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Abstract
Mathematics rules the world of science. Innovative technologies based on mathematics have paved the way for imple-
mentation of novel strategies in assisted reproduction. Ascertaining efficient embryo selection in order to secure optimal
pregnancy rates remains the focus of the in vitro fertilization scientific community and the strongest driver behind
innovative approaches. This scoping review aims to describe and analyze complex models based on mathematics for
embryo selection, devices, and software most widely employed in the IVF laboratory and algorithms in the service of the
cutting-edge technology of artificial intelligence. Despite their promising nature, the practicing embryologist is the one
ultimately responsible for the success of the IVF laboratory and thus the one to approve embracing pioneering technol-
ogies in routine practice. Applied mathematics and computational biology have already provided significant insight into
the selection of the most competent preimplantation embryo. This review describes the leap of evolution from basic
mathematics to bioinformatics and investigates the possibility that computational applications may be the means to foretell
a promising future for the IVF clinical practice.
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Introduction

The success rate during the first few years of in vitro fertiliza-
tion (IVF) was 6% per cycle [1], which is less than a fifth of
today’s success rates. Nowadays, trends have shifted towards
improving implantation rates of the embryo and pregnancy
rates, as well as better obstetrics and perinatal results along
with better pediatric follow-up.

In order to achieve this, successfully selecting the top-
quality embryos is of outmost importance. Embryo selec-
tion has always been based on a mathematical-algorithmic
approach, considering that even the simplest grading sys-
tems are based on mathematics. Grading systems initially
depended solely on morphological criteria as they were
assessed through light microscopy [2]. These early embryo
selection systems in reality were Bdecision trees^—a term
commonly encountered in biostatistical and computer
models. However, their empirical employment did not in-
clude a direct mathematical approach. The natural evolu-
tion of this pattern was the creation of mathematical equa-
tions—algorithms that could provide a better prediction of
the embryo’s potential [3, 4].
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Entering the BComputer Era,^ it became clear that the math-
ematical approach would evolve to computer-based prediction
models. The invention of devices and more complex software
systems followed [5], enhancing the embryologists’ decision-
making ability. Computational applications have fully entered
the IVF laboratories to the point that the phrase Bthere is an app
for that^ is close to becoming a reality in the embryo selection
models. More complicated mathematical and statistical tools
are now employed, with the assistance of computer software in
order to produce more accurate prediction models. The emer-
gence and introduction of various devices in the laboratory
have offered the embryologists the opportunity to closelymon-
itor the embryos’ development. Programs created with artifi-
cial intelligence are able to detect embryo characteristics that
could not be assessed by humans [6]. Nonetheless, prior to
accepting novel approaches, we should evaluate when new
technology should enter the clinical setting of an IVF labora-
tory and define what establishes approval and promotes safe
practice [7]. The aim of this scoping review is to examine and
report on the potential of bioinformatic-based approaches—
including both devices and prediction algorithms—that may
be part of an IVF laboratory’s routine. It should be noted that
the term Bbioinformatics^ has been defined differently numer-
ous times. Employment of bioinformatics in clinical embryol-
ogy has a clear identity. For the present review, it is defined as
the field that includes Bthe application of computers to the
collection, organization, analysis, manipulation, presentation,
and sharing of biologic data^ [8]. The outline of the analysis
performed in this study is presented in Fig. 1.

Methodology

This scoping review relied on researching the international
published literature on the subject of bioinformatics in the
service of predicting the IVF outcome. The studies presented
in this review article were extracted from Scopus and
PubMed. The keywords selected were BIVF prediction
algorithms,^ Btime-lapse IVF,^ Bbioinformatics IVF,^ and
Bartificial intelligence IVF.^ At Scopus, the results were lim-
ited only to Bmedicine.^ The overall search yielded 325 arti-
cles. Titles and abstracts of the search results were screened
and evaluated. Articles that did not fit the concept of our study
or that were not in English were excluded on that account by
the authors. In addition to forward reference searching, cita-
tion mining was conducted by a backward reference search in
high-impact articles. Emphasis was given to articles published
by research groups specializing on the relevant field, without
excluding all relevant contributions. The articles were catego-
rized according to the structure decided for this study and
critical analysis on them was performed.

Bayesian classification models: mathematics
in the service of embryo selection

Bayesian classifiers are a classification type based on Bayes’
theorem. Bayes’ theorem allows the calculation of an event by
using observed data even if the calculation depends on uncer-
tain or missing parameters [9]. The first approach towards
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Fig. 1 Outline of sophisticated models and software employed in the IVF laboratory and analyzed in this review
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Bayesian classification models was reported by Dukic and
Hogan [10]. Their model expanded a previous model that
relied on applied mathematics, named the EU model [11], to
a Bayesian hierarchical model. The EU model’s concept is
that for a pregnancy to be achieved, the uterus must be recep-
tive and the embryo must be viable, based solely on maternal
age and embryo cell number. The parameters included in their
algorithm were hydrosalpinx status, maternal age, oocyte age,
and number of embryos which were not transferred. It was
suggested that the higher the number of the embryos that were
not transferred, the better the quality of the transferred embry-
os. The interaction between the uterus and the embryo with
respect to implantation potential is perhaps considered a
Bblackbox^ in the search for the factors involved in successful
implantation. Although the algorithm’s prediction ability was
confirmed by the observed pregnancies, the fact that it could
be employed following embryo transfer was a serious
limitation.

Adding more morphological characteristics of the embryo,
Morales and colleagues conducted two studies developing
Bayesian classification models [12, 13]. In the first study,
different types of Bayesian classifiers were applied in order
to select the embryos with the highest implantation potential.
It was reported that the semi-naïve Bayesian classifier held the
highest positive predictive value (50%), whereas all classifiers
had a similar negative predictive value. A serious limitation in
this study was the assessment of implantation potential in
embryo batches (each batch consisted of 3 embryos) and the
assumption that embryos with the highest score were the ones
that implanted from each batch [12]. In the second study,
seven different types of Bayesian classifiers were examined
using a dataset of digital images of 249 embryos with known
implantation data taken 40–50 h following fertilization. The
embryos were graded according to Mill’s scoring system
(1992). The aim was to predict the possibility of successful
embryo implantation. The classifiers were successful in their
prediction demonstrating an accuracy of at least 78%. The
Bayesian type of BTAN with wrapper feature selection^
reached 91% whereas logistic regression reached 82.33%.
Bayesian classifiers proved to be able to perform successfully
towards predicting embryo implantation. The authors con-
cluded that a possible increase in the number of variables used
for embryo morphological grading may result to a higher ac-
curacy for the prognostic algorithm [13].

The evolution towards a Bayesian network (BN) was real-
ized and tested against decision tree-based algorithms [14] and
other Bayesian classification models [15]. Both studies were
conducted by the same group, thus the BN featured the same
parameters. Although embryo grading was performed daily
and according to Istanbul Consensus Criteria (2011) [16],
the grade was then converted to binary and more specifically
categorized into Btop^ and Bnon-top.^ Interestingly, parame-
ters also included maternal age, number of IVF attempts, and

the procedure employed for fertilization, adding another level
of specificity to the approach. The BN presented similar ac-
curacy to the decision tree but a higher area under curve
(AUC), meaning that it was able to perform more reliable
estimations [14]. According to the results of the second study,
the BN proved to be of greater accuracy than the TAN
Bayesian classifier, in contrast to the AODE Bayesian classi-
fier which can be perceived as an ensemble of TANs. The
authors interestingly propose a Bdecision support transfer.^
DST suggests that prediction of embryo’s implantation is
linked to parents, and an informed decision on embryo’s iden-
tity and number is deduced involving the patient, the physi-
cian, and the embryology laboratory. Specifically, according
to the embryo viability possibility, it is proposed that clinicians
and parents should decide if a selective single, a double, or a
triple embryo transfer should be performed and what will con-
fer optimization to the treatment—always abiding by the rel-
evant legislative frame. It is a valid hypothesis that integration
of a Bayesian network with time-lapse microscopy system
will increase the algorithm’s predictive value and become a
preferred approach [15].

On another note, the Bayesian hidden Markov model has
been successfully proposed as means to enable aneuploidy
screening, adding another element towards enriching predic-
tion [17].

The development from Bayes’ theorem to a Bayesian net-
work is challenging and interesting to follow. The study by
Corani and colleagues suggesting that the model may enable
the patients’ involvement into the embryo-transfer decision is
in line with contemporary trends and strengthening the in-
formed decision scenario [15].

The accommodation of Bayesian models may not strike the
clinical IVF laboratory routine as straightforward and user
friendly. Bayesian classifiers in ARTwere initially developed
as statistical tools to provemathematically that for a successful
IVF, both patient and embryo characteristics are equal protag-
onists—what now is considered common knowledge. Their
evolution towards prediction models encompassing more
characteristics and a higher level of complexity appears to
have been acknowledged. Bayesian prediction models report
relatively high prediction power and equally high goodness-
of-fit, as presented in Table 1. Nonetheless, implementation of
a software application to enable employment of a Bayesian
model from an IVF laboratory could potentially lead to better
practice, and it is a direction worth exploring as it would
require minimal processing power and would be able to ac-
commodate a large number of samples.

Computer-assisted IVF

The quest for a better embryo-development evaluation carries
a constant effort to improve our understanding of embryo
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morphology. One of the leading morphological features is
blastomeres’ fragmentation. A computer-assisted method
was employed including segmentation of digital embryo pho-
tographs and ×400 zoom in order to analyze embryo fragmen-
tation and multinucleation. The morphological results were
evaluated by DNA staining. The results demonstrated that
fragmentation percentage and multinucleation were better
evaluated through a computer as the human eye cannot per-
ceive with absolute integrity of the above aspects. More spe-
cifically, it was identified that occasionally, large fragments
could be mistaken as blastomeres by embryologists and the
study proposed a cut-off value for the minimum size of the
blastomere [18, 19]. Further to that, a plug-in was created, able
to assess 24 morphological characteristics of the zygote and
compared to the standard zygote scoring using six character-
istics that were part of the laboratory routine [20].
Conclusively, the plug-in created was found to be more suc-
cessful in accurately categorizing embryos into three groups in
comparison to the embryologist.

On a slightly different and more embryo-orientated per-
spective, Paternot and colleagues conducted two studies [21,
22] in an attempt to create a complete embryo scoring system
based on computer models. In the first study, the characteris-
tics of an embryo were evaluated through computer analysis
of digital embryo images, in order to create a complete em-
bryo scoring system. The computer embryo evaluation was
tested against the laboratory’s standard scoring system
(SSS). The computer-assisted scoring system was reported
as superior in terms of predicting live birth rates than the
SSS [21]. For the 2013 study, evaluation of the optimal
cytoplasmic volume was performed and associated with
pregnancy outcome. The evaluation of cytoplasmic vol-
ume was based on a semi-automated system. It should be
noted that in both studies, the computer system was not
entirely autonomous as the embryologist contributed to
the definition of every cell’s limit [22]. This drawback of
the computer system could be resolved by a software that
could automatically analyze blastomeres and define their
boundaries. A recent approach accomplished this by creat-
ing a software that could automatically identify blasto-
meres and their irregularity on day 2 embryos with prom-
ising application [23]. Integration of the developed image-
analysis software may automate the process of evaluating

the embryo grading, thus creating a more robust entirely
computer-based embryo grading system.

The rapid advancement of technology over the past de-
cades has led to the establishment of informatics in every
aspect of the human life and the IVF laboratory is no excep-
tion. Computer-assisted systems have been employed in the
IVF laboratories for a wide range of applications. Aspects of
the laboratories’ routine that have been automated include
segmentation of digital photographs of the embryo, precise
embryo measurements, and decision support algorithms.
Since IVF outcome is defined principally by the gametes’
and embryo’s molecular characteristics, their contribution in
prediction, in combination with the clinical factors of infertil-
ity, and embryology data could potentially be more enlighten-
ing. This merge might lead the way forward in computer-
assisted IVF.

Time-lapse microscopy

The most widely employed devices introduced to the ART
world in 2009 refer to time-lapse microscopes providing the
embryologist with a complete view of the morphokinetics of
the embryo. Employment of embryo morphokinetics has been
related to higher rates of blastocyst formation and pregnancy
[24]. Time-lapse systems have gained a fair market share of
17% of IVF laboratories in the USA [25]; however, there is
still controversy regarding the clinical efficiency of these sys-
tems [24, 26–28].

It has been almost a decade since the emergence of the—
still considered to be novel—approach of time-lapse. There
have been studies supporting its efficiency and suggest its
employment in IVF laboratories. Other studies represent the
view that data on the benefits related to time-lapse service are
still not convincing enough to justify the corresponding cost
of the device and the consumables or the considerable changes
that should be adopted regarding the IVF routine work.
According to a meta-analysis, comparing time-lapse micros-
copy-based embryo grading versus conventional grading
methods, the former failed to provide a statistically significant
difference in improving clinical pregnancy or ongoing preg-
nancy rates [27]. To add to the complexity, the ability of time-
lapse microscopy to predict embryo euploidy has also been

Table 1 Accuracy and AUC of
Bayesian prediction models Study Sample size Single/

multicenter
AUC Accuracy Externally

validated

Morales et al. [12] 249 embryos S 0.99 88% N

Morales et al. [13]a 63 cycles S – 71.43% N

Gianaroli et al. [14]a 388 cycles S 0.72 81.5% N

Corani et al. [15] 600 embryos S 0.83 – N

aResults correspond to embryo batches transferred and not to single embryos
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examined. A recent systematic review concluded that on the
grounds of various contradicting results obtained from litera-
ture, time-lapse microscopy may not offer information regard-
ing euploidy in the same scope as PGS conveys—especially
in clinical practice. Possible standardization of culture condi-
tions may enable the adjustment of parameters that will in turn
allow a possible association between embryo morphokinetics
and euploidy [29].

Time-lapse microscopy has not yet earned the trust of the
majority of embryologists, despite its availability for almost a
decade. Numerous conflicting studies led several laboratories
to regard time-lapse systems more as a Bgadget^ than a
Bnecessity.^ Further multicenter and perhaps multicountry,
studies are required to solidify its effectiveness.

Commercially available prediction algorithms based
on time-lapse systems

Since time-lapse microscopy entered the embryology labora-
tory, several attempts have been reported in order to generate
an algorithm that would surpass the standard scoring system
and achieve higher pregnancy rates.

The first attempt was reported in 2010 by Wong and col-
leagues [30] who created an algorithm able to predict blasto-
cyst formation at the four-cell stage prior to embryonic ge-
nome activation. Wong’s algorithm employed Sequential
Monte Carlo methods in order to create a prediction model
by featuring 5-min time frames from time-lapse system. Three
features were highly correlated with blastocyst formation, the
duration of the first cytokinesis, and time between the 2nd and
3rd-cell stage and between the 3rd and 4th-cell stage. The
proposed algorithm was patented and later became commer-
cially available as the Eeva system. Based on these data, a
decision tree was created, serving as the Eeva classification
algorithm, and the system was completed with the addition of
an image analysis software. Two studies followed aiming to
examine its effectiveness [31, 32]. In Conaghan’s study, em-
bryologists using the Eeva software, with a two-category sys-
tem, were able to predict good blastocyst formation rate on
day 3 embryos. This was supported with an accuracy rate of
more than 66%, resulting to a statistically significant improve-
ment in comparison to the accuracy corresponding to the same
embryologists employing respective standard scoring method.
These results validated and supported Eeva’s use in clinical
practice [31]. In VerMilyea’s study, the Eeva software was
further improved to provide a three-category system (high,
medium, and low-quality embryos). The study proved the
three-category system to be of added benefit in regard to the
medium quality embryos. The Eeva software has been imple-
mented in several IVF programs as a user-friendly approach
enriching and strengthening the embryologists’ choice on the
embryo selection [32]. However, its success on improving the
implantation rate in comparison to the ALPHA/ESHRE’s

morphology grading-based decision is not solidified [33].
The Eeva system appears to perform more efficiently when
compared to morphology-based selection according to
ASEBIR criteria [34]. The Eeva system has updated its soft-
ware adding patient characteristics and morphological param-
eters thus creating a five-category output. This new update is
commercially known as the Eeva Xtend algorithm. The com-
bination of this new algorithm with traditional morphology
grading obtained by the embryologist could efficiently pro-
mote eSET [35].

An additional time-lapse decision tree-based algorithm is
the commercially available KIDScore [33]. KIDScore algo-
rithm, also known as known implantation data score, includes
morphokinetic parameters along with cell number following
66 h. The equations were calculated using recursive
partitioning of the initial parameters. This work relied on the
largest sample encountered namely 3275 embryos ensuring
robustness coupled by significant validation on 11,218 embry-
os. KIDScore algorithm presented a statistically significant
higher predictive capability for blastocyst formation and qual-
ity than the ALPHA/ESHRE scoring system [33]. It should be
noted that an update of the KIDScore includes the addition of
a day 5 decision support tool (KIDScore D5) that can be
employed only in culture systems of certain oxygen condi-
tions, featuring the above algorithm along with inner cell mass
and trophectoderm characteristic evaluation. However, con-
sensus on investigating the results and the corresponding ben-
efits has not yet been reported. The KIDScore has not been
evaluated to the same extent as Eeva, possibly due to its more
recent emergence and availability counting less than 2 years.

Reproducible prediction algorithms based on time-lapse sys-
tems accessible on a non-commercial basis for embryo eu-
ploidy Since 1995, when the first pregnancies following
PGS were reported [36], embryo euploidy has been in the
center of attention when selecting the embryos to be trans-
ferred. Two decades later and the juries are still out for the
(cost-)effectiveness of preimplantation genetic test for aneu-
ploidy (PGT-A) [37]. A recent ASRM committee opinion
concluded that the effectiveness of PGT-A cannot yet be de-
termined although it is universally employed as a screening
test for embryo euploidy [38].

In an effort to develop an algorithm that would be able to
accurately predict embryo euploidy, morphokinetical charac-
teristics obtained through time-lapse microscopy were associ-
ated with the risk of aneuploidy in human embryos [39]. A
decision tree-based algorithm was proposed dividing embryos
in three categories (low, medium, high) in regard to aneuploi-
dy risk in association to the time required from insemination to
reaching the blastocyst stage (before expansion) and the time
from insemination to blastulation. This algorithm demonstrat-
ed a high prediction ability of 97% regarding embryos at high
risk of being aneuploid, whereas low risk embryos presented a
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37% probability of aneuploidy. The algorithm was examined
in a following study by the same group, including fetal heart
beat and live birth rate data [40]. Robust results were provided
with the low risk for aneuploidy group of embryos being as-
sociated with improved outcomes. However, it should be not-
ed that the sample in both studies featuring less than 100
embryos each was considerably smaller in comparison to the
work of other groups, highlighting the limitation of this work.
In the same direction on predicting aneuploidy, a larger study
proposed another algorithm based on completely different
morphokinetics, evaluating earlier stages of embryo develop-
ment [41]. The proposed algorithm presented to be statistical-
ly more efficient in terms of predicting embryo euploidy.
Employment of Basile’s algorithm presents the advantage of
enabling embryo transfer on day 3 [41]. However, the statis-
tical significance of the parameters featured has been argued
[40]. A study comparing three of the above algorithms
(Campbell, Basile 2014, and Cruz) along with three other
studies proposing selection/deselection criteria but not scoring
algorithms was conducted [42]. Campbell’s algorithm proved
to hold the highest positive predictive value and the second
highest negative predictive value regarding euploidy status.
Basile’s algorithm was externally evaluated resulting to 96%
of embryos under the BA^ category being euploid whereas
only 3% of category BD^ embryos were euploid [43].
However, the issue of mosaicism should be considered as a
serious limitation regarding PGD studies. It has been reported
that up to 24% of embryos that are diagnosed by PGDmay be
mosaic [44]. The prediction models for embryo euploidy pre-
sented in Table 2 are hitherto limited, and according to the
reported results, significant efforts on their development are
still required towards their implementation in clinical routine.
Due to their high negative prediction value, perhaps a possible
means of employment for these prediction models could be to
assist in the decision of which embryos PGT-A should be
performed on.

Reproducible prediction algorithms based on time-lapse sys-
tems accessible on a non-commercial basis featuring implan-
tation potential The first attempt to create a decision tree
algorithm applied on time-lapse systems associating embryo
morphokinetics to implantation rates was created by
Meseguer [45]. The decision tree led to a total of 10 categories
ranging from A+ to F. This could provide significant

assistance to the embryologist in selecting the top-quality em-
bryo and achieving better implantation rates. Further assessing
this algorithm in two subsequent studies was added to valida-
tion of results [46, 47]. Meseguer’s algorithm proved to be
robust considering the blastocyst formation rate [46].
Furthermore, Meseguer’s algorithm was compared to
Wong’s and according to Cruz, it was associated to a greater
implantation potential. A serious limitation was that Wong’s
algorithm employed a different time-lapse system [46]. Basile
and colleagues employed a greater number of embryos (1122)
with known implantation data on Meseguer’s algorithm and
found the decision tree to be significantly altered, resulting to
a lower implantation rate for the top category embryos (A+).
In particular, it recorded a major decrease from 66 to 32%
[47]. This important work performed by this group and
depicted in consecutive publications has successfully proved
the scenario of improving the original concept through thor-
ough validations.

An algorithm supporting that embryo cleavage synchronic-
ity is a more reliable marker than absolute time points was
developed by Cetinkaya and colleagues in 2015 [48]. Three
different equations were developed based on results of pre-
vious literature and were respectively evaluated. The equa-
tion that included intervals from two to three cells, from
four to five cells, and from two to eight cells demonstrated
higher top-quality blastocyst formation potential with al-
most 80% of good and top-quality blastocysts being clas-
sified in the top quadrille and 86% of arrested embryos and
poor-quality blastocysts being classified in the bottom qua-
drille. The authors suggested the integration of their algo-
rithm with Campbell’s in order to be able to predict embryo
euploidy as well but no study evaluating a possible inte-
gration has been performed.

Timing of cell divisions is of paramount importance and
was implemented in an algorithm featuring timing of the first
division all the way through to the five-cell stage, along with
the duration of the second-cell cycle and that of the three-cell
stage [49]. The feature weight for each parameter was indicat-
ed through a multivariate logistic regression analysis. The
embryos that developed to blastocysts presented a statistically
significant higher score than embryos that failed to reach the
blastocyst stage. This one along with the study by Cetinkaya
et al. [48] was the sole study not relying on a decision tree for
embryo grading. Instead, Milewski’s group created a purely

Table 2 Positive and negative prediction values of prediction models employing TL regarding embryo euploidy

Study Sample size (embryos) Single/multicenter Embryo euploidy AUC Externally validated

PPV NPV

Campbell et al. [39] 97 S 64% 100% 0.72 Y

Basile et al. [41] 504 S 35.9% 90.2% 0.634 Y
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mathematical reproducible algorithm, albeit relying on a rela-
tively small sample. This algorithm was re-evaluated by the
same group, on a larger sample, targeting implantation rate
instead of blastocyst formation potential [50]. Due to the
shortage of the previous algorithm to present a statistically
important prediction ability, a new algorithm was created by
employing principal component analysis. The new algorithm
added two new parameters, blastomere fragmentation at the
three-cell stage and maternal age. The proposed algorithm
resulted in negative values with close to zero scores being
associated with higher implantation rates. By dividing the em-
bryo in four quadrilles according to their scores, the study
presented a statistically important correlation between embryo
score and implantation potential. Expansion and reexamina-
tion of this approach merit further investigation on a multicen-
ter level to cement its contribution towards embryo selection.

A two-part decision tree algorithm was proposed
employing morphokinetical parameters in order to successful-
ly predict blastocyst formation rate as well as implantation
[51]. For the first part, time required to reach morula stage
and time required for transition from the five to eight-cell
stage were featured. For the second part, the latter parameter
was featured again, however presenting with a different cut-
off value, along with time required to reach the blastocyst
stage. Following its development, the algorithm was tested
using a different set of embryos. The algorithm provided suc-
cessful associations between the top category embryos which
proved to correspond to a higher blastocyst formation rate and
higher implantation potential. The authors highlighted that all
embryo-transfer selections were performed according to a
combination of day 5 morphological criteria assessment along
with Meseguer’s algorithm.

Liu and colleagues [52] proceeded with a new time-lapse
based prediction algorithm equally employing a decision tree.
The variables employed in this decision tree were poor con-
ventional morphology, abnormal cleavage, less than eight
cells after 68 h, duration of three-cell stage, and time from
pronuclear fading to the five-cell stage. The embryos were
categorized into seven categories and the implantation rate
ranged from 52.9% for the top category to 0% for the worst
category. Liu and colleagues [52] proposed that each labora-
tory should create its own cut-off values, slightly changing the
parameters of the decision tree, since culture variations may
alternate the embryo growth. This approach might have to
offer the benefit of customization in the sense that each IVF
laboratory will define their own algorithm parameters on em-
bryo categorization by adjusting their cut-off values
employing the same decision tree. Such an approach deserves
to be expanded and adopted in the era of personalized medi-
cine extending significantly in the ART set-up.

A recent retrospective study by Carrasco and colleagues
proposed an algorithm where the decision tree included
morphokinetics along with the novelty of introducing the

parameter of morphological features [53]. The first step in this
decision tree algorithm is the assessment of embryo morphol-
ogy. Embryos on day 3 with less than 6% or an asymmetric
evaluation of blastomeres, fragmentation of more than 20%,
or multinucleation were categorized as poor. All event timings
were statistically analyzed and the time to reach the four-cell
stage was determined to be more important followed by the
time to reach the eight-cell stage. The poor group presented an
implantation rate of less than 10%, the fair group of 17%, and
the good quality group corresponded to an implantation rate of
29%.

The current review presents a palette of studies on predic-
tion models relying on algorithms employing mainly the con-
cept of the decision tree based on morphokinetics. The major-
ity of these present more similarities than differences.
Similarities include recruitment of decision trees relying on
similar parameters referring to time intervals from one-cell
stage or cell division to another. Principal differences were
identified regarding the size of the sample and embryo pool
that the results relied on. This may consequently strengthen
some proposed models over others. In addition to that, the
prioritization and hierarchy of the decision trees reported to
be different along with diverse cut-off values. This fact reflects
yet again the discrepancies regarding the considerations on the
high or low priority and influence of certain parameters over
others. Commercially available updated algorithms include
morphological criteria. It should be distinguished that the
study by Carrasco was the only—accessible on a non-
commercial basis—reproducible algorithm not relying solely
on morphokinetics, but employing specific morphological
features not taken into account by the other models. All algo-
rithms can be reproduced and the relevant prediction models
can be adopted by a standard IVF laboratory featuring time-
lapse technology. Regarding commercialization of the find-
ings and software development based on findings, the studies
by Wong and Petersen evolved into a commercially available
software that can be attached to and employed by any IVF
laboratory. The studies by Meseguer, Basile, Milewski, and
Liu and colleagues provide reproducible, accessible
algorithms.

Petersen and colleagues compared their algorithm to some
of the abovementioned ones except from Carrasco’s—which
was created afterwards. According to this study, Petersen and
Liu’s algorithmswere associatedwith a statistically significant
higher blastocyst formation rate and quality, whereas
Conaghan’s algorithm resulted to a statistically significant
lower blastocyst formation rate and quality. Liu also conduct-
ed a study comparing their own algorithm with the KIDScore,
along with Meseguer’s algorithms, both the original and
Basile’s improved version [54]. According to this study, all
algorithms presented reduced predictive value when only sin-
gle embryo transfer was performed, which further reduced
when maternal age and embryo morphology were accounted
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for. Liu’s algorithm was demonstrated as the more robust. The
authors concluded that in order to develop algorithms with
higher predictive value, morphological and clinical features
should be included. Another recent study compared some of
the aforementioned algorithms assessing both interalgorithm
comparison and comparison with the embryologists’ embryo
selection procedure [55]. The same study highlighted that it is
Petersen’s suggested model (KIDScore) that compares well to
the practitioner embryologists’ selection criteria. The key con-
clusion focused on the lack of agreement when comparing the
predictability between the algorithms.

The question raised is which of these algorithms carries the
highest prognostic value. Most of the time-lapse based predic-
tion models have been validated. Their reports on prediction
power and goodness-of-fit (referring to the AUC) are present-
ed on Table 3. However, the validation studies report different
prediction capabilities, thus creating a conflict in literature. It
is essential that external validation on a large sample prior to
reproduction, adoption, and horizontal employment of the
suggested models is performed in order to indicate strengths
and weakness of the proposed models. It is imperative that the
IVF scientific community reaches a consensus on the algo-
rithm use and value as a prognostic tool in the IVF laboratory.
Premature adoption of models may be associated with risk in
clinical practice. The underlying reason behind the risks in-
volved in wide-ranging application is the fact that different
IVF laboratories follow different practices, employ different
criteria, and select embryos on different grounds, using differ-
ent cut-off values. This study highlights the differences—
sometimes minor and other times critical—regarding the im-
portance of associated factors and their respective weight and

role in the development of each algorithm. Conclusively, each
model is different to the next. This observation may stem from
the fact that different IVF laboratories rely on divergent selec-
tion criteria. It is therefore imperative to take into account this
diversity and perhaps strengthen the scenario that different
practices should promote and rely on the use of Bin-house^
algorithms. On the other hand, the use of a universal common-
ly accepted more evidence-based efficient algorithm remains
the goal. This issue highlights yet again the need for a com-
mon universal protocol on grading and evaluating an embryo
and its corresponding implantation potential. Since 2011 and
the Istanbul consensus [16], the field of clinical embryology
has made strides in relation to embryo selection. However,
horizontal adoption of a consensus on embryo grading has
yet to be achieved to a satisfactory extent commonly accepted
and practiced.

Artificial intelligence—the next big step

Artificial intelligence (AI) is defined as the machine’s ability
to learn and exert intelligent behavior. The early steps towards
AI inmedicine were recorded in the 1960s. First, the use of the
naïve Bayesian classifier was introduced, followed by neural
networks, symbolic learning (using decision trees), machine
learning [56], and nowadays the accomplishment of deep-
learning AI. Deep learning allows the computer to discover
a structure in a large dataset using a back-propagation algo-
rithm and to conduct small changes in its parameters in order
to achieve the algorithm with the optimal representation of the
dataset [57].

Table 3 Positive and negative prediction values of prediction models employing time-lapse microscopy

Study Sample size
(embryos)

Single/
multicenter

Blastocyst formation Implantation AUC Externally
validated

Commercially
available

PPV NPV PPV NPV

Meseguer et al. [45] 247 S – – 66% (52%)b 92% – Y N

Conaghan et al. [31] 941 M 54.7% 73.7% – – – Y Y

VerMilyea et al. [32] 375 M – – 37% 85% – Y Y

Basile et al. [41] 1620 M – – 32% 83% – Y N

Cetinkaya et al. [48] 3354 S 79.2% 86.2% – – – N N

Milewski et al. [49] 432 S 90.7% 73.3% – – 0.813 Y N

Behr et al. [35] 216 M – – 51% 100% – N Y

Milewski et al. [50] 410 S – – 46% 87.9% 0.703 N N

Motato et al. [51] 257[832]c S – – 90.9% 58.2% 0.596 N N

Liu et al. [52] 36[270]c S – – 50% 100% 0.783 Y N

Petersen et al. [33] 3275 M – – 36.17% 94.8% 0.745 Y Y

Carrasco et al. [53] 800 S – – 29% 90.5% – N N

bThe number in brackets represents the PPVof the five-category model whereas the number outside brackets represents the nine-category model
c The number in square brackets refers to the sample for the development of the algorithm, whereas the number outside square brackets refers to the
sample of the test phase
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In the field of IVF, the first attempt to employ AI was in
1997 [58]. An artificial neural network (ANN) was created
employing the variables of maternal age, number of oocytes
retrieved, and number of embryos transferred and whether
embryo cryopreservation was performed. The ANN managed
to accurately predict pregnancy in 59% percent of the cases
ascertaining a decent performance efficiency. An AI program
capable of predicting the outcome of IVF/ICSI employing
surgically removed spermatozoa was also described [59].
The variables included in this program were maternal age,
sperm type (fresh or frozen), etiology of male factor infertility,
and sperm retrieval technique. Only maternal age and sperm
type were found to be of statistical significance using reverse
regression analysis. This program was only able to success-
fully predict failed attempts with an accuracy of 82%. The
lack of accuracy concerning successful attempts hinders the
algorithm’s clinical usefulness.

Focusing on embryo selection as well as clinical character-
istics, an algorithm based on support vector machine (SVM)
was developed employing both female characteristics and em-
bryo morphology for the prediction of the IVF outcome [60].
Both numerical and categorical features were included. In
order to transform their categorical values, the algorithm was
tested based on three different techniques: The first was binary
encoding including eight categories. The second technique
involved frequency-based encoding which transformed the
categorical value into numerical defined as the difference be-
tween the occurrence of each categorical value in positive and
negative outcomes. The third approach referred to expert
judgment which required the input of a number (one to four)
for each categorical value by embryologists. Frequency-based
encoding had the best prediction accuracy, suggesting that
machine learning may be less biased than experts and more
sensitive than simple binary encoding. This lead to the con-
clusion that machine learning may offer better predictive ca-
pabilities. Although stratified validation was performed, all
data were obtained from a single center. The lack of external
validation may hinder the algorithm’s robustness.

The creation of an ANN for prediction of IVF outcomes
was proposed by selecting at least 10 characteristics from a
pool including treatment, embryo, female, and male char-
acteristics. The aim was to define the most important char-
acteristic, removing both the statistically insignificant and
those that were highly correlated between them [61].
However, the results of their promising study have not
yet been presented.

Machine learning has been assessed against purely statisti-
cal methods [62]. Based on clinical characteristics, an algo-
rithm was created via multivariate logistic regression analysis.
An artificial network was developed by running the algorithm
30,000 times with random startup parameters each time. The
ANN with the highest sensitivity (69%) and specificity
(60.3%) was selected, achieving an (AUC) of 0.7026. When

compared to the algorithm developed through statistics, the
ANN proved to have a strong statistically significant better
prediction ability. These results demonstrate the higher capa-
bility of ANNs in developing prediction models compared to
traditional statistical methods.

The development of a pregnancy prediction model that
included both embryo and clinical characteristics ensued
[63]. Employing the boosted tree method, the created model
named IVF-BT (IVF-BoostedTree), assessed both male and
female clinical characteristics, ovarian simulation protocols,
embryo grading, and preimplantation genetic screening results
and—as anticipated—proved to be more accurate than age
alone. Evolving the IVF-BT, a model predicting success of a
second attempt cycle based on the first cycle characteristics
was proposed and evaluated. The study concluded that infor-
mation from a first failed cycle could hold prognostic power
and prove to be beneficial in designing and performing a sec-
ond cycle [63].

Choi and colleagues [64] implemented the use ofmore than
20 clinical characteristics for the creation of their model. This
approach slightly altered the scope towards the use of clin-
ical characteristics of the female and the male referring to
pre-stimulation factors and prediction of live birth by
means of a boosted regression tree approach. Their model,
named PreIVF-D (PreIVF-Diversity), was built on a multi-
step process using data from different clinics and a total of
13,076 cases. It was later trained for adjusting specific
parameters by 1021 other cases and tested on 1058 differ-
ent cases. The aim of this model was to personalize IVF
prediction rates prior to embarking on treatment by thor-
oughly informing patients regarding their chances of suc-
cess. The PreIVF-D’s receiver operating characteristic
(ROC) analysis was slightly improved in comparison to
the control model. It should be noted that the model pre-
dicts the success probability per oocyte retrieval and not
per fresh ET alone. Additionally, the model may be sub-
jected to slight alterations in case of different clinical pro-
tocols, provided that training set is in place, thus making
the model widely applicable. The authors propose the em-
ployment of personalized prediction models in order to
reassure patients. Patients that may be of good prognosis
may particularly benefit from such an approach as the
stress related to low success rates that may trouble them
could be alleviated [64].

An entirely different approach relying entirely on oocyte
and embryo data presented novelty [6]. This approach recom-
mended the capture of digital photographs through an inverted
microscope and a further magnification of ×20, followed by
segmentation of these photographs and a subsequent comput-
er analysis. Following this, two test-points were introduced
and performed: the first, in order to evaluate different classi-
fiers for an ANN and the second, to evaluate the proposed
classifier (random subspace ensemble of neural networks,
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RSNN), using two different semi-supervised learning
methods. The first learning process included the use of certain
instances of the training set to classify the other training pat-
terns. The second learningmethod consisted of a 10-fold cross
validation of the training set, by randomly dividing the dataset
into 10 different subsets, repeated 150 times. Nine of the
above sets were used for training and the 10th for testing.
The features incorporated in this method were not all per-
ceived by the human eye and they were analyzed by artificial
intelligence. This fact alone highlights the benefits and ascer-
tains the bioinformatics place in the IVF laboratory. As the
study suggests, an integration of this system with time-lapse
microscopy could further enhance the prediction of the IVF
outcome employing successful selection of an oocyte or indi-
cating the embryo implantation potential by relying on pattern
recognition and AI methodologies [6].

Although decent attempts have been committed towards
creating an AI program capable of predicting a pregnancy
outcome and/or selecting the embryo with the highest im-
plantation potential, none of these are yet suitable and
qualified for the IVF laboratory routine. Against anticipat-
ed beliefs, the prediction models created with AI do not
appear to be of superior effectiveness or credibility in com-
parison to other prediction models, as initial reported re-
sults demonstrate (Table 4). A possible reason behind this

is the lack of a comprehensive software that should be all
inclusive relying on: male and female clinical characteris-
tics, morphological and morphokinetical embryo charac-
teristics, as well as culture conditions. The creation of such
a program would require a learning set consisting of a vast
number of IVF cycles and an equally large testing dataset
with known implantation data and pregnancy outcome that
is yet to be realized. It should be noted that impressive
strides in this field are being made and the rapid develop-
ment and evolution of AI is remarkable. Therefore, further
progress is reflected in the potential of AI and its success-
ful implementation in the IVF laboratory is certainly
anticipated.

Conclusion

All of the prediction models presented in this review have
proved their robustness—to a different extent—through
the goodness-of-fit. For all prediction models that tested
their goodness-of-fit, the evaluation was made by
employing the AUC. A graphic representation of their
goodness-of-fit is presented in Fig. 2. The data is there;
still the decision regarding the identity of the most efficient
prediction model should be made by the respective IVF

Table 4 Prediction power and AUC for prediction models developed with AI

Study Sample size Single/multicenter Implantation Clinical pregnancy AUC Externally
validated

PPV NPV PPV NPV

Kauffman et al. [58] 455 cycles S – – 39% 82% – N

Wald et al. [59] 113 cycles S – – – – 0.783 N

Uyar et al. [60] 2429 embryos S 65.6% 67.5% – – 0.712 N

Banerjee et al. [63] 1676 cycles S – – – – 0.8 N

Milewski et al. [62] 1995 patients S – – – – 0.642 N

Choi et al. [64] 1058 cycles M – – 59.4% 94.9% – N

Manna et al. [6] 269 embryos S – – – – 0.83 N

Fig. 2 Goodness-of-fit as
measured by area under the curve
(AUC) for the four prediction
models types that include two or
more algorithms: artificial
intelligence, Bayesian classifiers,
time-lapse (TL) on euploidy, and
time-lapse (TL) on
morphokinetics
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laboratory. Such a decision should rely on criteria that are
custom made and are identified on the rounds of best serv-
ing the needs of each clinical embryology laboratory
irrespectively of the given prediction model’s efficiency.

In an ideal scenario and in the best interest of securing
optimal embryo culture, the integration of the newly discov-
ered devices and systems is implied to be the key. However,
the plausibility of this scenario is questionable. Besides the
apparent encountered obstacles, applying this integration by
successfully recruiting all important contributions from the
world of computational applications into the IVF practice
raises several issues. What remains to be seen in the near
future is what the IVF world’s verdict will be on adoption of
such practices employing algorithms, software, and devices.
A horizontal application dictates the way forward and the
proposed changes to be manageable and feasible without ma-
jorly disrupting the IVF laboratory’s function that strictly re-
lies on morphological criteria for embryo selection. Could it
be that the traditional approach of light microscopy evaluation
prior to the ET will be totally abandoned or could we simply
combine both options and hence leave the final decision on
the embryologist taking into account the software ranking on
embryo quality? Is our goal to eliminate the human element
and its subjective nature from the equation and rely on the
objective analysis promised by the automation that computa-
tional applications offer? These are all valid considerations
and deserve to be addressed. Ultimately, what would be the
clear advantage of creating a fully automated laboratory and to
which extent should the human element be present and con-
trolling the final choices? An important factor to acknowledge
here is the non-invasive approach and practice of the tool of
computational applications in the IVF laboratory. The future
certainly holds the answers on such considerations and will
provide improved models supported by robust data along with
conclusions. Further research is required on delineating the
practical aspects on accommodating this approach and how
the embryologists’ role within the IVF laboratory will be
shaped implementing and including computational applica-
tions in its routine. Complexity in the era of personalized
medicine is a given. Embryology and bioinformatics are two
current strikingly developing fields. Perhaps the next step to-
wards implementing bioinformatics in the IVF laboratory lies
in bridging the chasm between understanding both intricate
fields and explaining the underlying motives behind this
merge. It is of essence to impart the principles of embryo
development and the basis of an embryology laboratory rou-
tine to bioinformatic connoisseurs ascertaining development
of more user-friendly means. Concurrently, there is
undoubtful benefit in acquainting and familiarizing embryol-
ogists with the basics of computational biology. This will al-
low more control and understanding in decision making and
working towards trusting novel approaches on our way to
improving IVF practice.
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