Skip to main content
. 2018 Aug 9;55(10):4363–4368. doi: 10.1007/s13197-018-3353-1

Table 2.

The best results from the optimal models of taste score and each taste-related component both in the calibration set and the prediction set based on using Si-PLS algorithm

Quality parameters n Selected intervals PCs Calibration set Prediction set
Rc RMSEC (%) Rp RMSEP (%)
Taste score 15 [1 14 15] 5 0.8517 0.568 0.8462 0.638
Water extracts 15 [3 11 15] 9 0.9376 1.419 0.9089 1.73
Total polyphenols 16 [5 9 16] 6 0.734 2.29 0.7126 2.35
Free amino acids 15 [5 8 9 15] 9 0.9373 0.246 0.8866 0.357
Caffeine 15 [10 12 15] 9 0.9517 0.19 0.9428 0.205
Total catechins 15 [7 12 15] 10 0.7794 0.821 0.7199 0.947
TF2A 14 [5 12 14] 10 0.728 0.149 0.7194 0.178
TF2B 15 [6 8 13 15] 10 0.8324 0.070 0.8074 0.0805
Theaflavins 15 [3 4 15] 8 0.7987 0.296 0.7726 0.34

n Number of intervals, PCs principal components number, Rc correlation coefficient of calibration, RMSEC root mean square error in the calibration set, Rp correlation coefficient of prediction, RMSEP root mean square error values of the prediction set, TF2A theaflavin-3-gallate, TF2B theaflavin-3′-gallate