants in MARS were amplified from 

genomic DNA of available family members by conventional PCR. PCR products were 

purified and analyzed by Sanger di-deoxynucleotide sequencing, according to standard 

procedures.

Yeast complementation assays

Yeast complementation assays were performed using a haploid S. cerevisiae strain with a 

deleted endogenous MES1 (the yeast ortholog of MARS) as previously described (Gonzalez 

et al. 2013); viability of this strain is maintained by a vector (pRS316) harboring wild-type 

MES1. This strain was transformed with a pYY1 construct (Chien et al. 2014) bearing either 

the wild-type human MARS open-reading frame or the p.Tyr307Cys or p.Arg618Cys 

MARS open-reading frame, or constructs without a MARS insert (‘empty’ in Fig. 3). 

Transformed yeast were selected for the presence of the maintenance and experimental 

vectors on media lacking leucine and uracil. Colonies were grown to saturation in 2mL of 

selective liquid medium for 48 hours at 30°C, 275rpm. One mL of each saturated culture 

was spun down and re-suspended in 50ul water, then diluted 1:10 and 1:100. Cultures were 

spotted on 0.1% 5-FOA complete solid medium (Teknova, Hollister CA), which selected for 

cells that spontaneously lost the maintenance vector. Yeast were imaged after three days of 

incubation at 30°C. Two independent transformations were performed with independently 

generated pYY1 constructs, and two colonies per transformation were tested.

RESULTS

Following filtering of exome data, we identified three genes with rare compound 

heterozygous variants (Supplemental Table 1). No rare homozygous or de novo variants 

survived filtering. Two variants identified in MARS provided a sound phenotypic overlap 

with the clinical presentation of the affected individual (II-3 in Fig. 1A) and segregated with 

the disease: NM_004990.3:c.920A>G; p.Tyr307Cys (inherited from the mother), and 

NM_004990.3:c.1852C>T; p.Arg618Cys (inherited from the father). The two unaffected 

siblings carried either one or the other MARS variant, but not both (Fig. 1A). The 

p.Tyr307Cys and p.Arg618Cys variants both affect conserved residues (Fig. 1B), are 

predicted deleterious by various bioinformatic algorithms, and are only present twice in the 

heterozygous state in the GnomAD database (Table 1). The p.Tyr307Cys variant affects a 

residue in the catalytic domain, and p.Arg618Cys has been previously reported in 

association with autosomal dominant, late-onset CMT type 2U (Fig. 1C), with functional 

studies in yeast supporting pathogenicity (Gonzalez et al. 2013).

The wild-type human MARS open-reading frame complements deletion of the endogenous 

MES1 locus (Fig. 3). In this assay, yeast growth is a readout for MARS function, because 

yeast require MARS to survive (an empty vector with no MARS insert cannot support yeast 
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growth; Fig. 3). As was previously demonstrated in MES1, p.Arg618Cys MARS does not 

support yeast growth, indicating that it is a functionally null allele (Fig. 3). However, yeast 

expressing p.Tyr307Cys MARS grow similarly to yeast expressing wild-type MARS, 

indicating that p.Tyr307Cys MARS does not dramatically reduce gene function in our yeast 

model system.

DISCUSSION

MARS encodes the cytoplasmic methionyl-tRNA synthetase; monoallelic mutations in this 

gene have been associated with autosomal dominant late-onset CMT2U [MIM 616280] 

(Gonzalez et al. 2013, Hyun et al. 2014), whereas biallelic mutations have been associated 

with interstitial lung and liver disease [ILLD, MIM 615486] (van Meel et al. 2013, 

Hadchouel et al. 2015, Sun et al. 2017). The clinical presentation of the patient studied here 

closely overlaps that of the patient described by van Meel et al. (2013) (van Meel et al. 

2013). Notably, pulmonary alveolar proteinosis, which was a hallmark of the cohort 

described by Hadchouel et al. (2015), was not suggested by the CT findings of the studied 

patient nor was it found in BAL.

Most ILLD-associated MARS mutations map to the catalytic domain, whereas the two 

CMT2U mutations identified to date map to the stem-contact fold domain and the α-helix 

bundle domain. This has led to the proposal of allele-specific genotype-phenotype 

correlations (Sun et al. 2017). However, the p.Arg618Cys MARS mutation identified herein 

was previously reported in CMT2U, with functional support from yeast complementation 

assays showing an inability of the p.Arg618Cys MES1 to rescue deletion of endogenous 

MES1 (Gonzalez et al. 2013). When modeled in the human MARS open reading frame, 

p.Arg618Cys showed similar loss of function (Fig. 3). The p.Arg618Cys mutation in the 

current study was inherited from an apparently healthy father; nerve conduction velocity 

(NCV) studies were not available. Clinical reassessment of the father and NCV studies in the 

sixth decade, corresponding to the reported age of onset of CMT2U, will be of value. 

Notably, explicit questioning failed to reveal any family history of a late-onset neuropathy in 

elderly individuals in previous generations.

Interestingly, the second variant p.Tyr307Cys was predicted to be pathogenic by several 

bioinformatic algorithms (Table 1), yet appeared fully functional in our yeast 

complementation assay (Fig. 3). It is important to note that the yeast complementation assay 

may not be sensitive enough to detect minor to moderate decreases in enzyme function, and 

does not assess for tissue-specific impairments in tRNA charging that might be relevant to 

the patient phenotype. Furthermore, it is not surprising that p.Tyr307Cys retains some 

function, based on the non-lethal nature of the phenotype; compound heterozygosity for two 

functionally null alleles would presumably be embryonic lethal (Seburn et al. 2006, Motley 

et al. 2011). Thus, a more careful enzymatic analysis is needed to fully characterize the 

functional consequences of p.Tyr307Cys MARS (Oprescu et al. 2017).

While dominant and recessive inheritance at the same locus is a recognized phenomenon, it 

can often be traced to the type of variant (i.e., nonsense versus missense), localization of the 

variant in a specific protein domain, mechanism of action (i.e., loss-of-function versus gain-
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of-function), or the trigger or escape of nonsense-mediated decay. Controversies in the 

literature have stemmed from discordant reports concerning pathogenicity of a particular 

variant (Shy et al. 2006, Seeman et al. 1999). In the current case, based on the clinical data 

and the functional evidence from yeast studies, we propose that the p.Arg618Cys mutation 

can cause autosomal dominant CMT2U or can contribute to biallelic ILLD, dependent upon 

the genetic background of the individual. Possible contributions from other loci and from 

environmental factors cannot be ruled out. This hypothesis is consistent with the incomplete 

penetrance of p.Arg618Cys-associated CMT2U (Gonzalez et al. 2013) as well as with the 

proposed contribution of mutation burden to neuropathies (Gonzaga-Jauregui et al. 2015).

There has been growing attention in recent years to the phenotypic consequences of 

monoallelic and biallelic mutations in both cytoplasmic and mitochondrial ARSs (Oprescu 

et al. 2017). In correlation with previous studies, we show that compound heterozygosity for 

mutations in the gene encoding MARS causes a multi-organ disease involving the liver, 

lungs, bone marrow, and thyroid function. Moreover, we discuss clinical interventions that 

may benefit patients with ILLD and highlight the complexity of genotype-phenotype 

correlations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pedigree and identified MARS variants
(A) Sanger segregation of the variants in the family. (B) Conservation of affected residues. 

(C) Position of MARS residues associated with Charcot-Marie-Tooth disease type 2U 

(CMT2U; in blue) and interstitial lung and liver disease (ILLD; in green).
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Figure 2. Liver biopsy and high resolution chest computed tomography
(A) Diffuse infiltrative opacification in the lung periphery indicating severe interstitial lung 

disease. (B) H&E stain of liver section showing portal and sinusoidal fibrosis, cholangiolar 

proliferation and diffuse macrovesicular steatosis with ballooning of hepatocytes. (C) 

Masson trichome stain demonstrating portal and sinusoidal fibrosis.
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Figure 3. The effects of MARS variants on yeast cell growth
Representative cultures of the indicated yeast strains were plated on solid growth medium 

containing 5-FOA. Each strain was previously transformed with a vector containing no 

insert (Empty pYY1), or one containing either wild-type or mutant (p.Tyr307Cys or 

p.Arg618Cys) human MARS. Before inoculating on solid growth medium, each strain was 

either undiluted, or diluted 1:10 or 1:100 in water.
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