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Abstract
Thrombotic microangiopathy (TMA) is one of the most 
devastating sequalae of kidney transplantation. A number 
of published articles have covered either de novo  or 
recurrent TMA in an isolated manner. We have, hereby, in 
this article endeavored to address both types of TMA in 
a comparative mode. We appreciate that de novo TMA is 
more common and its prognosis is poorer than recurrent 
TMA; the latter has a genetic background, with mutations 
that impact disease behavior and, consequently, allograft 
and patient survival. Post-transplant TMA can occur as a 
recurrence of the disease involving the native kidney or as 
de novo disease with no evidence of previous involvement 
before transplant. While atypical hemolytic uremic syn-
drome is a rare disease that results from complement 
dysregulation with alternative pathway overactivity, de 
novo  TMA is a heterogenous set of various etiologies 
and constitutes the vast majority of post-transplant TMA 
cases. Management of both diseases varies from simple 
maneuvers, e.g. , plasmapheresis, drug withdrawal or dose 
modification, to lifelong complement blockade, which is 
rather costly. Careful donor selection and proper recipient 
preparation, including complete genetic screening, would 
be a pragmatic approach. Novel therapies, e.g. , purified 
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products of the deficient genes, though promising in 
theory, are not yet of proven value.
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Core tip: Many articles in the literature have covered 
either de novo or recurrent thrombotic microangiopathy 
(TMA) in an isolated manner; we tried here in this article 
to gather the criteria of both types in one review for 
comparison. Contrary to what was believed in the past, 
de novo TMA is more common and its prognosis is poorer. 
On the other hand, recurrent TMA relies on a wide base 
of genetic backgrounds, with mutation errors differing 
in their impact on disease behavior and consequently 
on allograft and patient survival. This base for instance 
is rapidly expanding, and ultimately warrants a parallel 
robust work up regimen.
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INTRODUCTION
Thrombotic microangiopathy (TMA) is a debilitating 
complication of kidney transplantation that is associated 
with poor patient and graft outcomes. The incidence of 
post-transplant TMA has been reported to be 5.6 cases 
per 1000 renal transplant recipients per year with a 
50% mortality rate three years after diagnosis[1]. TMA 
after transplantation can be classified into either: (1) 
De novo TMA, i.e., developed for the first time without 
any evidence of the disease before transplant; and (2) 
Recurrent TMA, i.e., native kidneys failed as a result 
of TMA and it came back in renal transplantation. 
Since renal biopsy of native kidney is not performed in 
many patients with end stage renal disease (ESRD), 
missed diagnosis of TMA prior to kidney transplantation 
is likely. With the advent of the drug eculizumab, an 
anti C5 monoclonal antibody, that is highly effective in 
prevention as well as treatment of atypical hemolytic 
uremic syndrome (aHUS), it would be crucial to know 
the etiology of ESRD in order to differentiate de novo 
from recurrence. Such distinction will invariably have 
clear clinical and therapeutic implications. In this review, 
we shall try to discuss the main differences between the 
two categories in the pathophysiology, clinical course and 
available approaches of prevention and treatment. 

DE NOVO TMA 
In the presence of acquired or genetic dysregulation of 
the alternative complement pathway (AP), a number 
of precipitating factors have been identified in the 
context of renal transplantation that trigger the devel-
opment of de novo TMA. These factors include the 
following: (1) Antibody mediated rejection (AMR); (2) 
Immunosuppressive-associated TMA: Calcineurin in-
hibitors (CNI) or mTOR inhibitors (mTORi), single or 
combined; (3) Other medications: e.g., anti-vascular 
endothelial growth factor inhibitors (anti-VGFI); (4) 
Viral infection: e.g., HCV, CMV, BK and parvovirus; (5) 
Genetic abnormalities in the complement cascade; (6) 
Phenotypical shift of C3 glomerulopathy (with ESRD), to 
an aHUS post transplantation; and (7) Missed diagnosis 
of TMA in the native kidney as a cause of ESRD (i.e., 
recurrent TMA)[2].

Which is more prevalent, de novo or recurrent TMA? 
Reynolds et al[1], in a United States Renal Data System 
(USRDS)-based study, declared that the number of 
recurrent TMA cases was only 12 compared to 112 
patients with de novo TMA, though the risk of post-
transplant TMA recurrence was 36.5 times higher in 
kidney transplant recipients with ESRD due to hemolytic 
uremic syndrome (HUS) as compared to other etiologies 
(29.2% vs 0.8%)[1]. Langer et al[3] reported the incidence 
of de novo TMA to be 1.5%. However, the incidence of de 
novo TMA is mentioned to be as high as 3%-14%[4,5]. It 
is clear that de novo TMA is more prevalent after kidney 
transplantation and presumably underestimated. Graft 
loss rate of 40% is reported in de novo TMA within a 
couple of years of diagnosis[5,6].

Etiopathogenesis of de novo TMA
AMR and medications are the two main causes of de 
novo TMA. In addition, the role of complement abnormal-
ities is becoming more apparent with one study reporting 
an underlying complement mutational abnormality in 
one third of patients with de novo TMA[7].

Calcineurin-induced TMA: The link between CNI 
(CyA and tacrolimus) administration and the evolution 
of de novo TMA is not a new concept. Three underlying 
mechanisms could explain the role of CNI in TMA devel-
opment: (1) Loss of the normal balance between the 
vasodilator peptides (e.g., prostaglandin (PG) E2 and 
prostacyclin (PG12)) and the vasoconstrictor peptides 
(e.g., thromboxane A2 and endothelin), results in 
arteriolar vasoconstriction[8,9], renal ischemia and estab-
lishment of endothelial injury[10]; (2) CNI-induced platelet 
activation, pro-coagulant and anti-fibrinolytic activity 
have been shown to be involved in TMA evolution, 
particularly so, with an injured endothelium due to AMR, 
ischemia-reperfusion injury or any other etiology[10-12]; 
and (3) Microparticle production from endothelial cells, 
a known effect of CyA that can result in activation of 
the AP, a well-known mechanism that is implicated in 
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TMA evolution[13]. However, three trap points have been 
speculated to oppose the role of CNI: (1) Patients utilizing 
CNI to maintain immunosuppression represent more 
than 95% of kidney transplant recipients (KTR), and only 
a small percentage can develop TMA, which suggests the 
presence of another underlying predisposing factor (s)[14]; 
(2) CNI withdrawal in de novo TMA does not always 
guarantee a favorable graft outcome[6]; (3) A USRDS-
based study demonstrates a significantly higher incidence 
of TMA in the group of KTR that was not under CNI 
maintenance therapy (11.9/1000/year), as compared to 
those on CNI maintenance (5.0/1000/year)[1]. 

mTOR inhibitor-associated TMA: mTORi can inhibit 
cell cycle progression and proliferation. Both sirolimus and 
everolimus have been reported to be implicated in the 
pathogenesis of de novo TMA. The following explanations 
have been given: (1) mTORi has antiangiogenic pro-
perties, and can decrease renal expression of vascular 
endothelial growth factor (VEGF) with death of the 
endothelial progenitor cells. These effects are proven to 
be implicated in TMA pathogenesis[15,16]; (2) The VEGF 
inhibition has been recently proven to be associated with 
reduced renal levels of complement factor H (CFH)[17]. 
Patients with underlying CFH genetic mutations are more 
susceptible to develop de novo TMA, particularly with 
mTORi exposure[7]; (3) Repair of endothelial injury could 
be hampered by mTORi use[18-20]; and (4) Furthermore, 
the procoagulant and the antifibrinolytic activity of 
mTORi might play additional roles in de novo TMA devel-
opment[21,22].

The exact role of mTORi in the evolution of de novo 
TMA is not fully understood[3,18,23]. Some authors have 
suggested that the impact of these medications may 
exceed that of CNI in the development of de novo 
TMA[1,24]. However, interpretation of these data may be 
limited by the fact that mTORi itself, e.g., sirolimus, may 
be used as a rescue medication in the case of diagnosis 
of CNI-induced TMA[1,24]. The risk of development of TMA 
with combined CNI and mTORi protocols is higher than 
using mTORi alone, an effect that has been documented 
in several studies. While Fortin et al[18] reported that the 
highest risk of de novo TMA was in the group using CNI 
and mTORi, Nava et al[20] studied 396 KTR, 36 (7.3%) 
developed TMA and 17 of them were drug-related. Not 
only were the drug levels of CNI and mTORi higher in 
the TMA group, but the sum of both drug levels in the 
TMA group was also higher[18-20]. An explanation for this 
additive risk is that the repair of the endothelial injury 
induced by CNI is hampered by mTORi[18-20]. Therefore, 
immunosuppression protocols using drug combinations 
should be planned cautiously, when high doses of these 
agents are usually used in the early post-transplant 
period[7]. 

AMR-associated de novo TMA: The role of AMR in 
the development of post-transplant TMA is commonly 
reported and well-recognized[1]. Endothelial cells 
are a well-known target of allo-immune response. 

The peritubular capillary (PTC) C4d staining (a well-
recognized surrogate marker of AMR) has been reported 
to be present in 16.2% of biopsied recipients with 
TMA[1,25]. Moreover, Satoskar et al[6] reported an incidence 
of 55% of de novo TMA patients who express diffuse PTC 
C4d positivity. The observed prevalent administration of 
CyA in this study argued that it may have an augmenting 
effect on TMA prevalence. However, the observed 
difference between TMA in patients with C4d positive 
biopsy (13.6%) and that in C4d negative biopsies 
(3.6%) favors a postulated role of humoral rejection in 
the evolution of post-transplant TMA[2]. Both studies, for 
instance, demonstrated that clustering of both AMR and 
TMA would predict much worse graft outcome[6,26].

Other causes: Several less common etiologies have 
been reported to be involved in TMA pathogenesis 
and include: Viral infection, e.g., CMV infection[27,28], 
BK virus[29], parvovirus[30,31], chronic hepatitis C virus 
(with or without anti-cardiolipin seropositivity)[32,33], and 
antiviral medications, e.g., ribavirin and interferon[34] and 
disseminated histoplasmosis[35,36]. Ischemia-reperfusion 
injury can augment complement-associated injury 
through complement activation[37]. An acquired dis-
integrin and metalloproteinase with a thrombospondin 
type 1 motif, member 13 (ADAMTS13) deficiency-
another rare risk factor- has been shown in one case to 
represent post-transplant TMA[38,39]. Unfortunately, the 
role of rare risk factors is rather difficult to evaluate in 
controlled studies. Living donation, on the other hand, 
has not been shown to guarantee any protection against 
graft dysfunction[5]. Interestingly, a C3 glomerulopathy 
disease in a native kidney can undergo phenotypical 
shift and present after kidney transplantation as de novo 
TMA[40].

Complement gene mutations: Chua et al[41] reported 
that renal complement activation is the common de-
nominator in such a heterogeneous condition. They 
observed C4d deposits in more than 88% and C4d with 
localized C5b-9 in about 60% of 42 biopsy samples from 
patients with histologically confirmed diagnosis of TMA 
from a heterogenous group of patients[41]. Moreover, 
Le Quintrec et al[7] reported the presence of genetic 
mutations in CFH, Complement Factor Ⅰ(CFI) or both 
in 29% of their studied de novo TMA patients, 25% 
showed low Complement Factor B (CFB) and/or low C3, 
suggesting an AP complement activation. No mutations 
have been found in healthy controls (100) or in TMA-free 
KTR controls[7].

Relation to TMA evolution: The AP depends on two 
main regulators: CFH and CFI. CFH has the ability to 
inhibit the C3 cleaving enzyme C3bBb. Moreover, it can 
serve as co-factor for FI, and the latter has the ability 
to inactivate C3b. Consequently, inactivation of these 
proteins either due to genetic mutations or development 
of neutralizing antibodies, can trigger an uncontrolled AP 
activity, leading to endothelial injury, the pathogenetic 
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status to the chronic angiopathic changes. In the active 
stage, there is evidence of endothelial cell injury with 
platelet aggregation (thrombosis), fibrinoid necrosis and 
glomerular ischemia. In the chronic stage, the basement 
membranes undergo duplication and multilayering with 
increased matrix layers and vessel wall cells, which 
ultimately ends in the unique onion skin formation (Figure 
1)[2,45].

Once the diagnosis of TMA has been established, 
a prompt revision of the etiology of the native kidney 
ESRD should be instituted. In aHUS patients who do 
not show systemic manifestations, the diagnosis could 
be obscure. In the absence of renal biopsy, many cases 
can be misdiagnosed as hypertensive nephrosclerosis[2]. 
Consequently, a prompt testing for genetic mutations 
should be accomplished to unmask an underlying 
complement dysregulation and avoid missing the di-
agnosis of a recurrent aHUS. This approach has key 
therapeutic implications, since de novo TMA has limited 
therapeutic options, in contrast to recurrent aHUS 
after transplantation, which has a better chance of C-5 
blockade through the monoclonal antibody eculizumab, 
an effective therapeutic agent not only for treatment, but 
also for prevention of recurrence[2,46].

Prognosis of de novo TMA: The prognosis of post-
transplant de novo TMA is quite poor for the patient 
and as well as the allograft. About one half of the 
patients loses their graft within the first two years after 
diagnosis[4,6]. This is supported by the USRDS-based 

basis of TMA. Interpreting the results of the above 
study may suggest an overlap between aHUS and TMA. 
However, multiple mutational gene varieties related to 
complement and the coagulation-fibrinolysis cascades 
have been recently recognized in TMA patients[42].

Clinical manifestations
Timing: TMA could develop at any time in the post 
transplantation course[5,43], however this syndrome 
is mostly encountered in the first 3-6 mo post trans-
plantation. This is probably when the CNI immuno-
suppressive trough levels are relatively higher[1]. 

Salient features: TMA manifestations are quite variable 
and can vary from a limited form confined to the kidney 
to a full blown systemic variant[4,6,44]. The systemic form 
of TMA consists of the classic triad of thrombocytopenia, 
microangiopathic hemolytic anemia (MAHA) and acute 
kidney injury (AKI). Features of MAHA include raised 
lactic acid dehydrogenase (LDH), drop in hemoglobin 
(HB) and decreased haptoglobin with schistocytes on 
peripheral blood smear. Localized (limited) TMA is usually 
presented later in TMA course, as compared to the 
systemic form, which can be explained by the urgency of 
the systemic type, necessitating the diagnostic allograft 
biopsy[4]. When a renal transplant recipient has significant 
renal dysfunction and the biopsy does not show any 
acute rejection, one must suspect two possibilities: (1) 
TMA or (2) Renal artery stenosis. The histopathologic 
changes are usually non-specific but vary in the acute 

A B

C D

Figure 1  Acute and chronic thrombotic microangiopathy and calcineurin inhibitors-associated arteriolopathy with severe acute ischemic tubular lesions. 
A: Advanced interstitial inflammatory fibrosis (Masson trichrome stain); B: Immunofluorescence, diffuse and segmental C3; C: C1q deposits within glomerular capillary 
walls; D: Diffuse acute and chronic arteriolar and glomerular thrombotic microangiopathy lesions on light microscopy (LM). (Adapted from: Yassine et al[45]).
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report presented by Reynolds et al[1] that reported 
a patient mortality rate of 50% after three years of 
diagnosis. Many studies support these results[4-6,18]. To 
compare systemic versus localized TMA, Schwimmer 
et al[4] reported that 54% of systemic TMA develops 
dialysis-requiring AKI and 38% lost their grafts. On the 
other hand, none of the patients with localized TMA 
developed TMA-related early graft loss or required 
dialysis. Unfortunately, this variation in both types of 
behavior has not reflected on graft survival, as both 
types of TMA face poor long-term graft survival[2,4]. 

RECURRENT TMA AFTER RENAL 
TRANSPLANTATION
Etiology of recurrent TMA
aHUS; thrombotic thrombocytopenic purpura (TTP); and 
autoimmune diseases: e.g., scleroderma and systemic 
lupus erythematosus, with or without anti-phospholipid 
antibody syndrome[2].

aHUS: Recurrence of TMA in the allograft depends 
on the underlying type involving the native kidney. 
Overactivation of the AP is known to be the underlying 
etiology of aHUS. By far, aHUS is the most common 
diagnosis in TMA associated with recurrence. Risk of 
recurrence is greatly dependent on the underlying associ-
ated abnormality[47]. For example, mutational abnormality 
involving CFH and CFI, regulatory complement com-
ponents produced by the liver, results in aberrant CFH 
and CFI. After transplant, CFH and CFI have a robust 
impact in the evolution of aHUS recurrence. The reported 
rate of aHUS recurrence approached 70%-90%[47,48]. 
Membrane co-factor protein (MCP), a transmembrane 
complement regulatory component that is produced by 
kidney endothelial cells even in post-transplant period, 
keeps aHUS recurrence lower unless other mutational 
gene defects have been associated[47-49]. Additional MCP 
mutations (> 22%), as reported by Bresin et al[50], led 
to graft loss due to recurrence of aHUS in one third of 
patients. The global rate of recurrence in aHUS patients 
is reported to be as high as 60%. Untreated patients, 
however, ultimately develop graft loss at a rate of 90%, 
with 80% of them occurring in the first year[50].

TTP: TTP is the second recognized etiology in TMA. 

Genetic or acquired lack of ADAMTS13 has been 
recognized. For a long period, differentiation between TTP 
and HUS relied primarily on the presence of neurologic 
manifestation in TTP and renal dysfunction in HUS to 
settle the diagnosis. Serological evaluation of ADAMTS13 
activity is now feasible. However, complete distinction 
between the two clinical entities is not always possible 
because of overlap in manifestations. Recently, Zafrani et 
al[51] documented the presence of AKI in more than half 
of TTP patients (with low ADAMTS13 activity) and 50% 
progression of CKD and even ESRD. It is reasonable 
to expect TTP recurrence as long as the underlying 
defect is present after transplantation[52]. The same 
explanation can be applied to the autoimmune diseases, 
e.g., lupus nephritis, wherein patients can develop TMA 
in 5%-10% with documented recurrence after kidney 
transplantation[53-57].

Pathology: aHUS is a variety of TMA that represents 
the tissue response to an ongoing endothelial injury. 
Thrombotic features, e.g., fibrin/platelet plugging and 
intraluminal fibrin are not always seen in renal allo-
graft biopsy. Non-thrombotic features can appear as 
denuded and swollen endothelium, mesangiolysis, glo-
merular basement membrane double contour, as well 
as accumulation of electrolucent material in the subendo-
thelium. Arterial and arteriolar intraluminal fibrin, myxoid 
intimal thickening as well as concentric myointimal 
proliferation (onion skin appearance) have also been 
described[58] (Table 1). 

PATHOPHYSIOLOGY OF TMA 
RECURRENCE
The AP is constitutively active and is, therefore, fine-
tuned. The regulatory components exist either in the 
serum (fluid phase) or attached onto cell membranes. 
CFH is the main inhibitor of the AP. CFH has the ability 
to work in fluid phase as well as on cell surfaces. 
Furthermore, CFH can act as a co-factor to CFI[59,60]. 
Regulatory components on cell surfaces, or “membrane 
regulators” include the following: (1) Membrane cofactor 
protein (MCP/CD46); (2) Complement receptor 1 (CR1/
CD35); (3) Decay accelerating factor (DAF/CD55); and 
(4) Protectin (CD59), which prohibits MAC formation[61,62].

Any disturbance involving any of this protective 

Active lesions Chronic lesions

Glomeruli: Thrombi - Endothelial swelling or denudation - Fragmented 
RBCs - Subendothelial flocculent material. EM: Mesangiolysis - 
Microaneurysms

Glomeruli: LM: Double contours of peripheral capillary walls, with variable 
mesangial interposition - EM: New subendothelial basement membrane - 

Widening of the subendothelial zone
Arterioles: Thrombi - Endothelial swelling or denudation-Intramural fibrin-
Fragmented red blood cells-Intimal swelling-Myocyte necrosis

Arterioles: Hyaline deposits
Arteries: Fibrous intimal thickening with concentric lamination (onion skin)

Arteries: Thrombi - Myxoid intimal swelling -Intramural fibrin- Fragmented 
red blood cells

Table 1  Morphological features in microangiopathy

Adapted from: Goodship et al[58]. EM: Electron microscopy; LM: Light microscopy.
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shield will ultimately lead to complement activation 
with subsequent endothelial cell derangement[63]. It is 
increasingly recognized that complement dysregulation 
is the fundamental etiology involved in TMA evolution. 
Both genetic aberrations as well as autoantibodies can be 
involved in this process. Usually, there is (are) an inciting 
environmental trigger factor(s). 

Current classification of TMA includes the following
Primary hereditary TMA: Includes mutations in 
ADAMTS13, MMACHC (cb1c deficiency), or in genes 
encoding complement components.

Primary acquired TMA: Autoantibodies to ADAMTS13 
or to CFH, which occurs with homozygous CFHR3/1 
deletion.

Infection-associated TMA: Shiga toxin-producing 
Escherichia coli-HUS (STEC-HUS) and pneumococcal 
HUS have distinct mechanisms that result in TMA; 
in other infections, the processes are ill-defined and 
sometimes can trigger manifestations of the primary 
TMA.

Secondary TMA: Presents in a variety of conditions, and 

in many conditions the culprit mechanisms are usually 
multifactorial or unknown. The shown classification 
(Figure 2) is not unequivocal, i.e., in some secondary 
forms of TMA, e.g., pregnancy-associated TMA or de 
novo TMA after transplantation, a significant percentage 
of cases may be associated with genetic predisposition 
(Figure 2)[64]. 

The most common complement mutation in 
aHUS is CFH, with 40% of cases inherited and 25% 
sporadic[65,66]. Furthermore, not only CFH has its 
impact on TMA evolution, but the CFH-related genes 
(CFHR1-5) have additional roles. Through deletion, 
hybrid protein formation and duplication[67] of these 
genes, the endothelial cell surface becomes denuded 
from its protective shield, and consequently aHUS may 
supervene[65,68].

The risk of aHUS recurrence could be four times 
higher with CFH mutations or with the carriers of CFH/
CFHR1 hybrid genes[24]. On the other hand, the impact of 
CFI mutations is controversial. While early reports about 
CFI mutations documented a high rate of recurrence 
and graft loss[69-71], Bienaime et al[72] denied any risk of 
recurrence associated with CFI mutations. Le Quintrec 
et al[24] were in agreement with them. As MCP can 
normally be expressed by the endothelial cell surface of 

"Spectrum of TMA"

1. aHUS with complement gene mutations.
2. TTP with ADAMTS13 mutations.
3. cblC deficiency mediated TMA.
4. DGKE-associated TMA.

1. TTP with ADAMTS13 autoantibodies.
2. aHUS with FH autoantibodies.

1. STEC- HUS.
2. Pneumococcal HUS (distinct mechanisms result in TMA).
3. HIV-associated TMA.
4. Other infections (ill defined, infection may trigger manifestation of a primary TMA ).

1. Drug-induced TMA.
2. De novo  TMA after SOT.
3. Pregnancy-associated TMA (HELLP).
4. Malignancy-associated TMA.
5. TMA with severe HT.
6. TMA with glomerular diseases (MN, MPGN, FSGS, IgAN, AAV).
7. TMA with autoimmune diseases (e.g.  SLE, CAPS, SRC).
8. TMA after bone marrow transplant

Primary hereditary:

Primary acquired:

Infection associated:

Secondary TMA:

?Unknown

Figure 2  Spectrum of thrombotic microangiopathy[64]. AAV: ANCA-associated vasculitis; ADAMTS13: A disintegrin and metalloproteinase with a thrombospondin 
type 1 motif, member 13; aHUS: Atypical hemolytic uremic syndrome; C3G: C3 glomerulopathy; CAPS: Catastrophic antiphospholipid syndrome; cblC: Cobalamin C 
type; DGKE: Gene encoding diacylglycerol kinase ε; FH: Factor H; HELLP: Syndrome of hemolysis, elevated liver enzymes, and low platelets; HUS: Hemolytic uremic 
syndrome; IgAN: IgA nephropathy; MN: Membranous nephropathy; MPGN: Membranoproliferative GN; SRC: Scleroderma renal crisis; STEC: Shiga toxin–producing 
Escherichia coli; TMA: Thrombotic microangiopathy; TTP: Thrombotic thrombocytopenic purpura.
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the allograft, aHUS recurrence is seldom influenced by 
MCP gene mutations. No more than three cases of MCP-
associated recurrence have been reported[73,74], where 
recurrence was attributed either to combined gene 
mutations[49] or microchimerism related to the recipient’s 
endothelium[74] (Table 2).

There is a paucity of data on the role of throm-
bomodulin (THBD) gene mutations in aHUS. Like MCP, 
THBD is membrane-anchored, so the possibility of 
recurrence is rarely seen. Only a few cases have been 
reported[75,76]. Gain of function mutation (C3 and CFB) 
is vulnerable for recurrence. Recurrent aHUS with sub-
sequent graft loss have been reported in up to four cases 
of CFB carriers[77,78]. On the other hand, data related 
to C3-asociated recurrence are conflicting. While Le 
Quintrec et al[24] documented recurrence in four of five 
allografts, Noris et al[79] reported only two cases out 
of seven transplants with C3 mutations. Zuber et al[80] 
postulated that normal C3 supplied by the graft tissues 
might have a protective effect. 

Role of diacylglycerol kinase-ε (DGKE) mutations: 
Until recently, the vast majority of aHUS patients were 
thought to be associated with AP dysregulation. On the 
contrary, most patients with DGKE mutations exhibit 
no evidence of complement overactivity. Homozygous 
mutations in the gene encoding for DGKε and DGKε-
associated nephropathy have been recently uncovered. 
Complete loss of function is associated with acute 
renal failure, thrombocytopenia and hemolytic anemia. 
Consequently, it has been postulated that the DGKε 
protein may play a fundamental role in regulating 
thrombosis in renal tissues, a robust fact that urged 
expert renal clinicians to include DGKE mutations in the 
pathophysiology of aHUS[81,82] (see treatment below).

Environmental triggers: The process of aHUS re-
currence can be triggered by anti-HLA antibodies[6], 
viral infection, ischemia-reperfusion injury and im-
munosuppressive medications[83], either isolated or in 
clusters, which can initiate the cascade of complement 
activation in susceptible patients.

Clinical assessment of aHUS: Any HUS that is not 
due to STEC-HUS has been called aHUS[75]. The recent 

progress in understanding the pathophysiology and the 
underlying genetic factors led to the current classification 
of aHUS[84]. Consequently, the term “primary HUS” 
has been addressed by some clinicians when there is 
underlying abnormality in the AP. However, patients 
with underlying complement abnormality need a trigger 
factor, e.g., infection, including pneumococcal infection 
(T-antigen associated TMA), surgery, medications, 
pregnancy, so that aHUS can clinically manifest[85,86]. 

Acute vs chronic lesion? 
Timing of an aHUS episode is not easily predictable. Many 
patients are at persistent risk of recurrence. In medical 
genetics, penetrance of any disease-causing mutation 
means the percentage of subjects with genetic mutations 
who can express clinical symptoms[87]. Penetrance in 
aHUS is age-related, by age 70, penetrance reaches 
64%[88], which supports the presence of disease mo-
difiers by the aging process. The fact that certain 
patients (3%-5%) may express more than one genetic 
variant supports the postulation that mutation burden 
determines the magnitude of disease penetrance. The 
late presentation of aHUS reflects the impact of the 
environmental triggers. However, dissociation between 
the pathological entities and the clinical presentation 
have been reported. For example, TMA can be diagnosed 
in tissue biopsy without simultaneous decline in platelet 
count. Moreover, the current use of eculizumab has its 
impact on the natural history of aHUS[89]. Complement 
inhibition can improve glomerular perfusion enough to 
maintain kidney function. Once this biological agent is 
withdrawn, the renal endothelium may interact with the 
complement system through an unknown mechanism. 
More studies are obviously warranted to declare these 
alterations[58].

Extrarenal manifestation: Twenty percent of aHUS 
patients can express extrarenal manifestations in the 
form of digital gangrene, cerebral artery thrombosis, 
myocardial infarction, in addition to ocular, GIT, pul-
monary and neurologic involvement[42,90-98]. Drusen 
formation is not common in aHUS[99].

Laboratory investigations and differential 
diagnosis: Once the diagnosis of aHUS is suspected, 

Gene 
mutation

Location Functional 
impact

Mutation frequency 
in aHUS (%)

Recurrence after 
transplantation (%)

CFH Plasma Loss 20-30 75-90
CFI Plasma Loss   2-12 45-80
CFB Plasma Gain 1-2 100
C3 Plasma Gain   5-10 40-70
MCP Membrane Loss 10-15 15-20
THBD Membrane Loss 5 One case
Homozygous
CFHR1 del (3%-8%)

Circulating Undetermined 14-23
(> 90% with anti-CHF AB)

NA

Table 2  Risk of atypical hemolytic uremic syndrome recurrence according to the implicated genetic abnormality

Adapted from Salvadori et al[74]. NA: Not available; CFH: Complement factor H; CFI: Complement factor I; CFB: Complement factor B; C3: Complement  
component 3; MCP: Membrane cofactor protein; THBD: Thrombomodulin. 
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exclusion of ADAMTS13 activity is urgently mandated to 
exclude TTP diagnosis. In children, TTP is less common; 
therefore, eculizumab therapy should be instituted early 
without waiting for the results of ADAMTS13 activity. In 
addition, 5% of STEC-HUS patients have no prodromal 
diarrhea and 30% of complement-mediated aHUS 
patients can present with a diarrheal prodrome[100]. 

Complement assessment in aHUS: Before com-
mencing plasma therapy, serum complement com-
ponent should be thoroughly evaluated. C3 is low in 
30% of aHUS patients and, therefore cannot be used 
as a screening criteria for aHUS[97,101]. CD46 surface 
expression should be assessed by flow cytometry. 
Functional parameters as well as activation markers 
should be also determined. Whether these biological 
markers can be used to guide therapy requires further 
investigation[102] (Table 3).

Panel of genetic testing: The diagnostic list of genes of 
aHUS should include at least CFH, CFI, C3, CFB, THBD, 
CFHR1, CFHR5 and DGKE[48,65,75,103-105]. Genotyping 
workup should also include CFH-H3 and MCP ggaac 
haplotypes[106]. Recent advances in genetic surveys 
addressed the use of copy number variation (CNV), 
hybrid genes, and the complex genomic rearrangements 
of CFH/CFHRs genomic region[68,107-111]. The full-detailed 
genetic mapping, however, allows proper diagnosis 
and therapeutic plans, and helps in genetic counseling, 
particularly in living related-donation[112]. The role of 
living-related kidney donor transplantation in aHUS is 
that the culprit agent(s), either acquired or genetic, 
should be well-recognized, and the donor should be free 
of this factor(s) at the same time. Consequently, the 
presence of CFH or MCP mutations in the donor is not-
per se- a contraindication for donation[58].

Rationale for genetic screening: The current progress 
in understanding the underlying genetic background of 
aHUS and its molecular basis makes it paramount to 

provide a full detailed genetic map before transplant, 
and the following explanations have been given: (1) 
Determination of the actual cause of the disease that 
allows for correct genetic counseling; (2) Drawing 
the plan of disease management; (3) Evaluating the 
expected response for therapy; and (4) Defining the 
prognostic course as well as patient and allograft 
survival. These studies, however, did not hamper the 
progress in clinical diagnosis and therapy institution 
before irreversible sequalae have been established[113]. A 
schematic presentation for the “genetic drivers” of aHUS 
is supplied in Figure 3[58].

Interpretation of the genetic variants: Genetic 
mutations can be interpreted as: (1) Benign; (2) 
Likely benign; (3) Variant of uncertain significance; (4) 
Likely pathogenic; or (5) Pathogenic, according to the 
international guidelines[114]. 

The pathogenic mutations in aHUS have the ability to 
hamper the capacity to protect the endothelial lining and 
the platelet from the devastating effect of complement 
or its activation[78,115-121]. It is well-documented now that 
pathogenic variant combinations as well as clustering 
of risk factors facilitate the evolution of aHUS[49,88,122-125]. 
Genetic designation also has its impact on therapeutic 
plans, response to therapy as well as the chance for 
aHUS recurrence[79,126] (Table 4).

Acquired drivers of aHUS: The FH autoantibodies are 
the best reported example. It is typically characterized 
by homozygosity for delCFHR3-CFHR1. Test results need 
to be confirmed after two weeks if the initial results 
were positive. According to the consensus guidelines 
in pediatrics, CFH autoantibodies assessment should 
be confirmed, if positive, on a regular basis[84]. About a 
quarter of patients with anti-CFH-associated HUS are 
vulnerable for relapse.

Diagnosis of aHUS recurrence: A full detailed clinical 
history is usually warranted. A proven tissue diagnosis 

Complement test aHUS

Complement protein levels C3, C4, FB1, C51

Complement regulatory protein levels FH, FI, Properdin1, CD462

Complement split products C3c1, C3d1, Bb1, sC5b-91

Complement functional assays CH50, AH50, hemolytic assays, FH assays1

Autoantibodies Anti-FH
Genetic screening CFH, CFI, C3, CD46, CFB

Genomic rearrangements across the FH-FHR locus (e.g., by MLPA)
Sequencing of coding regions and assessment of CNV

Non-complement genetic screening includes THBD and DGKE

Table 3  Complement studies for atypical hemolytic uremic syndrome (aHUS)

1Currently available only at specific laboratories; they are research and not clinically validated assays; 2CD46 is also known as MCP. Adapted from: 
Goodship et al[58]. AH50: Alternative pathway hemolytic assay; C3: Complement component 3; C4: Complement component 4; C5: Complement component 
5; CFB: Complement factor B gene; CFH: Complement factor H gene; CFHR: Complement factor H related genes; CFI: Complement factor I gene; CH50: 
Classical pathway hemolytic assay; CNV: Copy number variation; DGKE gene: Diacylglycerol kinase epsilon gene; FB: Complement factor B; FH: 
Complement factor H; FI: Complement factor I; MLPA: Multiplex ligation-dependent probe amplification; sC5b-9: Soluble C5b-9; THBD: Thrombomodulin; 
aHUS: Atypical hemolytic uremic syndrome. 
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with light microscopy (LM), immunofluorescence (IF) 
and electron microscopy (EM) studies supporting 
the diagnosis of aHUS in the native kidney should 
be available. However, once diagnosis of aHUS is sus-
pected, a full battery of biochemical, genetic as well 
as pathological investigations of the AP should be 
accomplished[127], including the following: (1) Estimation 
of the anti-CFH AB; (2) MCP screening on the peripheral 
blood WBCs; (3) Examination of the recombination in 
CFHR region; and (4) Screening of the genetic mutations 
related to CFH, CFI, CFB, C3, and MCP.

The impact of various genetic mutations on allograft 
survival is not universally quantifiable. Not all of the 
genetic mutations share the same magnitude of risk 
on allograft survival. Despite the fact that genetic 
screening is difficult and complex and the spectrum of 
gene mutation is a continuously expanding field[102], 
performing such studies is fundamental to determining 
the possible outcome of the kidney transplant in the set 

of aHUS recurrence[128].

THERAPY OF POST-TRANSPLANT TMA
Treatment of de novo TMA
In view of the extreme heterogenicity of the mechanisms 
related to variable etiologies of TMA, therapeutic ma-
neuvers should be individualized for each patient. 
Institution of therapeutic options is highly dependent 
on diagnosis as well as the patient’s response. The 
following approaches have been suggested: (1) Immuno-
suppressive medication management: the role of im-
munosuppressive medications (e.g., CNI or mTORi) 
has been reported in the literature, with a documented 
better response after switching from one CNI member to 
another or to an mTORi)[5,129-134]. However, this was not 
agreed by Satoskar et al[6], who denied any difference 
in outcomes between temporary discontinuation, dose 
modulation, withdrawal or continuation of CyA in man-

Gene Risk of death or ESRD at 
onset or first yr

Risk of 
recurrence

Risk of death or ESRD 
after 3-5 yr

Risk of recurrence 
in allograft

CFH or CFH-CFHR1/3 hybrid genes 50%-70% 50% 75% 75%-90%
CFI 50% 10%-30% 50%-60% 45%-80%
MCP single 0%-6% 70%-90% 6%-38% < 20%
MCP combined1 30%-40% 50% 50% 50%-60%
C3 60% 50% 75% 40%-70%
CFB 50% 100% 75% 100%
THBD 50% 30% 54% ?
Anti-FH 30%-40% 40%-60% 35%-60% Depends on antibody titers

Table 4  Genotype-phenotype correlations in atypical hemolytic uremic syndrome (data refer to the period before introduction of 
eculizumab)

1Combined with CFH or CFI or C3 mutations. Adapted from: Goodship et al[58]. CFB: Complement factor B gene; CFH: Complement factor H gene; CFHR: 
Complement factor H-related genes; CFI: Complement factor I gene; FH: Factor H protein; THBD: Thrombomodulin gene. 

1) CFH C-terminal variants associated with normal FH expression levels 
2) Gene conversion events and genomic rearrangements between CFH & 
CFHR1 or CFHR3 resulting in FH-FHR & FHR-FH hybrid proteins 
3) C3 pathogenic variants (i.e. , p.R161W and p.I1157T) 
4) CFH- H3 and MCP ggaac aHUS risk haplotypes 
5) Absence of FHR-1 usually associated with homozygous deletion of the 
CFHR3- CFHR1 genes, which is a common CNV and is strongly associated 
with development of FH autoantibodies 

Genes associated only with aHUS

Genes associated with aHUS & C3G

aHUS prototypical genetic variants

Thrombomodulin (THBD)

Complement genes:  
Complement Factor H (CFH) 
Complement Factor H-related genes 1 to 5 (CFHR1-5) 
Membrane cofactor protein (MCP) 
Complement Factor I (CFI) 
Complement Factor B (CFB) 
Complement Component 3 (C3) 
Non-complement genes:  
• Diacylglycerol kinase-ε (DGKE) 

Figure 3  Genetic drivers in atypical hemolytic uremic syndrome (Adapted from: Goodship et al[58]). aHUS: Atypical hemolytic uremic syndrome; C3G: C3 
glomerulopathy; CNV: Copy number variation; SCR: Short consensus repeat.
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agement of de novo TMA. Whatever the situation would 
be, the withdrawal of the offending agent should be the 
first line in treating de novo TMA, a fundamental step 
that ultimately results in correction of the hematological 
profile[2]; (2) Plasmapheresis (PE) and intravenous 
immunoglobulins (IVIG): The following rationales have 
been addressed in favor of PE/IVIG therapy: Depending 
on its efficacy in treating patients with TTP[135,136], and 
previous choice as a first line therapy for aHUS (replaced 
now by eculizumab), PE with IVIG has been extrapolated 
to be used early in treating de novo TMA patients. In 
2003, Karthikeyan et al[43] reported a graft salvage rate 
with PE approaching 80%. Two benefits have been 
postulated for this type of therapy: Removal of the 
platelet aggregation factors, e.g., thromboxane A2 and 
the simultaneous replenishment of the deficient factors, 
e.g., PGI2-stimulating factor[43]. With the possibility of 
the presence of underlying complement dysregulation 
in patients undergoing kidney transplantation due to 
systemic TMA[7], in the same manner, it is reasonable 
to speculate that PE can be beneficial for two reasons: 
Removal of the abnormal mutant complement proteins 
and supplying normally functioning complement com-
ponents[7]. In AMR-associated TMA, an improved outcome 
has been reported, which was attributed to removal of 
the anti-HLA antibodies[6,137]. A 100% response has been 
reported to be associated with PE/IVIG therapy in five 
solid organ transplantation with systemic TMA with no 
evidence of relapse after withdrawal of the culprit agent 
(e.g., tacrolimus) in a recent study[2]; (3) Belatacept: A 
promising alternate option that allows withdrawal of the 
offending drug incriminated in TMA evolution. Belatacept 
is an immunosuppressive co-stimulatory blocker against 
CD80 and CD86 surface ligands and CD28 on T cells. 
The first case report in 2009 documented TMA resolution 
after belatacept therapy used for immunosuppression in 
post-transplantation TMA due to CNI-induced endothelial 
toxicity[138]. Two case series have followed, thereafter 
documenting fair graft outcome due to resolution of the 
CNI-induced TMA[139,140]. Of note, belatacept has nothing 
to do with the underlying endothelial derangement, its 
role is only to replace/displace the culprit drug[2]; and 
(4) Complement inhibition: Eculizumab, an anti-C5 
agent, blocks the lytic C5b-9 membrane attack complex 
generation. This recombinant monoclonal antibody 
addressed a breakthrough in the management of 
aHUS, as it was proven to be effective in treatment 
as well as in prevention of recurrent aHUS after renal 
transplantation[141]. A large percentage of patients 
with diagnosed TMA express complement activation, 
including those patients with unrecognized complement 
genes[2]. For example, Chua et al[41] reported C4d renal 
deposition in all histologically documented cases with 
post-transplantation TMA. These data delineate that 
complement overactivation can be considered as one 
of the final common pathways incriminated in TMA 
evolution[2]. Consequently, anti-complement therapy 
has been suggested to have a fundamental role in the 
management of de novo post-transplantation TMA. 

Efficacy of eculizumab has been documented in several 
case reports and case series in management of resistant 
cases of medication-associated TMA, including cases with 
unrecognized genetic defects[142-147]. This efficacy has 
been also documented in patients with refractory AMR 
with TMA[147-156]. 

On the other hand, Cornell et al[157] reported no 
difference in death-censored graft survival or biopsy 
finding at one year when they compared the outcome of 
eculizumab-treated patients with positive cross matching 
with controls, even though the incidence of acute AMR 
was less in the eculizumab group. So, in view of these 
conflicting results as well as considering the high cost of 
the drug, the use of this vital biological agent should be 
confined to a specified subset of de novo TMA patients, 
presumably: (1) AMR-associated TMA; (2) Patients who 
became PE-dependent; and (3) Refractory hemolysis 
persists despite maximum doses of PE therapy. However, 
more efforts are still warranted to declare the best way 
to utilize this unique agent and which subset of TMA 
patients are the best candidates for this costly drug. An 
urgent need for new biomarkers is also warranted for 
early detection of complement overactivity[2] (see kidney 
transplantation without eculizumab prophylaxis below).

Treatment of recurrent TMA
Recommendations for recurrent TMA: First of all, it is 
worthy to remember that most of the recommendations 
about recurrence and therapeutic advices relied primarily 
on case reports (level 4 evidence) as well as experts’ 
opinions (level 5 evidence) rather than on randomized 
controlled trials (level 1b evidence). (1) The minimal list 
of genetic screening should include: CFH, CFI, CFHR, 
CFB, MCP and C3[158]; (2) All patients with primary or 
suspected aHUS, should be surveyed for all complement 
components and its related proteins; (3) Patients with 
isolated MCP associated mutations (not combined with 
other mutations) may be safe for kidney donation; (4) 
Patients with documented aHUS and with lack of definite 
genetic mutations can proceed in renal transplantation 
under the umbrella of intensive plasma exchange the-
rapy[159]; and (5) Polygenic pattern for aHUS patients 
should be handled with extreme caution in case of living 
donation[80].

Prevention of aHUS: The following strategies are 
suggested to decrease/prevent aHUS: (1) Complement 
activity incited by an injury to endothelium, e.g., 
ischemia-reperfusion injury, viral infection and immuno-
suppressive medications[127], should be avoided; (2) 
Certain relations have been reported between CNI use 
and aHUS recurrence[160], which is not confirmed by other 
authors[15,112], even the usual substitute in such a case (an 
mTOR) is not innocent and can induce recurrence[15,112]; 
(3) We cannot depend solely on PE therapy in man-
agement of aHUS recurrence for several reasons: PE 
failed to prevent aHUS recurrence in many cases[161]; PE 
cannot guarantee prevention of aHUS recurrence after 
cessation of therapy; Many cases under PE therapy were 
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proved to develop “subclinical” aHUS recurrence, which 
means that PE therapy cannot influence complement 
activity; Prophylactic use of rituximab proved to be 
efficacious as anti-CFH-antibodies[162], the beneficial 
effect of rituximab can be enhanced by adding PE the-
rapy[163,164]; and (4) The anti-C5 monoclonal antibiotic 
eculizumab has been reported to be used successfully 
to prevent aHUS recurrence in patients with CFH, 
CFH/CFHR1 hybrid genes as well as with C3 gene mu-
tations[165-168] (see below).

Prophylactic complement blockade: Gene abnor-
malities have been reported to be associated with aHUS 
recurrence in 80% of patients[112]. In light of robust 
evidence of increased complement activity during aHUS 
episodes[169,170] after exposure to a trigger, e.g., surgery 
or infection, clinical indication of complement blockade is 
suggested[171]. However, this explanation lacks enough 
evidence (Figure 4[58]). 

Therapeutic protocols for aHUS recurrence: Once 
the diagnosis of primary aHUS has been established, 
complement blockade therapy should be instituted. 
The available data points to two strategies: (1) Minimal 
dosage to establish complement blockade; and (2) 

Dose withdrawal scheme[142]. Both options, however, 
lack enough evidence and require precise monitoring of 
complement blockade (Table 5).

FH autoantibody-driven aHUS: Anti-cellular therapy 
is recommended, with close monitoring of the antibody 
titer (Figure 5). How to monitor complement blockade? 
Detailed description is shown in Table 6.

Duration of therapy: There is not enough data sup-
porting life-long therapy for aHUS. Cessation of therapy 
appears to be plausible in certain situations (Figure 
6). Enough time, however, should be permitted to opti-
mize renal recovery and satisfy TMA resolution. Early 
biomarkers of disease relapse due to complement 
activation or endothelial derangement as well as their 
inciting triggers should be thoroughly investigated in the 
future.

Unanswered questions: There is paucity of information 
about this biological agent, e.g., what is the most optimal 
dose? What are the ideal dose-intervals? For how long 
should this kind of costly therapy be continued?[175] What 
impact does this agent have on the spectrum of renal 
transplantation[113]?

High risk (50-100%): Moderate risk: Low risk:

Previous early recurrence.
Pathogenic mutations1

Gain-of-function mutations

No mutation identified
Isolated CFI mutations
Insignificant complement gene mutation

Isolated MCP mutations
Persistently negative FH autoantibodies.

Prophylactic eculizumab2,3

Start on the day of 
transplantation due to potential 
for severe recurrence and limited 

Prophylactic eculizumab or 
plasma exchange4 No prophylaxis

Figure 4  Prophylaxis against atypical hemolytic uremic syndrome recurrence in allograft based on a risk-assessment strategy[96] (Adapted from: Goodship 
et al[58]). 1Requires complete screening of all genes implicated in atypical hemolytic uremic syndrome; 2Prophylactic regimens are based on local center protocols; no 
trial data exist to support superiority of one protocol over another; 3Liver transplantation can be considered for renal transplant recipients with liver-derived complement 
protein abnormalities, uncontrolled disease activity despite eculizumab therapy or financial considerations regarding cost of long-term eculizumab therapy; 4Decision 
to perform or not to perform prophylactic plasma exchange or complement inhibition is left to the discretion of the clinician. aHUS: Atypical hemolytic uremic syndrome; 
CFI: Complement factor I gene; FH: Complement factor H protein; MCP: Membrane cofactor protein gene.

Minimal dose 

   Desire to continue dosing with the minimal dose required to achieve a pre-identified level of complement blockade 1 
      Dose reduction or interval extension 
         Goal CH50 < 10% (recommended) 
         Goal AH50 < 10% (recommended) 
         Goal eculizumab trough > 100 μg/mL
Discontinuation
   Desire to discontinue complement blockade: No consensus exists regarding tapering of dose

Table 5  Eculizumab dosing in atypical hemolytic uremic syndrome based on dosing goal, one additional monitoring may be required 
during intercurrent events (e.g. , infection, surgery, vaccination) to detect unblocked complement activity

Adapted from: Goodship et al[58]. AH50: Alternative pathway hemolytic activity; CH50: Total complement activity.
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Description

CH50 (total complement activity) Measures the combined activity of all of the complement pathways
Tests the functional capability of serum complement components to lyse 50% of sheep erythrocytes in a 

reaction mixture
Low in congenital complement deficiency (C1-8) or during complement blockade

Normal range is assay dependent
Recommended goal during therapeutic complement blockade: < 10% of normal

AH50 (alternative pathway hemolytic activity) Measures combined activity of alternative and terminal complement pathways
Tests the functional capability of alternate or terminal pathway complement components to lyse 50% of 

rabbit erythrocytes in a Mg2+-EGTA buffer
Will be low in congenital C3, FI, FB, properdin, FH, and FD deficiencies or during terminal complement 

blockade
Normal range is assay dependent

Recommended goal during complement blockade: < 10% of normal
Eculizumab trough May be a free or bound level

ELISA: Using C5 coated plates, patient sera, and an anti-human IgG detection system
Not affected by complement deficiencies

Recommended trough level during complement blockade: 50-100 μg/mL
Alternative assays The following assays are under investigation (or awaiting to be replicated in different laboratories)[83] as 

a means to monitor therapeutic complement blockade
Free C5

In vitro human microvascular endothelial cell test 
sC5b -9 (also referred to as sMAC and TCC) may remain detectable in aHUS patients in remission and 

therefore is not recommended as a monitoring tool

Table 6  Monitoring eculizumab therapy

Adapted from: Goodship et al[58]. aHUS: Atypical hemolytic uremic syndrome; C3: Complement component 3; C5: Complement component 5; EGTA: 
Ethyleneglycol tetraacetic acid; ELISA: Enzyme-linked immunosorbent assay; FB: Complement factor B; FD: Complement factor D; FH: Complement factor 
H; FI: Complement factor I; sC5b-9: Soluble C5b-9; sMAC: Soluble membrane attack complex; TCC: Terminal complement complex. 

Clinical diagnosis 
of 

aHUS

High titer of FH 
autoantibodya 

EculizumabPlasma therapyb

Stimultaneous start of
anticellular therapyc

Continue plasma
therapy indefinitelyd

Simultaneous start of 
anticellular therapyc

Continue eculizumab
therapy indefinitelyd

Periodic monitoring of 
FH autoantibody 

levele

Periodic monitoring of 
FH autoantibody 

levele 

Discontinue therapy 
when antibody titer falls 
below a pathogenic titer 

for at least 6 mof 

Discontinue therapy 
when antibody titer falls 
below a pathogenic titer 

for at least 6 mof

Figure 5  Treatment of complement factor H autoantibody-mediated atypical hemolytic uremic syndrome. There are no prospective controlled studies in 
patients with atypical hemolytic uremic syndrome (aHUS) due to anti–factor H protein (FH) antibodies, and thus the proposed management is based on a pediatric 
consensus[84] (Adapted from: Goodship et al[58]). aAbnormal titer depends on the testing laboratory; bThe decision to use plasma therapy versus eculizumab will be 
based on patient age and local resource availability; cCyclophosphamide, rituximab, or mycophenolate mofetil; dThe decision to continue anticomplement therapy 
indefinitely is not informed by data; eThe interval may be monthly or quarterly and is based on local resources; fThis recommendation is based on limited retrospective 
case reviews[172-174].
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Cessation of therapy: The following scheme is sug-
gested for withdrawal of complement blockade therapy 
(Figure 6).

Kidney transplantation without eculizumab pro-
phylaxis: A case series presented by Verhave et al[179] 
described successful kidney transplantation without 
recurrence in four high risk aHUS patients. They 
received living donor kidney with therapeutic protocol 
consisted of: Basiliximab for induction, tacrolimus in low 
dose, and prednisone and mycophenolate mofetil as 
immunosuppressive in addition to a statin. Additional 
precautions include lowering the blood pressure and 
minimizing the cold ischemic time. No recurrence or 
rejection has been observed after 16-21 mo. This 
case series heralds the possibility of successful kidney 
transplantation in recurrent aHUS without the need 
for prophylactic eculizumab through minimizing cold 
ischemic time, decreasing the risk of rejection and, 
thereby, providing endothelial protection[179].

Treatment of DGKE mutation associated TMA: 
The role of complement blockade here is questionable. 

Many cases experienced disease remission with no 
specific therapy. Azukaitis[82] and colleagues reported the 
feasibility of kidney transplantation in five patients with 
no recurrence after transplantation.

RENAL TRANSPLANTATION
Timing
Renal transplantation should be postponed six months 
after institution of dialysis, as limited kidney recovery 
can occur several months after commencing eculizu-
mab therapy[170,180]. Disappearance of the extrarenal 
manifestations as well as resolution of TMA hemato-
logical parameters are the prerequisite for kidney 
transplantation. The magnitude of risk of recurrence can 
be utilized to guide the necessity of anti-complement 
blockade (Table 2).

Risk of kidney donation
Two risks have been reported to be associated with 
living-related kidney donation: (1) Recurrent disease 
in the recipient; and (2) De novo disease in the donor, 
if he/she is a genetic mutation carrier[169]. Any po-
tential donor proved to exhibit alternative pathway 
dysregulation should be excluded. On the other hand, 
any potential living-related donor devoid of complement 
gene abnormalities can be permitted[113]. “Liver trans-
plantation” may be reserved for patients with liver-
derived complement protein aberrations, particularly in 
patients poorly responding to complement blockade[181].

Future therapy
The following future therapeutic agents have been 
addressed: (1) Purified products of the deficient genes; 
and (2) C3 convertase inhibitors[182].

Research targets
The following agents are under investigation: (1) The 
anti-C3b blocker, compstatin analog Cp40[183]; and (2) 
The anti-C3 convertase monoclonal antibodies[184].

CONCLUSION
The impact of TMA, either de novo or recurrent, on 
allograft longevity is underestimated. The spectrum of 
the culprit genes implicated in the evolution of TMA is 
currently expanding. Despite the landmark breakthrough 
of immense efficacy of complement blockade therapy, 
the outlook of this devastating syndrome remains poor if 
the diagnosis is delayed. In contrast, the recurrent TMA 
is much more optimistic if there is timely intervention by 
complement blockade before permanent damage sets in. 
More efforts targeting genetic mutation management as 
well as the advent of early predictors of TMA recurrence 
are warranted for better disease control and, thereby, 
better patient and allograft outcome.
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