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Study Objectives: Several cross-sectional studies have reported associations between oral diseases and obstructive sleep apnea (OSA). However, there 
have been no reports regarding the structure and composition of the oral microbiota with simultaneous evaluation of potential associations with perturbed 
metabolic profiles in pediatric OSA.
Methods: An integrated approach, combining metagenomics based on high-throughput 16S rRNA gene sequencing, and metabolomics based on ultra-
performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and gas chromatography coupled with time-of-flight mass 
spectrometry, was used to evaluate the oral microbiome and the urinary metabolome.
Results: 16S rRNA gene sequencing indicated that the oral microbiome composition was significantly perturbed in pediatric OSA compared with normal 
controls, especially with regard to Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, and Actinobacteria. Moreover, metabolomics profiling indicated 
that 57 metabolites, 5 of which were metabolites related to the microflora of the digestive tract, were differentially present in the urine of pediatric patients with 
OSA and controls. Co-inertia and correlation analyses revealed that several oral microbiome changes were correlated with urinary metabolite perturbations in 
pediatric OSA. However, this correlation relationship does not imply causality.
Conclusions: High-throughput sequencing revealed that the oral microbiome composition and function were significantly altered in pediatric OSA. Further 
studies are needed to confirm and determine the mechanisms underlying these findings.
Keywords: metabolomics, metagenomics, obstructive sleep apnea, oral microbiota
Citation: Xu H, Li X, Zheng X, Xia Y, Fu Y, Li X, Qian Y, Zou J, Zhao A, Guan J, Gu M, Yi H, Jia W, Yin S. Pediatric obstructive sleep apnea is associated with 
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INTRODUCTION

Obstructive sleep apnea (OSA) is one of the most common 
sleep disorders in children, with a high prevalence rate of 3% 
to 4%.1 Pediatric patients with OSA experience repeated epi-
sodes of complete or partial obstruction of the upper airway at 
night, leading to increased intrathoracic pressure, sympathetic 
tone, microarousals, and decreased oxygen desaturation.2 OSA 
can cause a series of clinical sequelae, such as cardiovascular 
and metabolic disturbances.3

Metabolomics is an innovative and highly sensitive profil-
ing method that seeks to identify and quantify small molecules 
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in biological systems in a specific physiological state.4 Mul-
tiple metabolites and metabolic pathways associated with adult 
OSA have been identified using metabolomics approaches.5,6 
However, no reported metabolomics study had explored meta-
bolic changes in children using a high-throughput method.

Several clinical studies have found positive correlations be-
tween periodontitis and OSA.7,8 Because oral health is closely 
related to oral microbial status, we hypothesized that the oral 
health–OSA relationship may have an underlying microbial 
basis. In the oral cavity, the oral microbiome comprises more 
than 700 different bacterial species.9 Increasing evidence 
shows that there is a close relationship among oral microbiota 

BRIEF SUMMARY
Current Knowledge/Study Rationale: The oral microbiota has been suggested to be associated with several systemic diseases, but little is known 
about whether the structure and composition of the oral microbiota are perturbed in pediatric obstructive sleep apnea (OSA). To date, there have been 
no clinical studies using metabolomics approaches to evaluate metabolic status in pediatric OSA. This study was performed to investigate the oral 
microbiome and urinary metabolomics profile in OSA.
Study Impact: Five genera and 57 metabolites were different between OSA and controls. These alterations suggest perturbation of metabolic status 
and functional alterations in the oral microbiota in pediatric OSA, supporting the hypothesis that changes in the oral microbiome may represent a new 
mechanism leading to or exacerbating OSA-related metabolic disorders.
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inflammation, insulin resistance, and even common systemic 
diseases, such as diabetes and symptomatic atherosclerosis.10,11 
However, no reported study has directly evaluated such asso-
ciations between the oral microbiome and OSA.

The adenoids are now considered to be a pathogen reser-
voir, as evidenced by the presence of group A streptococcus, 
Haemophilus influenzae, Streptococcus pneumoniae, Staphy-
lococcus aureus, Moraxella catarrhalis, and Neisseria menin-
gitidis.12–14 Because the oral cavity and adenoids are structurally 
adjacent, the oral microbiota in pediatric OSA may be altered.

Recently, a pilot study revealed that the urine metabolomic 
profiles of children fluctuated with their tract infection status.15 
Thus, we suggest that such profiles might also be perturbed 
by changes in the oral microbiota of children. To explore the 
potential characteristic metabolite signatures associated with 
pediatric OSA, a non-targeted metabolomics technique was 
applied to discover potential urinary metabolites, and metage-
nomics technology was used to compare the metagenomics data 
of pediatric patients with OSA with those of healthy subjects to 
assess whether the metabolites might have originated from the 
oral cavity. Such an integrated analysis may provide a new way 
to determine interactions between host and oral microbes.

METHODS

This study was approved by Shanghai Jiao Tong University 
Affiliated Sixth People’s Hospital and Shanghai Jiao Tong Uni-
versity Affiliated Shanghai Children’s Hospital ethics com-
mittee and was performed in accordance with the Declaration 
of Helsinki. Informed written consent was obtained from the 
legal guardian of each participant, and children older than 7 
years old agreed to participate prior to their enrollment.

Study Population
During the period from June 2014 to June 2015, children with 
habitual snoring and suspected OSA aged between 3 and 11 
years (without specific diet preferences) were recruited from 
the Department of Otolaryngology, Head and Neck Surgery 
and the Center of Sleep Medicine, Shanghai Jiao Tong Uni-
versity Affiliated Sixth People’s Hospital and from the Depart-
ment of Otolaryngology, Head & Neck Surgery, Shanghai Jiao 
Tong University Affiliated Shanghai Children’s Hospital. The 
normal control subjects, who had no medical history of any 
acute/chronic disorders and showed no clinical features of OSA 
(eg, intermittent sleep breathing pauses, snoring, and/or day-
time sleepiness) according to their parents, were enrolled from 
schools or kindergartens at the same time in Jingan District, 
Shanghai. A detailed clinical questionnaire was completed by 
all parents. Height and weight were measured for each child, 
and body mass index (BMI) z-score was calculated according 
to the Centers for Disease Control and Prevention (CDC) 2000 
growth standards (www.cdc.gov/growthcharts) using the Epi 
Info suite of software tools (www.cdc.gov/epiinfo). The fol-
lowing exclusion criteria were applied in both pediatric OSA 
and control subjects: systemic disease (ie, pulmonary, hepatic, 
renal, cardiovascular, gastrointestinal, or neurological dis-
ease), oral disease (ie, dental caries or periodontal disease), 

any treatment for adenoid hypertrophy (ie, tonsillectomy and 
adenoidectomy, corticosteroids, or leukotriene antagonists), 
genetic/craniofacial syndromes, parents with obvious snoring 
or diagnosed OSA, receipt of any medications—antibiotics or 
drugs used to regulate intestinal flora (ie, prebiotics, synbiot-
ics, or probiotics)—during the previous month, and any active 
infections (ie, bacteria, fungi, or viruses). Subjects who had 
pets at home (a known source of bacteria) were also excluded.

Overnight Polysomnography Monitoring
All suspected OSA subjects recruited from the two hospi-
tals underwent standard nocturnal polysomnography (PSG) 
evaluations (Alice 5; Respironics, Murrysville, Pennsylvania, 
United States). Electrocardiography, electroencephalography, 
bilateral electrooculography, chin electromyography, oral/
nasal airflow, nasal pressure, chest/abdominal movement, 
and pulse oximetry were recorded simultaneously while pa-
tients slept. The definitions of sleep variables followed the 
2007 American Academy of Sleep Medicine guidelines. The 
apnea-hypopnea index (AHI) was calculated as the number 
of obstructive apnea events (defined as a > 90% decrease in 
signal amplitude for > 90% of the entire event) and hypopnea 
events (defined as a ≥ 50% fall in the amplitude and associated 
with arousal/awakening or ≥ 3% desaturation) per hour during 
sleep. The definition of OSA was as follows: the presence of 
AHI ≥ 1 events/h of total sleep time.16

Urine Collection
Midstream urine samples were collected from all partici-
pants in the morning (7:00 am). Urine samples (1 mL) were 
immediately stored in a centrifuge tube at 80°C until ultra-
performance liquid chromatography coupled with quadrupole 
time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas 
chromatography coupled with time-of-flight mass spectrom-
etry (GC-TOF-MS) analyses.6

Swab Sample Collection and Bacterial 
Genomic DNA Extraction
The oral cavity is not a uniform ecosystem but represents sev-
eral fundamentally different niches with a high degree of mi-
crobial diversity. Therefore, one sampling site is not sufficient 
to gauge the diversity of the oral ecosystem. However, taking 
samples from all sites in the oral cavity is time consuming, 
laborious, and expensive. Previous studies in rodents showed 
that taking buccal swabs allows quick and noninvasive sam-
pling for metagenomics analysis.17 Therefore, we collected 
samples derived from the buccal mucosa of each participant 
before they had anything to eat or drink in the morning. Before 
sample collection, participants rinsed their mouths twice with 
water. Then, we firmly rubbed the buccal mucosa with dispos-
able medical sterile swabs. Finally, the swab was clipped off 
and immersed in 1 mL of saline solution. These samples were 
immediately stored at −80°C until further use. The samples 
derived from the buccal mucosa were suspended and then pel-
leted by centrifugation (15,000×g, 10 minutes, 4°C). Bacterial 
genomic DNA was extracted using a QIAamp DNA Kit (QIA-
GEN, Hilden, Germany). The microbial genomic DNA was 
stored at 20°C before further analysis.
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Polymerase Chain Reaction Amplification of the 16S 
rRNA and Amplicon Sequencing
The V1–V3 regions of 16S rRNA were ampli-
fied by polymerase chain reaction from micro-
bial genomic DNA using the following forward and 
reverse primers: 5′-AGAGTTTGATCCTGGCTCAG-3′ and 
5′-TTACCGCGGCTGCTGGCAC-3′, respectively. After ex-
traction and quantification of the polymerase chain reaction 
products, they were sequenced using a 454 Life Sciences Ge-
nome Sequencer FLX+ system (Roche, Basel, Switzerland) 
following the vendor’s standard protocols.

Bioinformatics and Statistical Analyses
Bioinformatics and statistical analyses were performed as de-
scribed previously.18 Quantitative Insights into Microbial Ecol-
ogy (QIIME) software (version 1.8.0; http://qiime.org) was 
used to analyze all 454 FLX+ pyrosequencing data sets. All 
samples were rarefied to the same number of reads.

Briefly, raw sequences that showed exact matches to the 
barcode sequences were assigned to each sample and identi-
fied as valid sequences, the primers and barcodes of which 
were trimmed for further quality control. The low-quality 
sequences were filtered according to the following criteria: 
(1) sequence of length ≤  150 bp; (2) sequences with average 
Phred scores ≤  20; and (3) sequences with ambiguous bases 
and those containing mononucleotide repeats of >  8 bp.19,20 
Paired-end reads were assembled using fast length adjustment 
of short reads, or FLASH.21

After chimera detection, the remaining high-quality se-
quences were clustered into operational taxonomic units 
(OTUs) at 97% sequence identity by UCLUST.22 A representa-
tive sequence was selected from each OTU using the default 
parameters. OTU taxonomic classification was performed 
by BLAST searching the representative sequence against the 
Greengenes Database (Release 13.8, http://greengenes.second-
genome.com/)23 using the best hit.24 An OTU table was further 
generated to record the abundance of each OTU in each sample, 
and the taxonomy of these OTUs. OTUs containing <  0.001% 
of total sequences across all samples were discarded. To mini-
mize the differences in sequencing depth across samples, an 
averaged rarefied OTU table was generated by averaging 100 
evenly resampled OTU subsets under the 90% minimum se-
quencing depth for further analysis.

The richness and evenness of species were assessed by a 
ranked abundance curve. Alpha diversity indexes, including 
Good coverage, Chao1, ACE, Shannon, Simpson, inverse Simp-
son, and Simpson evenness, were calculated at 97% identity.25 
β diversity was used to investigate the similarity between the 
bacterial community structures of the pediatric patients with 
OSA and the normal controls using unweighted UniFrac dis-
tances; the results were visualized using principal coordinate 
analysis (PCoA) and the unweighted pair–group method with 
arithmetic means (UPGMA) hierarchical clustering analysis.

Principal component analysis (PCA) was performed to eval-
uate similarities among various bacterial communities.26 PCA 
is a method used to summarize the variance in a multivariate 
scatter of points in a low-dimensional space, and provides an 
overview of linear relationships between objects and variables. 

This can often act as a good starting point in multivariate data 
analysis highlighting trends, groupings, key variables, and po-
tential outliers. Further, for data sets with many variables and 
relatively few objects, PCA can help collapse these variables 
into a few principal components that can then be used in fur-
ther analyses.

A similarity (ANOSIM) test was performed to assess group-
related sample aggregation.

Based on the occurrence (versus the relative abundance) of 
OTUs in a sample group, a Venn diagram was generated to 
show the shared and unique OTUs in the two groups. The taxa 
abundances at the phylum, class, order, family, genus, and spe-
cies levels were analyzed between pediatric patients with OSA 
and controls. Furthermore, LEfSe (version 1.0) was used to de-
tect different abundant genera in the two groups; the threshold 
on the linear discriminant analysis score was set to 3.0.

We performed partial least-squares discriminant analysis 
(PLS-DA) to identify key genera that could differentiate the 
oral microbiota in pediatric patients with OSA from that in 
normal control patients. Genera with variable importance in 
projection (VIP) > 1 and P  < .05 on Student t test in the PLS-
DA model were selected. The correlation between the 50 most 
abundant genera was visualized in a heat map. Genera with 
rho > .6 and P < .01 were visualized in the network using Cy-
toscape software (version 3.4.0, Cytoscape Consortium, New 
York, New York, United States).

The Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt) software (version 
1.0.0) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
databases were used to predict oral microbial functions.

Statistical Analyses of Metabolites
Urinary UPLC-Q-TOF-MS and GC-TOF-MS analyses were 
performed as described in our previous report.6 Orthogonal 
partial least-squares discriminant analysis (OPLS-DA) was 
performed to visualize the metabolic differences between pe-
diatric patients with OSA and normal controls.27 Metabolites 
with VIP > 1 and P < .05 on Student t test in the OPLS-DA 
model were selected. The fold change was the intensity mean 
value ratio of the two groups. All statistical analyses on me-
tabolomics data were performed using SPSS (version 20.0; 
IBM Corp., Armonk, New York, United States) and SIMCA-P 
software (version 13.0; Umetrics, Umea, Sweden).

Co-inertia analysis (CIA) was performed to assess the 
consistency of the two sets of data (the 100 most abundant 
OTUs and 57 differential metabolites).28 CIA is a multivari-
ate method that identifies trends or co-relationships in mul-
tiple datasets containing the same samples; that is, the rows 
or columns of the matrix have to be weighted similarly and 
must therefore be “matchable.” CIA simultaneously identi-
fies ordinations (dimension reduction diagrams) from the da-
tasets that are most similar by finding successive axes from 
the two datasets with maximum covariance. CIA can be ap-
plied to datasets where the number of variables (genes) far 
exceeds the number of samples (arrays), as is the case with 
microarray analyses.

We also used a heat map to visualize the oral mi-
crobiome differences between patients with OSA and 
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control patients. The correlation matrix between metabo-
lites and oral bacterial species was generated using Pearson 
correlation coefficient.

Currently, there are no general recommendations for sample 
size calculation in microbiome studies; it has been estimated 
that 20 participants in each group could detect differences 
in unweighted (effect size = 0.008) and weighted (effect 
size = 0.04) pairwise distances with 90% power.29 Thus, our 
sample size (n = 30 each group) was appropriate for unweighted 
and weighted UniFrac analysis. For correlation analysis, using 
G*power software 3.1.9.2,30 our sample of 60 participants was 
powered to detect an r of approximately .32 with an α error of 
5% and statistical power of 80%. Thus, though our sample size 
is small, it is large enough to detect variability in microbiome 
of controls versus OSA.

RESULTS

Basic Characteristics
In total, data from 60 subjects (30 pediatric patients with OSA 
and 30 normal control subjects) were finally analyzed by an 
integrated approach that combined metagenomics and metabo-
lomics methods. No differences in age, sex, or BMI-z score 

were observed between the groups. PSG monitoring data are 
also presented (Table 1).

Decreased Bacterial Diversity of Oral Microbiota 
Associated With Pediatric OSA
A total of 814,085 preliminary raw sequences, with a mean of 
13,568 sequences per sample (range, 10,065 to 22,915), were 
obtained. After quality trimming, filtering, denoising, and 
chimera checking, a total of 603,756 high-quality reads finally 
remained, accounting for 74.16% of the valid reads; an average 
of 10,063 reads (range, 6,951 to 18,368) per sample were recov-
ered for downstream analyses. The sequence lengths, which 
ranged from 232 to 563 bp, were distributed around 500–515 
bp (Figure 1A). Clustering of all high-quality sequences 
at 97% identity resulted in 3,156 OTUs. After removing the 
low-credibility OTUs (which contributed only 0.7% of all se-
quences), 1,297 OTUs with an average of 260 OTUs per sample 
(range, 51 to 413) were identified.

The Shannon diversity index was slightly higher in patients 
with OSA than in controls (4.45 ± 0.54 versus 4.14 ± 0.58; 
P = .04); however, there were no significant differences between 
the groups in ACE (205.7 ± 46.57 versus 211.6 ± 48.11; P = .63), 
Chao1 richness index (166.3 ± 35.88 versus 179.0 ± 36.66; 
P = .18), Simpson diversity index (0.84 ± 0.06 versus 0.86 ± 0.06; 
P = .34), inverse Simpson diversity index (7.29 ± 2.54 versus 
8.59 ± 3.86; P = .13), or Simpson evenness index (0.04 ± 0.02 
versus 0.05 ± 0.02; P = .43). Based on the results of the OTU 
analysis, the rank-abundance curves for the bacterial commu-
nities of the pediatric OSA and normal control groups showed 
similar patterns (Figure 1B). The Good coverage values were 
high for all sequences in the two groups (> 97%), indicating 
that the sequencing depth was sufficient to explore the oral 
microbiota of pediatric OSA. Rarefaction analysis estimates 
showed that the species richness of the oral microbiota of pedi-
atric OSA was slightly higher than that of the normal controls 
(Figure 1C).

Bacterial Community Structure Analysis
To view the similarities in oral bacterial community structures 
between patients with OSA and controls, we performed PCoA 
of β-diversity according to the unweighted UniFrac distances. 

Table 1—Demographic data of pediatric subjects stratified 
by OSA and matched normal control subjects.

Characteristics OSA Control P
No. of participants 30 30 –
Age (years) 6 (5–8) 6 (6–8) .55
Males, n (%) 22 (73.3) 23 (76.7) .50
BMI z-score 1.7 ± 0.8 1.6 ± 0.3 .43
AHI (events/h) 4.1 (1.9–7.3) n.d. –
Mean SaO2 (%) 96 (95–97) n.d. –
LSpO2 (%) 79.0 (74.8–86.3) n.d. –
MAI (events/h) 4.2 (1.1–7.7) n.d. –

Data are presented as mean ± standard deviation, median (interquartile 
range), or n (%). AHI = apnea-hypopnea index, LSpO2 = lowest pulse 
oxygen saturation, MAI = microarousal index, n.d. = not determined, 
OSA = obstructive sleep apnea, SaO2 = oxygen saturation.

Figure 1

(A) Length distribution of sequences determined by 454 pyrosequencing. (B) Rank abundance curve of the bacterial OTUs derived from the two groups. 
(C) Rarefaction curve of the bacterial OTUs derived from the two groups. OTU = operational taxonomic unit.
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The results revealed differences in the bacterial community 
structures between patients with OSA and controls (Figure 2). 
The results of PCA at the genus level showed slight segregation 
of the bacterial community structures of the two groups, with 
the first two principal components representing 36.8% and 
21.5% of the total variation, respectively (Figure 3). ANOSIM 
test also revealed significant separation between patients with 
OSA and controls (r = .2034, P = .001). UPGMA hierarchi-
cal clustering analysis showed that the samples formed sepa-
rated clusters that corresponded to the OSA and control groups 
(Figure S1A in the supplemental material).

Bacterial Abundance and Distribution
In total, 20 phyla, 40 classes, 73 orders, 125 families, 188 gen-
era, and 228 species were found in the oral buccal mucosa sam-
ples. The taxonomic distributions of the predominant bacteria 
at the aforementioned six levels are presented in Figure S2 
in the supplemental material. The five most abundant phyla 
were Firmicutes (48.7%), Proteobacteria (26.9%), Bacteroide-
tes (17.2%), Fusobacteria (3.0%), and Actinobacteria (2.8%), 
which together accounted for 98.6% of the total sequences. The 
five rarest phyla were Verrucomicrobia, Gemmatimonadetes, 
Chlorobi, Nitrospirae, and one candidate division (SR1). The 
most prevalent genera were Streptococcus (36.3%), Neisse-
ria (12.5%), Haemophilus (8.2%), Porphyromonas (5.6%), 
Prevotella (4.2%), Veillonella (3.7%), Granulicatella (3.6%), 
Lautropia (2.2%), Leptotrichia (1.4%), Actinobacillus (1.3%), 
Capnocytophaga (1.3%), and Fusobacterium (1.3%), which to-
gether comprised 81.8% of all sequences. The compositions of 

the entire microbial communities in terms of taxa are provided 
in Figure S1B. Four orders, Lactobacillales, Bacteroidales, 
Neisseriales, and Pasteurellales, were relatively abundant, 
and a higher abundance of Bacteroidales was observed in the 
OSA group; the other three were similarly abundant in the 
two groups. The significant differences were then assessed by 
LEfSe and PLS-DA analyses. A taxonomy tree could rapidly 
identify the dominant taxa from within the complex microbial 
data. The colored nodes represent the 20 most abundant taxa, 
including Firmicutes (Streptococcus), Gammaproteobacteria 
(Haemophilus), Betaproteobacteria (Neisseria), and Bacte-
roidetes (Porphyromonas) (Figure S1C). The heat map shows 
correlations between the participants and the 50 most abundant 
genera represented in the microbiota samples (Figure S3A in 
the supplemental material).

Differing Microbiota Compositions
The community compositions differed between patients with 
OSA and normal control patients. A representation of the 
taxa that differed across groups was prepared using LEfSe 
(Figure S3B and Figure S3C). There were 12 different fami-
lies, with enrichment of Veillonellaceae, Campylobactera-
ceae, C111, and Paraprevotellaceae in patients with OSA, 
and of Thermaceae, Pseudomonadaceae, Nocardioidaceae, 
Gemellaceae, Comamonadaceae, Cardiobacteriaceae, Bur-
kholderiaceae, and Alcaligenaceae in controls. We also 
found significantly different microbial compositions at the 
genus level, with nine genera that differed significantly be-
tween the groups. Thermus, Pseudomonas, Lautropia, and 
Achromobacter showed higher abundances in the normal 
control group, whereas Veillonella, Prevotella, Mogibacte-
rium, Campylobacter, and Butyrivibrio were more abundant 

Figure 2—Principal coordinate analysis plot of the 
oral microbiota based on the results of the unweighted 
UniFrac metric.

The blue triangles represent subjects with obstructive sleep apnea and 
the red dots represent control subjects. Smaller distances between 
two points indicate greater similarity in microbial community structure 
between the two samples. CTRL = control, PCoA = principal coordinate 
analysis.

Figure 3—Principal component analysis at the genus level.

One dot represents one sample. The blue triangles represent subjects 
with obstructive sleep apnea (OSA) and the red dots represent control 
subjects. Smaller distances between two points indicate greater 
similarity in microbial community structure between the two samples. 
CTRL = control, PCA = principal component analysis.
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in the patients with OSA (linear discriminant analysis > 3, 
P < .05). A PLS-DA model was also developed to identify 
genera that were differentially distributed between OSA 
and normal control groups (Figure S3D). In total, 29 gen-
era (VIP > 1) were identified as key genera. Of these, 13 
genera were enriched in the control group: Thermus, Lau-
tropia, Eikenella, Flavobacterium, Cardiobacterium, 
Ochrobactrum, Kingella, Microbacterium, Pseudomonas, 
Sphingobium, Prosthecobacter, Sphingomonas, and Allo-
baculum. Another 16 genera were more abundant in patients 
with OSA. Furthermore, three genera were identified with 
VIP > 2: Prevotella, Thermus, and Campylobacter. We iden-
tified 1,160 and 1,112 OTUs in patients with OSA and con-
trol patients, respectively. As shown in Figure S4A in the 
supplemental material, 975 OTUs, representing 75.2% of all 
OTUs (1,297 OTUs) and 99.3% of all OTU abundance, were 
shared between the two groups. The Venn diagram revealed 
OTUs that were unique to each group; specifically, 185 and 
137 unique OTUs were found in patients with OSA and con-
trol patients, respectively. These unique OTUs were low in 
abundance, containing 7 to 78 sequences. The 185 unique 
OTUs in the OSA group belonged to 8 species: debontii, 
dispar, firmus, melaninogenica, parainfluenzae, boronitoler-
ans, mizutaii, and cinerea.

Co-Occurrence Network Analysis
We used co-occurrence network analysis to determine the in-
terrelationships of oral microbiota at the genus level. Seven 
genera showed positive associations (Thermus-Acinetobacter 
(rho = .66), Acinetobacter-Flavobacterium (rho = .70), Fla-
vobacterium-Ochrobactrum (rho = .70), Bulleidia-Prevotella 
(rho = .61), and Prevotella-Campylobacter (rho = .72) (rho > .6 
and P < .01). The network diagram is presented in Figure S4B.

Functional Predictions
We performed PICRUSt analysis to predict the bacterial func-
tions of the oral microbiota community in pediatric OSA based 
on 16S rRNA sequencing data. In total, we predicted 39 meta-
bolic functions based on all samples with the most enrichment: 
membrane transport (12.4%), replication and repair (9.9%), car-
bohydrate metabolism (9.6%), amino acid metabolism (9.1%), 
translation (6.8%), and energy metabolism (5.3%). Some other 
metabolic functions (nucleotide metabolism, metabolism of 
cofactors and vitamins, glycan biosynthesis and metabolism, 
folding/sorting and degradation, genetic information process-
ing, and cellular processes and signaling; Figure S4C) were 
also identified.

Metabolic Profiling of Pediatric Patients With OSA 
Versus Controls
An untargeted metabolomics analysis was performed on urine 
samples from 30 pediatric patients with OSA and paired normal 
controls. The OPLS-DA model demonstrated a clear separa-
tion between pediatric patients with OSA and normal controls 
(Figure 4). In total, 57 metabolites that distinguished pediatric 
patients with OSA from controls were identified (Table S1 in 
the supplemental material, VIP  >  1 and P < .05). Of these, 
17, 15, 5, 3, 2, 3, 3, 3, and 1 metabolites were classified as 
amino acid metabolism, carbohydrate metabolism, microbial 
metabolism, vitamin metabolism, ornithine cycle, nucleic acid 
metabolism, fatty acid metabolism, butanoate metabolism, and 
bilirubin metabolism, respectively. The other five metabolites 
were intermediate in other metabolic pathways (Table S1).

Correlation Between the Oral Microbiome and Urinary 
Metabolites
We first performed a CIA to assess the consistency of the data 
from the oral microbiome and urinary metabolomic profiling; 
the results showed that the similarity between the two datasets 
was low although significant (RV = 0.24, P = .004; Figure 5). 
Then, the relationship between oral microbiome (the top 50 
abundance levels of genera) changes and urinary metabolite 
(the 57 differential metabolites) perturbations in pediatric OSA 
was explored by correlation analysis. It was found that several 
specific metabolites identified by the metabolomics approach 
were correlated with the typical oral bacteria identified by 16S 
rRNA diversity analysis, which indicated that a functional cor-
relation between the oral microbiome and associated metabo-
lites might exist (Figure S4D).

DISCUSSION

This is the first report regarding the use of metagenomics and 
metabolomics approaches to identify perturbations in the oral 
microbiota and altered urinary metabolites in pediatric OSA. 
Our study showed that oral microbiome compositions were 
different between pediatric OSA and controls, but our obser-
vations could not reveal causal relations. In addition, these 
perturbed oral microbiota were associated with changes in 
several metabolomic profiles, indicating that OSA not only 
disturbed the oral microbiota at the abundance level but also 

Figure 4—Score plots of the orthogonal partial least-
squares discriminant analysis model for obstructive sleep 
apnea and normal control groups.

Green represents obstructive sleep apnea (OSA), yellow represents 
normal control groups. The model parameters were: R2X = 0.433, 
R2Y = 0.954, Q2Y = 0.665.
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substantially altered the metabolomic profile related to the oral 
microbiome, resulting in disturbances in host metabolite ho-
meostasis. These results might provide mechanistic insights 
regarding perturbations of the oral microbiome as a new mech-
anism of OSA-induced metabolic disorders.

Intermittent hypoxia and sleep fragmentation, two impor-
tant characteristics of OSA, can alter the microbial community 
structure in mice.31,32 Moreover, altered gut dysbiosis has been 
correlated with OSA-related hypertension, systemic/adipose 
tissue inflammation, and insulin resistance.32,33 Given that the 
oral cavity and intestine share the same digestive tract, we sug-
gest that OSA could markedly alter the gut microbiome and 
lead to changes in the composition of the oral microbiota. Al-
though several studies have shown intestinal flora disturbances 
in OSA, our clinical study is the first to reveal that the oral 
microbiome is also perturbed in pediatric OSA, as evidenced 
by five predominant phyla (Firmicutes, Proteobacteria, Bac-
teroidetes, Fusobacteria, and Actinobacteria), constituting 
98.6% of the total oral microbiota. The dominant phyla in 
our study were highly similar to those described previously 
in pediatric dental caries.34 Previous rodent studies identified 
a higher amount of Firmicutes and lower amounts of Bacte-
roidetes and Proteobacteria phyla under intermittent hypoxia 
conditions.31 In humans, an increased intestinal oxygen level 
could affect the composition of fecal and mucosal adherent mi-
crobiota (eg, Proteobacteria and Actinobacteria, phyla).35 All 
of these studies indicated that changing oxygen concentrations 
can affect the microbiota. However, it is still unclear whether 
changes in the oral bacterial profile are a cause or a conse-
quence of pediatric OSA or vice versa. During OSA episodes, 
air often travels through different airway channels, so the ex-
posure of oral microbiota to oxygen may be markedly different 
in OSA than in healthy children. Because oxygen is a major 
parameter shaping the bacterial community, even in otherwise 
stable environments,36 oxygen in the air and not in the blood 
may be more important for microbes on the buccal mucosa.

To date, only three reported studies have applied metabolo-
mics methods to adult OSA,6,37,38 and two of them were aimed 
at exploring differences in metabolomic profiles.6,37 Ferrarini et 
al. first identified 14 statistically significant metabolites (plate-
let-activating factor, lysophospholipids, bile pigments, and 
pipecolic acid) in severe OSA versus nonsevere OSA.37 Our 
previous metabolomics study with more detailed demographic 
data and a larger sample size revealed 24 metabolites that were 
consistently higher or lower in normal controls, simple snorers, 
and subjects with OSA.6 In this study, the results of the metab-
olomic profiling in pediatric patients with OSA were somewhat 
different from those in adult patients with OSA. In addition to 
the metabolites associated with amino acid metabolism, carbo-
hydrate metabolism, microbial metabolism, nucleic acid me-
tabolism, and fatty acid metabolism, which were also elevated 
in adult OSA, metabolites associated with vitamin metabolism, 
ornithine cycle, butanoate metabolism, and bilirubin metabo-
lism were uniquely elevated in pediatric patients with OSA. 
A potential explanation is that the pathophysiological process 
differs in pediatric and adult OSA. The major etiology of adult 
OSA has been described as decreased upper airway muscle re-
laxation, and, because there is typically a long time between 

the occurrence and the diagnosis of this condition, these three 
major nutrients are commonly altered. Adenoid hypertrophy 
is an important issue in pediatric OSA, and many metabolic 
pathways will also be involved.39 Generally, metabolomics is 
a relatively new analytical method and is still at a descriptive 
stage in human diseases. Large-scale multicenter studies with 
both adult and pediatric patients with OSA are needed to fur-
ther address these differences.

Overall, the two sets of data (metabolomics and microbiome) 
were highly correlated in the CIA analysis. CIA was reported 
to be a useful method for identification of the relationships be-
tween large datasets.28 Indeed, the relationship between oral 
dysbiosis and systemic diseases has been well documented. 
Several clinical studies have shown that decreased diversity of 
oral microbiota exists in various diseases, such as esophageal 
squamous cell carcinoma,40 pancreatic cancer,41 and rheuma-
toid arthritis.42 Moreover, metabolomic analyses showed meta-
bolic disturbances in these diseases.43–45 Similarly, we suggest 
that oral dysbiosis and metabolic disorders coexist in OSA. 
However, the relationship between urinary metabolites and 
oral microbiota is purely correlative without further controlled 
experiments. It is very likely that other effects of OSA beyond 
the oral microbiota are likely to influence the urinary metabo-
lites; large-sample, prospective studies should be performed to 
address any causal relationships.

Several limitations of this study should be acknowledged. 
First, this was a pilot study and characterized the microbiota 

Figure 5—Co-inertia analysis to assess the consistency of 
oral microbiome and urinary metabolomic profile data.

One dot and one line with an arrow represent one sample. The blue 
dots and blue lines with arrows represent subjects with obstructive sleep 
apnea and the red dots and red lines with arrows represent control 
subjects. The dots represent oral microbiota compositions, while the 
arrows indicate metabolomic data. Shorter lengths of the lines with 
arrows indicate greater consistency of the two datasets. CIA = co-inertia 
analysis, OTUs = operational taxonomic units.
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in only a particular oral site in the enrolled subjects. Given 
that the oral cavity is a miniature microbial community that 
comprises more than 700 species or phylotypes and given that 
the compositions of the oral microbiome vary at different oral 
sites, analysis of the microbiome from only one site cannot 
represent the entire oral flora. Therefore, samples (including 
saliva samples) should be collected from multiple oral sites in 
further studies. Second, the gut microbiota in these subjects 
were not investigated simultaneously. Although previous stud-
ies showed that gut microbiota were disturbed by swallowing 
bacteria, a direct linkage between compositions of oral and gut 
microbiota was not established in this study. Third, because it 
is difficult to persuade children and their legal caregivers to 
undergo PSG monitoring in the absence of any sleep distur-
bances, we defined the “normal” control subjects via question-
naires rather than with standard PSG. Fourth, we preliminarily 
demonstrated that the altered oral microbiome was weakly as-
sociated with urinary metabolomic profiles in CIA; however, 
the observed correlation does not necessarily indicate a causal 
link. In addition, the cross-talk between the microbes and the 
host is complex. The underlying mechanisms of these pertur-
bations should be examined in further clinical or rodent stud-
ies. Fifth, the OSA symptoms may also alter eating habits46 
and thus change the microbiota composition and metabolomic 
profile. However, it is difficult to quantify the amounts and spe-
cies of food in the diet; this is also a common question in omics 
studies. Sixth, genetic predisposition may also be important 
and should not be ignored. Seventh, a direct link between lev-
els of metabolites from the oral cavity and oral microbiota was 
not established in our study and should be examined in fur-
ther studies. Eighth, there exists compositional and functional 
oscillation of the microbiota during the 24-hour light-dark 
cycle.47,48 Though we have taken the factor into consideration 
during sample collection, we did not check the circadian varia-
tion in our study. Finally, the sample size of this study was rela-
tive small; multicenter studies with larger samples are needed 
to confirm our conclusions.

In conclusion, in this study, we combined 16S rRNA se-
quencing and metabolomics analyses to assess the oral micro-
biome and metabolic profiles in pediatric OSA. The sequencing 
revealed that OSA might be associated with oral dysbiosis and 
various metabolites involved in diverse metabolic pathways. In 
addition, a correlation analysis showed that some oral bacteria 
families were strongly correlated with the altered urinary me-
tabolite profiles. These alterations might suggest a perturbed 
metabolic status and functional alterations in the oral micro-
biota in pediatric OSA, supporting the hypothesis that changes 
in the oral microbiome may be a new mechanism that leads to 
or exacerbates OSA-related metabolic disorders.

ABBRE VI ATIONS

AHI, apnea-hypopnea index
CIA, co-inertia
GC-TOF-MS, gas chromatography coupled with time-of-flight 

mass spectrometry
KEGG, Kyoto Encyclopedia of Genes and Genomes

OPLS-DA, orthogonal partial least-squares discriminant 
analysis

OSA, obstructive sleep apnea
OTU, operational taxonomic unit
PCA, principal component analysis
PCoA, principal coordinate analysis
PICRUSt, Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States
PLS-DA, partial least-squares discriminant analysis
PSG, polysomnography
QIIME, quantitative insights into microbial ecology
UPLC-Q-TOF-MS, quadrupole time-of-flight mass 

spectrometry
UPGMA, unweighted pair-group method with arithmetic 

means
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