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Abstract
Subpopulation identification, usually via some form of unsupervised clustering,
is a fundamental step in the analysis of many single-cell RNA-seq data sets.
This has motivated the development and application of a broad range of
clustering methods, based on various underlying algorithms. Here, we provide
a systematic and extensible performance evaluation of 12 clustering
algorithms, including both methods developed explicitly for scRNA-seq data
and more general-purpose methods. The methods were evaluated using 9
publicly available scRNA-seq data sets as well as three simulations with
varying degree of cluster separability. The same feature selection approaches
were used for all methods, allowing us to focus on the investigation of the
performance of the clustering algorithms themselves. We evaluated the ability
of recovering known subpopulations, the stability and the run time of the
methods. Additionally, we investigated whether the performance could be
improved by generating consensus partitions from multiple individual clustering
methods. We found substantial differences in the performance, run time and
stability between the methods, with SC3 and Seurat showing the most
favorable results. Additionally, we found that consensus clustering typically did
not improve the performance compared to the best of the combined methods,
but that several of the top-performing methods already perform some type of
consensus clustering. The R scripts providing an extensible framework for the
evaluation of new methods and data sets are available on GitHub (

).https://github.com/markrobinsonuzh/scRNAseq_clustering_comparison
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Introduction
Recent advances in single-cell RNA-seq (scRNA-seq) technolo-
gies have enabled the simultaneous measurement of expression  
levels of thousands of genes across hundreds to thousands of  
individual cells1–8. This opens up new possibilities for deconvo-
lution of expression patterns seen in bulk samples, detection of  
previously unknown cell populations and deeper characterization 
of known ones. However, computational analyses are complicated 
by the high variability, low capture efficiency and high dropout  
rates of scRNA-seq assays9–11, as well as by strong batch effects that 
are often confounded by the experimental factor of interest12.

Given a collection of single cells, a common analysis task  
involves identification and characterization of subpopulations, 
e.g., cell types or cell states. With lower-dimensional single-cell  
assays such as flow cytometry, cell type detection is often  
done manually, by visual inspection of a series of two-dimensional 
scatter plots of marker pairs (“gating”) and subsequent identifi-
cation of clusters of cells with specific abundance patterns. With  
large numbers of markers, such strategies quickly become  
unfeasible, and they are also likely to miss previously unchar-
acterized cell populations. Instead, subpopulation detection in  
higher-dimensional single-cell experiments such as mass cytom-
etry (CyTOF) and scRNA-seq is often done automatically,  
via some form of clustering. As a consequence, a large number 
of clustering approaches specifically designed for or adapted to  
these types of assays are available in the literature.

While extensive evaluations of clustering methods have been  
performed for flow and mass cytometry data13,14, there are to 
date fewer such studies available for scRNA-seq. The latter is  
complicated by the large number of different data generation  
protocols available for scRNA-seq, which in turn has a big effect 
on the data characteristics. Menon15 specifically evaluated three 
methods (Seurat16, WGCNA17 and BackSPIN18), illustrat-
ing their different behavior in low and high read depth data. A  
recent preprint19 compared 11 clustering tools on scRNA-seq 
from the 10x Genomics platform, showing that different methods  
generally produced clusterings with little overlap. An overview 
of several different types of clustering algorithms for scRNA-seq  
data is given by Andrews and Hemberg20.

In this paper, we extend these initial studies to a broader range 
of data sets with different characteristics, and additionally  
consider simulated data with different degrees of cluster sepa-
rability. We evaluate 12 clustering algorithms, including both  
methods specifically developed for scRNA-seq data, methods 
developed for other types of single-cell data, and more general 
approaches, on a total of 12 different data sets. In order to focus 
on the performance of the clustering algorithms themselves, we 
use the same preprocessing approach (specifically cell and gene  
filtering) for all methods, and investigate the impact of the  
preprocessing separately. In addition to investigating how well 
the clustering methods are able to recover the true partition if 
the number of subpopulations is known, we evaluate whether  
they are able to correctly determine the number of clusters.  
Further, we study the stability and run time of the methods and 
investigate whether performance can be improved by generating  

a consensus partition based on results from multiple individual  
clustering methods, and the impact of the choice of methods to 
include in such an aggregation.

We observed large differences in the clustering results as well 
as in the run times of the different methods. SC3 and Seurat  
generally performed favorably, with Seurat being several orders 
of magnitude faster. In addition, Seurat typically achieved 
the best agreement with the true partition when the number of  
clusters were the same, while other methods, like FlowSOM, 
achieved a better agreement with the truth if the number of  
clusters was higher than the true number. Finally, we show that 
generally, combining two methods into an ensemble did not  
improve the performance compared to the best of the individual 
methods.

Given the high level of activity in methods research for pre-
processing, clustering and visualization of scRNA-seq data, it is  
expected that many new algorithms (or new flavors of existing  
ones) will be proposed. In order to facilitate re-assessment as new 
innovations emerge and to provide extensibility to new methods 
and data sets, we provide the complete code to run all analyses 
in this study (https://github.com/markrobinsonuzh/scRNAseq_
clustering_comparison). The current system uses a Makefile to  
run a set of R scripts for clustering, summarization and visu-
alization of the results. In addition, all filtered (and unfiltered) 
data sets used in this study are readily available from the links  
provided in the GitHub repository.

Methods
Real data sets
Three real scRNA-seq data sets were downloaded from  
conquer21 and used for our evaluations: GSE60749-GPL13112 
(here denoted Kumar22), SRP073808 (Koh23) and GSE52529-
GPL16791 (Trapnell24). Table 1 and Supplementary Figure 1 
give an overview of all data sets used in this study. For each of 
the data sets from conquer, the gene-level length-scaled TPM 
values (below referred to as “counts” since they are on the same  
scale as the raw read counts) and the phenotype were extracted  
from the MultiAssayExperiment25 object provided by conquer 
and used to create a SingleCellExperiment object. We also  
estimated transcript compatibility counts (TCCs) for each of 
these data set using kallisto26,27 v0.44, and used these 
as an alternative to the gene-level count matrix as input to the  
clustering algorithms.

The selected cell phenotype was used to define the “true”  
partition of cells when evaluating the clustering methods. 
For the Kumar data set, we grouped the cells by the genetic  
perturbation and the medium in which they were grown. For 
the Trapnell data set we used the time point (after the switch of  
growth medium) at which the cells were captured, and for 
the Koh data set we used the cell type annotated by the data  
collectors (obtained through FACS sorting). We note that the 
definition of the ground truth constitutes an intrinsic difficulty 
in the evaluation of clustering methods, since it is plausible that  
there are several different, but still biologically interpretable, 
ways of partitioning cells in a given data set, several of which can  
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Table 1. Overview of the data sets used in the study.

Data set Sequencing 
protocol

# 
cells

# 
features

Median total 
counts per 
cell

Median # 
features 
per cell 

# subpopulations Description Ref.

Koh SMARTer 531 48,981 1,390,268 14,277 9
FACS purified H7 human 
embryonic stem cells in 
different differention stages

23

KohTCC SMARTer 531 811,938 1,391,012 66,086 9
FACS purified H7 human 
embryonic stem cells in 
different differention stages

23

Kumar SMARTer 246 45,159 1,687,810 26,146 3
Mouse embryonic stem 
cells, cultured with different 
inhibition factors

22

KumarTCC SMARTer 263 803,405 717,438 63,566 3
Mouse embryonic stem 
cells, cultured with different 
inhibition factors

22

SimKumar4easy - 500 43,606 1,769,155 29,979 4
Simulation using different 
proportions of differentially 
expressed genes

28

SimKumar4hard - 499 43,638 1,766,843 30,094 4
Simulation using different 
proportions of differentially 
expressed genes

28

SimKumar8hard - 499 43,601 1,769,174 30,068 8
Simulation using different 
proportions of differentially 
expressed genes

28

Trapnell SMARTer 222 41,111 1,925,259 13,809 3

Human skeletal muscle 
myoblast cells, differention 
induced by low-serum 
medium

24

TrapnellTCC SMARTer 227 684,953 1,819,294 66,864 3

Human skeletal muscle 
myoblast cells, differention 
induced by low-serum 
medium

24

Zhengmix4eq 10xGenomics 
GemCode 3,994 15,568 1,215 487 4

Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Zhengmix4uneq 10xGenomics 
GemCode 6,498 16,443 1,145 485 4

Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Zhengmix8eq 10xGenomics 
GemCode 3,994 15,716 1,298 523 8

Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

represent equally strong signals. By using ground truths that 
are defined independently of the scRNA-seq assay, we avoid  
artificial inflation of the signal that could result if the truth was 
derived from the scRNA-seq data itself.

In addition to the data sets from conquer, we obtained UMI  
counts from the Zheng data set5, generated by the 10x Genomics 
GemCode protocol, from https://support.10xgenomics.com/sin-
gle-cell-gene-expression/datasets. We downloaded counts for 
eight pre-sorted cell types (B-cells, naive cytotoxic T-cells, CD14  
monocytes, regulatory T-cells, CD56 NK cells, memory T-cells, 
CD4 T-helper cells and naive T-cells) and combined them into 
three data sets. For the data set denoted Zhengmix4eq, we com-
bined randomly selected B-cells, CD14 monocytes, naive cytotoxic  
T-cells and regulatory T-cells in equal proportions (1,000 cells per 

subpopulation). For the Zhengmix4uneq data set, we combined 
the same four cell types, but in unequal proportions (1,000 B-cells,  
500 naive cytotoxic T-cells, 2,000 CD14 monocytes and 3,000 
regulatory T-cells). For the Zhengmix8eq data set, we combined 
cells from all eight populations, in approximately equal propor-
tions (400–600 cells per population). For these data sets, we  
used the annotated cell type (obtained by pre-sorting of the  
cells) as the true cell label.

Simulated data sets
Using one subpopulation of the Kumar data set as input, we 
simulated scRNA-seq data with known group structure, using 
the splatter package28 v1.2.0. We generated three data sets, 
each consisting of 500 cells, with varying degree of cluster  
separability. For the SimKumar4easy data set, we generated 4  
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subpopulations with relative abundances 0.1, 0.15, 0.5 and  
0.25, and probabilities of differential expression set to 0.05, 
0.1, 0.2 and 0.4 for the four subpopulations, respectively. The 
SimKumar4hard data set consists of 4 subpopulations with  
relative abundances 0.2, 0.15, 0.4 and 0.25, and probabilities 
of differential expression 0.01, 0.05, 0.05 and 0.08. Finally, the  
SimKumar8hard data set consists of 8 subpopulations with  
relative abundances 0.13, 0.07, 0.1, 0.05, 0.4, 0.1, 0.1 and 0.05, 
and probabilites of differential expression equal to 0.03, 0.03, 
0.03, 0.05, 0.05, 0.07, 0.08 and 0.1, respectively. The GitHub 
repository (https://github.com/markrobinsonuzh/scRNAseq_
clustering_comparison) contains a link to a countsimQC  
report29, comparing the main characteristics of the simulated data 
sets to those of the underlying Kumar data set.

Data processing
The scater package30 v1.6.3 was used to perform quality  
control of the data sets. Features with zero counts across all cells, 
as well as all cells with total count or total number of detected  
features more than 3 median absolute deviations (MADs) below 
the median across all cells (on the log scale), were excluded.  
Depending on the availability of manual annotation, we  
filtered out cells that were classified as doublets or debris. The  
scater package was also used to normalize the count values, 
based on normalization factors calculated by the deconvolu-
tion method from the scran package31 v1.6.2, and to perform  
dimension reduction using PCA32 and t-SNE33. Either the raw 
feature counts or the log-transformed normalized counts were  
used as input to the clustering algorithms.

Gene filtering
We evaluated three methods for reducing the number of genes 
provided as input to the clustering methods. For each filtering  
method, we retained 10% of the original number of genes (with 
a non-zero count in at least one cell) in the respective data sets.  
First, we retained only the genes with the highest average  
expression (log-normalized count) value across all cells 
(denoted Expr below). Second, we used Seurat16 to estimate 
the variability of the features and retained only the most highly  
variable ones (HVG). Finally, we used M3Drop34 to model the 
dropout rate of the genes as a function of the mean expression  
level using the Michaelis-Menten equation (M3Drop). The  
gene-wise Michaelis-Menten constants are computed and log- 
transformed, and the genes are then ranked by their p-value  
from a Z-test comparing the gene-wise constants to a global  
constant obtained by combining all the genes. After filtering, 
we used scran to renormalize each data set, excluding cells 
with negative size factors. Supplementary Figure 2 shows the  
overlap between the retained genes with the different filtering  
methods, for each of the 12 data sets, and Supplementary  
Table 1 provides the number of cells retained after each type of 
filtering.

Clustering methods
Twelve clustering methods were evaluated in this study (see  
Table 2 for an overview). We included general-purpose clus-
tering methods, such as hierarchical clustering and K-means,  
as well as methods developed specifically for scRNA-seq data,  
such as Seurat and SC3.

Table 2. Clustering methods.

Method Description Reference

ascend (v0.5.0) PCA dimension reduction (dim=30) and iterative hierarchical clustering 35

CIDR (v0.1.5) PCA dimension reduction based on zero-imputed similarities, followed by hierarchical clustering 36

FlowSOM (v1.12.0) PCA dimension reduction (dim=50) followed by self-organizing maps (5x5, 8x8 or 15x15 grid, 
depending on the number of cells in the data set) and hierarchical consensus meta-clustering to 
merge clusters

37

PCAHC PCA dimension reduction (dim=30) and hierarchical clustering with Ward.D2 linkage 32,38

PCAKmeans PCA dimension reduction (dim=30) and K-means clustering with 25 random starts 32,39

pcaReduce (v1.0) PCA dimension reduction (dim=30) and k-means clustering through an iterative process. 
Stepwise merging of clusters by joint probabilities and reducing the number of dimensions by PC 
with lowest variance. Repeated 100 times followed consensus clustering using the clue package

40

RtsneKmeans t-SNE dimension reduction (initial PCA dim=50, t-SNE dim=3, perplexity=30) and K-means 
clustering with 25 random starts

33,39,41

SAFE (v2.1.0) Ensemble clustering using SC3, CIDR, Seurat and t-SNE + Kmeans 42

SC3 (v1.8.0) PCA dimension reduction or Laplacian graph. K-means clustering on different dimensions. 
Hierarchical clustering on consensus matrix obtained by K-means

43

SC3svm (v1.8.0) Using SC3 to derive the clusters for half of the cells, then using a support vector machine (SVM) 
to classify the rest

43,44

Seurat (v2.3.1) Dimension reduction by PCA (dim=30) followed by nearest neighbor graph clustering 16

TSCAN (v1.18.0) PCA dimension reduction followed by model-based clustering 45
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All methods except Seurat allow explicit specification of 
the desired number of clusters (k). Seurat instead requires a  
resolution parameter, which indirectly controls the number of 
clusters. For each data set, we ran each method with a range of k  
values (from 2 to either 10 or 15, depending on the true number 
of subpopulations in the data set). We ran Seurat with a range 
of resolution parameter values, approximately corresponding 
to the range of k values evaluated for the other methods. A  
subset of the methods provide an estimate of the true number of  
clusters; we record this estimate for comparison with the true 
number of subpopulations. For each choice of k (or resolution), 
we ran each method five times, allowing us to investigate the  
intrinsic stability of the obtained partitions. Note that the data 
is the same for all five instances, and thus only the stochasticity 
of the clustering method affects our stability evaluation. All 
parameter values except for the number of clusters were set to  
reasonable values following the authors’ recommendations 
or the respective manuals (Table 2). Gene and cell filtering 
within the clustering methods were disabled whenever possible, 
since these steps were performed in a uniform way during the  
preprocessing and gene selection steps.

Evaluation criteria
In order to evaluate how well the inferred clusters recovered the 
true subpopulations, we used the Hubert-Arabie Adjusted Rand  
Index (ARI) for comparing two partitions46. The metric is  
adjusted for chance, such that independent clusterings have 
an expected index of zero and identical partitions have an ARI 
equal to 1, and was calculated using the implementation in the  
mclust R package v5.4. We also used the ARI to evaluate the 
stability of the clusters, by comparing the partitions from each 
pair of the five independent runs for each method with a given  
number of clusters.

We used a normalized Shannon entropy47 to evaluate whether 
the methods preferentially partitioned the cells into clusters of  
equal size, or whether they preferred one large and many small 
clusters. Given proportions p

1
, …, p

N
 of cells assigned to each of  

N clusters, the normalized Shannon entropy is defined by

		     
2

1 2

.
=

= −∑
N

i
i

imax

H log pp
H log N 	                  

(1)

Since the true degree of equality of the cluster sizes varies  
between data sets, we subtracted the normalized entropy  
calculated from the true partition to obtain the final performance 
index.

To evaluate the similarities between the partitions obtained by 
different methods, we first calculated a consensus partition from 
the five independent runs for each method, using the clue  
R package48 v0.3-55. Next, for each data set and each imposed 
number of clusters, we calculated the ARI between the parti-
tions for each pair of methods, and used hierarchical clustering 
based on the median of these ARI values across all data sets to  
generate a dendrogram representing the similarity among the 
clusters obtained by different methods. To investigate how rep-
resentative this dendrogram is, we also clustered the methods 

based on each data set separately, and calculated the fraction 
of such dendrograms in which each subcluster in the overall  
dendrogram appeared.

Finally, we investigated whether clustering performance was 
improved by combining two methods into an ensemble. For 
each data set, and with the true number of clusters imposed, we  
calculated a consensus partition for each pair of methods using 
the clue R package, and used the ARI to evaluate the agree-
ment with the true cell labels. We then compared the ensemble  
performance to the performances of the two individual methods 
used to construct the ensemble.

Results
Large differences in performance across data sets and 
methods
The 12 methods were tested on real data sets as well as simula-
tions with a varying degree of complexity (Table 1) and across a 
range of the number of subpopulations. Focusing on the agree-
ment between the true partitions and the clusterings obtained 
by imposing the true number of clusters showed a large differ-
ence between data sets as well as between methods (Figure 1; a  
summary across different numbers of clusters can be found in  
Supplementary Figure 3).

As expected, excellent performances were achieved for the  
well-separated data sets with a strong difference between the  
groups of cells (Kumar, KumarTCC and SimKumar4easy). 
When filtering by expression or variability, close to all  
methods achieved a correct partitioning of the cells in these data 
sets, while the M3Drop filtering led to poorer performance for 
the simulated data set. On the other hand, all methods failed to  
recover the partition of the cells by time point in the Trapnell 
data sets, where the ARIs were consistently below 0.5. This  
indicates that there are other, stronger, signals in this data set  
that dominate the clustering.

We note that the M3Drop filtering consistently led to worse  
performance for the simulated data sets, while the performance 
was more similar to the other filterings for the real data sets, 
which may indicate that the simulated dropout pattern is not  
consistent with the one being modeled by the M3Drop package. 
Due to negative size factor estimates, a larger number of cells 
had to be excluded in the Zhengmix data sets after the M3Drop  
filtering compared to the expression or HVG filtering  
(Supplementary Table 1). At most just over 20% of the cells in 
the expression and HVG filtering and up to approximately 40% 
of the cells for the M3Drop filtering were excluded, making a  
direct comparison between the filterings difficult. Furthermore, 
the genes retained in the M3Drop and expression filterings  
showed a low degree of overlap in many of the data sets  
(Supplementary Figure 2). Overall, only small differences were  
seen between the results for the data sets containing gene abun-
dances and those containing transcript compatibility counts  
(TCCs).

While none of the methods consistently outperformed the others 
over the full range of the imposed numbers of clusters in all 
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Figure 1. Median ARI scores, representing the agreement between the true partition and the one obtained by each method, when the 
number of clusters is fixed to the true number. Each row corresponds to a different data set, each panel to a different gene filtering method, 
and each column to a different clustering method. The methods and the data sets are ordered by their mean ARI across the filterings and data 
sets. Some methods failed to return a clustering with the correct number of clusters for certain data sets (indicated by white squares).

data sets, SC3 and Seurat often showed the best performance.  
These methods were also the only ones that achieved a good  
separation of the cell types in the droplet-based Zhengmix 
data sets, which have a much higher degree of sparsity and a  
larger number of cells than the other data sets. This is consistent 
with a previous study15 showing that Seurat performed bet-
ter than other types of algorithms on data with low read depth. 
Generally, the performance of Seurat was also not strongly 
affected by the gene filtering approach (except for the simulated 
data sets), while other methods, like SAFE, were more sensi-
tive to the choice of input genes for some data sets. FlowSOM 
showed a poor performance for the true number of clusters (see  
Supplementary Figure 4 for an illustration, together with a  
selection of other data set/method combinations with poor ARI 
values). However, if the number of clusters was increased, the 
performance of FlowSOM improved considerably, and if the 
methods instead were compared at the number of clusters that 
gave the optimal performance for each method, FlowSOM 
showed a moderate performance (Supplementary Figure 5).  
RtsneKmeans, a general-purpose method, showed a higher  
average performance across the data sets and filterings than many 
of the clustering algorithms specifically developed for scRNA-
seq data. Compared to SC3 and Seurat, RtsneKmeans 
showed poorer performance for the SimKumar8hard and 
Zhengmix4uneq data sets. The subpopulations in these data 
sets are nested in the t-SNE space, explaining the difficulty in  
clustering for the K-means algorithm (Supplementary Figure 1).

We also investigated whether the number of detected features per 
cell differed between the clusters, using a Kruskal-Wallis test49. 
No strong association was found for the simulated data sets 
(Supplementary Figure 6), indicating that there is low inherent 

bias in the clustering algorithms. For most of the real data 
sets we found highly significant differences in the number of 
detected features between cells in different clusters. However,  
it is unclear whether this represents a technical effect or a  
biological difference between the cell populations.

Run times vary widely between methods
We measured the elapsed time for each run, using a single core 
and excluding the time to estimate the number of clusters if 
this was done via a separate function. Since the run times are 
strongly dependent on the number of features and cells in a data 
set, we represent them as normalized run times, by dividing 
with the time required for RtsneKmeans for the same 
data set (Figure 2A). Seurat was the fastest method, while  
pcaReduce, SAFE and SC3 were the slowest, sometimes by 
a large margin. Clustering only half of the cells with SC3 and  
predicting the class of the others with a Support Vector Machine 
(SC3svm) gave slightly shorter run times than applying the SC3 
clustering to all cells. The method could potentially be acceler-
ated by using a lower proportion of cells as a training subset. A 
detailed overview of the run time and the dependence on the 
number of clusters is given in Supplementary Figures 7 and 8.  
Apart from SC3 and SC3svm, the imposed number of clusters  
did not affect the run time.

Plotting the run time versus the Adjusted Rand Index for a  
subset of the data sets (excluding the ones with the strongest  
signal, where all methods found the correct clusters, and the 
TCC data sets) (Figure 2B) further illustrated the variability 
between the methods. Interestingly, Seurat was generally the 
fastest method, especially for the droplet-based data sets, but at  
the same time provided among the best partitionings of the data.

filteredExpr10 filteredHVG10 filteredM3Drop10
F

lo
w

S
O

M

C
ID

R

T
S

C
A

N

as
ce

nd

P
C

A
K

m
ea

ns

P
C

A
H

C

S
A

F
E

pc
aR

ed
uc

e

R
ts

ne
K

m
ea

ns

S
C

3s
vm

S
eu

ra
t

S
C

3

F
lo

w
S

O
M

C
ID

R

T
S

C
A

N

as
ce

nd

P
C

A
K

m
ea

ns

P
C

A
H

C

S
A

F
E

pc
aR

ed
uc

e

R
ts

ne
K

m
ea

ns

S
C

3s
vm

S
eu

ra
t

S
C

3

F
lo

w
S

O
M

C
ID

R

T
S

C
A

N

as
ce

nd

P
C

A
K

m
ea

ns

P
C

A
H

C

S
A

F
E

pc
aR

ed
uc

e

R
ts

ne
K

m
ea

ns

S
C

3s
vm

S
eu

ra
t

S
C

3

Trapnell

TrapnellTCC

Zhengmix8eq

Zhengmix4eq

SimKumar8hard

Zhengmix4uneq

SimKumar4hard

Koh

SimKumar4easy

KohTCC

Kumar

KumarTCC

0.00

0.25

0.50

0.75

1.00
Median ARI

Page 7 of 21

F1000Research 2018, 7:1141 Last updated: 10 SEP 2018



High stability between clustering runs
Figure 1 illustrated the average performance of each method 
across the five runs on each data set, for the true number of 
clusters. By comparing the partitions obtained in the indi-
vidual runs, we could also obtain a measure of the stability of  
each method (Figure 3A).

CIDR, PCAHC, TSCAN, ascend and Seurat returned 
the same clusters in all five instances for all data sets, while 
the stability of the other methods depended on the data set. 
Again, the stability was lower for the simulated data sets after 
gene filtering by M3Drop (note that the same genes were  
used in all five runs), indicating that the selection of genes may  
be suboptimal.

A summary of the variability both within and between the  
different filterings is shown in Supplementary Figure 9. It is 
worth noting that comparing the performances between the  
different filtering approaches is difficult for two reasons: first, 
the variability of the clustering runs for a given filtering might 
exceed the variation between the filterings, and second, filtering 
with M3Drop led to the exclusion of a large number of cells in  
the Zhengmix data sets, and these cells can not be used for the 
comparison. For the stable methods CIDR, TSCAN, ascend 
and PCAHC, the type of filtering had a relatively large impact 
on the clustering solutions, and often filtering on the mean gene 
expression and the gene variability gave more similar clusters 
than filtering with M3Drop. The stochastic methods showed 
both a high variability between the individual runs for a given  
filtering and between runs with different filterings.

Qualitative differences between cluster characteristics 
By computing the Shannon entropy for the various parti-
tions, we obtained a measure of the equality of the sizes of the  

clusters (Figure 3B). Since the true degree of cluster size  
uniformity as well as the number of clusters are different between 
data sets, we compared the normalized Shannon entropy of the 
clusterings to that of the true partitions. Thus, a positive value 
of this statistic indicates that a method tends to produce more  
equally sized clusters than the true ones, and a negative 
value instead indicates that the method tends to return more  
unequal cluster sizes, e.g., one large cluster and a few small 
ones. Most methods gave cluster sizes that were compat-
ible with the true sizes for most data sets (a statistic close to 0), 
while especially FlowSOM was more variable, and often tended  
to group the cells into one large cluster and a few very small 
ones (see Supplementary Figure 4 for an example). One  
consequence of this was that FlowSOM often showed higher 
ARI values for a larger number of clusters, while the perform-
ance of many of the other methods decreased with increasing k 
(Supplementary Figure 3). These methods tended to have 
more equally sized clusters for larger numbers of clusters than  
the true number, leading to a higher disagreement between the 
true classification and the clusterings (the entropy across the  
range of k is shown in Supplementary Figure 10).

The optimal number of clusters can differ from the ”true” 
one
Above, we investigated the performance and stability of the 
methods when the true number of clusters (the number of dif-
ferent labels in the partitioning considered as the ground truth) 
was imposed. Whether this number of clusters actually provided 
the highest ARI value (i.e., the best agreement with the ground 
truth) mainly depended on the difficulty of the clustering 
task (Figure 3C), and the choice of method. No method  
achieved the best performance at the annotated number of 
clusters in all the data sets, although generally, the methods 
reached their maximum performance at or near the annotated 

Figure 2. (A) Normalized run times, using RtsneKmeans as the reference method, across all data set instances and number of clusters.  
(B) Run time versus performance (ARI) for a subset of data sets and filterings, for the true number of clusters.
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number of clusters. The notable exception was FlowSOM,  
which required a relatively large number of clusters to reach its 
maximal performance.

SC3, CIDR, ascend, SAFE and TSCAN all have built-in 
functionality for estimating the optimal number of clusters. In 
most cases, the estimated number was close to the true one; 
however, ascend and CIDR had a tendency to underestimate 
the number of clusters, while SC3 and TSCAN instead tended 
to overestimate the number (Supplementary Figure 11). The 
tendency of SC3 to overestimate the cluster number is consist-
ent with a previous publication15. The agreement with the true  
partition at the estimated number of clusters is shown in  
Supplementary Figure 12. SC3 is still the best-performing  
method in this situation.

Inconsistent degree of similarity between methods
The similarity between each pair of methods was quantified by 
means of the ARIs for each pair of consensus clusterings (across 
the five runs of each method for each data set and number of  
clusters). Figure 4 shows a dendrogram of the methods obtained 
by hierarchical clustering based on the average ARI values 
across all data sets for the true number of clusters. The num-
bers shown at the internal nodes indicate the stability of the sub-
clusters, that is, the fraction of the corresponding dendrograms 
from the individual data sets where a particular subcluster 
could be found. In general, the groupings of the methods shown  
in the dendrogram were unstable across data sets and number 
of clusters, indicated by the low stability fractions of all  
subclusters. This is consistent with previous studies show-
ing generally poor concordance that varied across data sets19,42. 

Figure 3. (A) Median stability (ARI across different runs on the same data set) for the methods, with the annotated number of clusters 
imposed. Some methods failed to return a clustering with the correct number of clusters for certain data sets (indicated by white squares). 
(B) The difference between the normalized entropy of the obtained clusterings and that of the true partitions, across all data sets and for 
the annotated number of clusters. (C) The difference between the number of clusters giving the maximal ARI and the annotated number of 
clusters, across all data sets.

filteredExpr10 filteredHVG10 filteredM3Drop10

F
lo

w
S

O
M

S
C

3s
vm

R
ts

ne
K

m
ea

ns

pc
aR

ed
uc

e

S
C

3

S
A

F
E

P
C

A
K

m
ea

ns

as
ce

nd

C
ID

R

P
C

A
H

C

S
eu

ra
t

T
S

C
A

N

F
lo

w
S

O
M

S
C

3s
vm

R
ts

ne
K

m
ea

ns

pc
aR

ed
uc

e

S
C

3

S
A

F
E

P
C

A
K

m
ea

ns

as
ce

nd

C
ID

R

P
C

A
H

C

S
eu

ra
t

T
S

C
A

N

F
lo

w
S

O
M

S
C

3s
vm

R
ts

ne
K

m
ea

ns

pc
aR

ed
uc

e

S
C

3

S
A

F
E

P
C

A
K

m
ea

ns

as
ce

nd

C
ID

R

P
C

A
H

C

S
eu

ra
t

T
S

C
A

N

SimKumar8hard

SimKumar4hard

Zhengmix8eq

Zhengmix4uneq

Trapnell

SimKumar4easy

TrapnellTCC

Zhengmix4eq

KohTCC

Koh

Kumar

KumarTCC

0.00

0.25

0.50

0.75

1.00

Median
stability
(ARI)

A

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●

●●●●●

●●●●●

●●●●●

●

●●●●●

●●●●●

●

●●●●●

●●
●
●

●
●
●

●

●●●●●

●●●●●

●●●●●

●

●●●●

●●●●●
●
●●●●
●●●●●

●●●

●

●●●●

●

●●●●●

●●●●●

●●
●

●
●

●●●●●

●●

●

●●

●●●●●●●

●●●●●

●●
●
●●●

●

●

●●●

●●●●●●●●●●●●

●●●●●

●●●●●

●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●●●●

●
●●

●

●

●●●●●

●
●

●●

●
●

●

●●●
●

●
●●
●

●●●●●
●

●

●

●

●

●
●●●●

●●●●●●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●●
●

●●●●●
●
●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

−0.6

−0.3

0.0

as
ce

nd

C
ID

R

F
lo

w
S

O
M

P
C

A
H

C

P
C

A
K

m
ea

ns

pc
aR

ed
uc

e

R
ts

ne
K

m
ea

ns

S
A

F
E

S
C

3

S
C

3s
vm

S
eu

ra
t

T
S

C
A

N

D
iff

er
en

ce
 in

 n
or

m
al

is
ed

 e
nt

ro
py

H

H
m

ax

 fo
r 

cl
us

te
rin

g 
an

d 
tr

ut
h

B

●

●

●

●●●●

●●

●●

●

●

●●

●●●●●●

●●

●

●●●

●●●

●●●

●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●

●●●●●●●●

●

●●●

●●●●●●●●●

●

●●●●●●

●●●●●

●●

●

●●

●●●●●●

●●●

●

●

●●●●●●●●●

●

●

●●●

●●●●●●●●

●

●●

●●●●●●●

●●

●

●

●

●●●

●●●●●

●●

●

●●

●●●●●●●●

●

●●●●●

●●●●

●

●●

●●●

●

●

●●●●●●●

●●

●

●

●

●●●●●●●

●●

●

●

●

●●●

●●●●●●●●

●●

●●

●●●●●●●●

●

●●●●●

●●●●

●●

●●

●●●●

●●

●●

●

●

●

●●●●●●●●

●

●●

●●●●●●●●●●●●

●

●●●●●●●●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●●

●●

●

●

●●

●

●●●●●

●●●

●

●

●

●

●

●

●●●●●●●

●●

●

●●

●●●●●●

●●

●

●

●

●●●

●●●●●

●●

●

●●

●●●

●●●●●●●

●

●

●●●

●●

●●

●

●●

●●

●●●●●●

●●

●

●●●●

●●●●●

●

●

●●

●

●●●●●●

●●

●

●●●●

●●●

●●●

●●

filteredExpr10 filteredHVG10 filteredM3Drop10

as
ce

nd
C

ID
R

F
lo

w
S

O
M

P
C

A
H

C
P

C
A

K
m

ea
ns

pc
aR

ed
uc

e
R

ts
ne

K
m

ea
ns

S
A

F
E

S
C

3
S

C
3s

vm
S

eu
ra

t
T

S
C

A
N

as
ce

nd
C

ID
R

F
lo

w
S

O
M

P
C

A
H

C
P

C
A

K
m

ea
ns

pc
aR

ed
uc

e
R

ts
ne

K
m

ea
ns

S
A

F
E

S
C

3
S

C
3s

vm
S

eu
ra

t
T

S
C

A
N

as
ce

nd
C

ID
R

F
lo

w
S

O
M

P
C

A
H

C
P

C
A

K
m

ea
ns

pc
aR

ed
uc

e
R

ts
ne

K
m

ea
ns

S
A

F
E

S
C

3
S

C
3s

vm
S

eu
ra

t
T

S
C

A
N

−4

0

4

D
iff

er
en

ce
 b

et
w

ee
n 

k 
gi

vi
ng

 m
ax

im
al

 A
R

I a
nd

 tr
ue

 k

C

Page 9 of 21

F1000Research 2018, 7:1141 Last updated: 10 SEP 2018



Even SC3 and SC3svm had surprisingly different cluster-
ings; in less than a third of the data sets, these two methods 
showed the most similar clusterings. In addition, no apparent  
association between the similarity of the clusterings and the  
type of input or the dimension reduction or underlying type of  
clustering algorithm was found.

Ensembles often don’t improve clustering performance
Next, we investigated whether we could improve the clustering 
performance by combining methods into an ensemble. For 
each pair of methods, we generated a consensus clustering and 
evaluated its agreement with the true partition using the ARI. In  
general, the performance of the ensemble was worse than the bet-
ter of the two combined methods, and better than the worse of 
the two methods (Figure 5A), suggesting that we would obtain a 
better performance by choosing a single good clustering method 
rather than combining multiple different ones. This is largely  
consistent with a recent study evaluating the combination of four 
methods (SC3, CIDR, Seurat, tSNE+Kmeans), where the 
ensemble performance was generally on par with the best indi-
vidual method42. It is still possible that an ensemble method 
could provide a general improvement over a given single 
method, since it is unlikely that the same method will be the 
best performing in all conceivable data sets. In fact, among the 
methods we evaluated, both SC3 and SAFE combine multiple  
individual methods to achieve the final clustering result. Studying  
individual combinations in more detail, we observed that  
combining SC3 or Seurat with almost any other method 
led to a worse performance than obtained by these methods 
alone (consistent with the observation that they were among 
the methods giving the best performance). On the other hand, 
methods like CIDR, FlowSOM and TSCAN could often be  
improved by combining them with another method (Figure 5B).

Discussion and conclusions
In this study, we have evaluated 12 clustering methods on both 
real and simulated scRNA-seq data. There were large differ-
ences in the ability of the methods to recover the annotated  
clusters, and performance was also strongly dependent on the 
degree of separation between the true classes. SC3 and Seurat, 
two clustering methods developed specifically for single-cell 
RNA-seq data, delivered the overall best performance, and were  
the only ones to properly recover the cell types in the droplet-
based data sets. There was, however, a large difference in the 
run time, with SC3 being several orders of magnitude slower 
than Seurat. Another difference between these two methods 
is that SC3 includes a method for estimating the number of 
clusters (which has a tendency towards overestimation), while  
Seurat will determine the number of clusters based on a  
resolution parameter set by the user.

The same preprocessing steps and fixed gene sets were used 
for all clustering methods. This enabled us to investigate the 
impact on the clustering algorithm itself, rather than entire pipe-
lines or workflows. The selection of the filtering approach 
had an impact on the majority of the methods and resulted in  
different clustering solutions. Specifically for the more difficult 
data sets there was a higher dissimilarity. However, this did not  
necessarily affect the performances of the methods.

The stability of clustering algorithms can be evaluated by  
generating perturbed subsamples of the data set and redoing the 
clusterings. These subsamples can be created in several ways, 
e.g., by random subsampling with or without replacement, 
by adding noise to the original data50 or by simulating techni-
cal replicates51. Freytag19 showed that SC3, Seurat, CIDR 
and TSCAN were stable under cell-wise perturbations. In our 

Figure 4. Clustering of the methods based on the average similarity of their partitions across data sets, for the true number of clusters. 
Numbers on internal nodes indicate the fraction of dendrograms from individual data sets where a particular subcluster was found.
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study, we evaluated the methods with respect to their sensitivity 
to random starts. Overall, the methods showed a high degree of  
stability across all data sets, except for the simulated data sets 
in combination with the M3Drop filtering, where the stochastic 
methods showed a decrease in stability. This may be due to a 
disagreement between the mean-dropout relationship in the 
simulated data and the one assumed by M3Drop, leading to  
a suboptimal gene selection.

The evaluated methods are based on a broad spectrum of 
approaches for dimensionality reduction and clustering. We note 
that the majority of the methods use PCA or PCoA for dimen-
sion reduction or Euclidean distances as the distance metric 
(ascend allows for other alternatives). Thus, no clear advice 
on the type of algorithm that is best suited for clustering single-
cell RNA-seq data can be made based on our results. In fact, the 
two best-performing methods, SC3 and Seurat, rely on very  
different underlying clustering algorithms.

We investigated the impact of changing the imposed number 
of clusters for the different methods, which revealed that a sub-
set of the methods, in particular FlowSOM, consistently showed 
a better agreement with the true subpopulations if the number 
of clusters was increased beyond the true number. The reason 
for this appears to be that FlowSOM tends to split off a few 
very small clusters. In addition to the number of clusters, 
most methods rely on other hyperparameters. In this study, we  
have fixed these to reasonable values. However, additional 

investigations into the effect of these hyperparameters on the  
results would be an interesting direction for future research.
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Figure 5. Comparison between individual methods and ensembles. (A) Difference between the ARI of each ensemble and the ARI of 
the best (left) and worst (right) of the two methods in the ensemble, across all data sets and for the true number of clusters. (B) Difference 
between the ARI of each ensemble and each of the components, across all data sets and for the true number of clusters. The histogram in 
row i, column j represents the differences between the ARIs of the ensemble of the methods in row i and column j and the ARI of the method 
in row i on its own.
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Overview

The authors present comprehensive benchmarking of clustering tools in R on real and simulated
single-cell RNA-seq datasets. Their work includes performance, stability and run time analysis.
Furthermore, they also investigate whether combining results from different methods increases
performance.

Major comments
 

Throughout the entire manuscript the authors should make it clear that only clustering tools
available in R were investigated. This is important, as there are quite a number of popular python
applications for clustering of single cell RNA-seq data available.
Like Jean Fan, I am concerned about the appropriateness of the Trapnell et al. dataset and the
Zheng et al. 10x datasets. Furthermore for the Zheng et al. dataset, I would like to know why the
authors did not use all 10 pre-sorted cell populations available? Furthermore, how did the authors
choose which cell populations to combine for their Zhengmix4 and Zhengmix8 datasets?

Minor comments
The authors show nicely that Seurat is not very strongly affected by gene filtering. Could this be a
result of its clustering approach being based on the 500 most variable genes?
On page 7 in the paragraph “Run Times vary widely between methods” the authors use Adjusted
Rand Index instead of its already introduced abbreviation 
Could the size of Figure 5 be increased?
Why did some methods get raw and some methods log-transformed normalized counts?
Consider changing Supplementary Figure 2 to a visual representation that represents size
differences between sets, like UpSetR plots.
On page 10 the authors say: ”In addition, no apparent association between the similarity of the
clusterings and the type of input or dimension reduction or underlying type of clustering algorithm
was found.” Could the authors explain in more detail how this analysis was performed.
On page 6, the authors speculate that there are stronger signals that dominate clustering in the
Trapnell et al dataset that are not time points. What could these be? Have the authors investigated
cell cycle?
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cell cycle?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

Author Response 31 Aug 2018
, University of Zurich, SwitzerlandCharlotte Soneson

Thank you for reviewing our manuscript and for your constructive comments. Below are
point-by-point responses to the individual comments.

Throughout the entire manuscript the authors should make it clear that only clustering tools
available in R were investigated. This is important, as there are quite a number of popular python
applications for clustering of single cell RNA-seq data available.

This has been clarified in the Abstract as well as in the Methods part of the text. Some of the most
widely used clustering methods implemented in Python (e.g., scanpy) implement the same or
similar clustering methods as those evaluated in this study, and could thus be considered to be
implicitly investigated. Also, the evaluation system we provide (via the code in the GitHub
repository and the associated data package) is not strictly limited to methods implemented in R;
other methods can be included e.g. using system() calls. 

Like Jean Fan, I am concerned about the appropriateness of the Trapnell et al. dataset and the
Zheng et al. 10x datasets. Furthermore for the Zheng et al. dataset, I would like to know why the
authors did not use all 10 pre-sorted cell populations available? Furthermore, how did the authors
choose which cell populations to combine for their Zhengmix4 and Zhengmix8 datasets?

We agree that the Trapnell data set was not generated with the purpose of finding cell types -

however, we still find it useful to illustrate the performance of the methods in a data set where the
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however, we still find it useful to illustrate the performance of the methods in a data set where the
“true clusters” (defined as the time point at which the cells where collected) do not represent the
main/strongest signal in the data (see e.g. the t-SNE plots in Supplementary Figure 1). We have
clarified this in the “Methods-Real data sets” section of the revised paper.

For the Zhengmix data sets, our aim was to generate data sets with a mix of well-separated (e.g.,
B-cells vs T-cells)  and similar cell types (e.g., different types of T-cells). In addition, we wanted to
investigate if the number of cell populations and/or the equality of the population sizes had an
impact on the performance. The included cell type combinations were selected to allow us to
address these questions; however, given the richness of this data set, there are certainly many
more possible combinations to explore. We have expanded the description in the “Methods-Real
data sets” section a bit to highlight these goals. 

The authors show nicely that Seurat is not very strongly affected by gene filtering. Could this be a
result of its clustering approach being based on the 500 most variable genes?

In all our investigations, we preselect the genes that are used as input for each clustering algorithm
using three different variable selection methods, and internal variable selection or filtering steps are
disabled. Specifically, for Seurat we perform the PCA using all the genes remaining after our
filtering, and the clustering is then performed in the principal component space. Thus, the stability
of Seurat should be affected in the same way as that of the other methods by the selection of
variables. 

On page 7 in the paragraph “Run Times vary widely between methods” the authors use Adjusted
Rand Index instead of its already introduced abbreviation

Thanks for noticing this, we now use the abbreviation also here.

Could the size of Figure 5 be increased?

We have increased the size of Figure 5B.

Why did some methods get raw and some methods log-transformed normalized counts?

The methods are based on different distributional assumptions and underlying models, affecting
the type of values that are most suitably used as input. We followed the recommendations of the
authors of the respective methods, and the type of input used for each method is summarized in
Figure 4.

Consider changing Supplementary Figure 2 to a visual representation that represents size
differences between sets, like UpSetR plots.

We have replaced the Venn diagrams in Supplementary Figure 2 with UpSet plots. 

On page 10 the authors say: ”In addition, no apparent association between the similarity of the
clusterings and the type of input or dimension reduction or underlying type of clustering algorithm
was found.” Could the authors explain in more detail how this analysis was performed.

This conclusion is drawn based on Figure 4, where no association between the clustering of

methods by cluster similarity and any of the method characteristics can be seen. This has been
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methods by cluster similarity and any of the method characteristics can be seen. This has been
clarified in the “Results-Inconsistent degree of similarity between methods” section of the revised
paper. 

On page 6, the authors speculate that there are stronger signals that dominate clustering in the
Trapnell et al dataset that are not time points. What could these be? Have the authors investigated
cell cycle?

We have not explicitly investigated the interpretation of the strongest signal in the Trapnell data set.
However, Supplementary Figure 1 suggests that the annotation that we used to define the “true”
clusters (the time at which the cells were collected) does not fully explain the grouping of the cells
in the t-SNE visualization (in particular, the T12 and T24 groups are intermingled). As noted above,
the main purpose of including this data set was to investigate the behaviour of the various methods

 in a data set where the clusters were less apparent.

 No competing interests were disclosed.Competing Interests:
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Overview

Duo et al compare multiple single-cell RNA-seq clustering approaches on real and simulated single-cell
RNA-seq datasets. 

Major comments

- Quite a number of single-cell RNA-seq datasets are available for benchmarking but only a few were
explored here. While an exhaustive interrogation of all single-cell RNA-seq datasets available is beyond
the scope of this paper, it would be worthwhile for the readers if the authors could comment briefly on the
appropriateness of the datasets used here in terms of their cell-type diversity or other factors that may
impact benchmarking. As the authors note, a method's performance is inherently tied to the degree to
which the tested subpopulations are truly  (or artificially) transcriptionally distinct. In particular, I am
concerned about the appropriateness of the Trapnell dataset, as it was originally intended for
pseutotime/trajectory inference and may not even contain discrete transcriptional subpopulations. The
poor performance as noted in Figure 1 for this dataset may simply arise from different methods cutting
along this continuous trajectory in different ways. Similarly, for the Zheng 10x datasets, since each
cell-type was sorted and sequenced separately, there is inevitably some degree of confounding of
cell-type specific effects with batch effects that could make clustering much easier. 

- As datasets get bigger, the scalability of each method will be an important consideration. The authors
provide a preliminary look into this via the different run time of each method in Figure 2, but how this run
time depends on the number of cells is unclear. Readers will be interested in whether some methods
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time depends on the number of cells is unclear. Readers will be interested in whether some methods
scale better than others. It is worth having an additional figure of run time as a function of number of cells
(via downsampling cells and then extrapolating to larger datasets) to fully capture the scalability of each
method. 

- With regard to the stability between cluster runs, some methods may internally set various random
seeds to ensure reproducibility. Please double check that the stability observed in Figure 3 is not simply
the result of which methods uses random seeds. If a method does use an (or likely multiple) internal
random seed, the seed must be changed to accurately assess stability. 

Minor comments

- There are quite a number of single-cell RNA-seq clustering approaches and the list keeps growing
(https://github.com/seandavi/awesome-single-cell). Only a fraction is represented in this comparison.
While an exhaustive comparison of all methods is beyond the scope of this paper, the authors should
comment briefly on how these particular 12 clustering algorithms were chosen.

- While nearly all methods assessed use dimensionality reduction as a first step, it is unclear why some
were allowed to reduce to 30 dimensions while others 50. It seems that particularly as datasets get larger
with presumably more cell-types captured in each datasets, we will likely want to increase the number of
PCs to fully capture the variation present in the data. While the authors have left the investigation into the
effects of the number of PCs to future research, they should briefly note the reason for the choice of PCs
used for each method.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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Author Response 31 Aug 2018
, University of Zurich, SwitzerlandCharlotte Soneson

Thank you for reviewing our manuscript and for your constructive comments. Below are
point-by-point responses to the individual comments.

Quite a number of single-cell RNA-seq datasets are available for benchmarking but only a few
were explored here. While an exhaustive interrogation of all single-cell RNA-seq datasets available
is beyond the scope of this paper, it would be worthwhile for the readers if the authors could
comment briefly on the appropriateness of the datasets used here in terms of their cell-type
diversity or other factors that may impact benchmarking. As the authors note, a method's
performance is inherently tied to the degree to which the tested subpopulations are truly  (or
artificially) transcriptionally distinct. In particular, I am concerned about the appropriateness of the
Trapnell dataset, as it was originally intended for pseutotime/trajectory inference and may not even
contain discrete transcriptional subpopulations. The poor performance as noted in Figure 1 for this
dataset may simply arise from different methods cutting along this continuous trajectory in different
ways. Similarly, for the Zheng 10x datasets, since each cell-type was sorted and sequenced
separately, there is inevitably some degree of confounding of cell-type specific effects with batch
effects that could make clustering much easier.

There is indeed a large (and increasing) number of public scRNA-seq data sets available,
generated with many different types of protocols. However, the main issue (especially with
droplet-based data sets) is that no independent annotation of the cells is available, which implies
that they are not suitable for unbiased benchmarking like we are doing here. Many public
droplet-based data sets do contain “cell type labels”, but these are typically inferred by clustering
the cells based on the scRNA-seq data itself, and thus any evaluation risks being biased in favor of
methods similar to the one used to derive the labels in the first place. This is the main reason
behind the selection of these data sets. We agree that the Trapnell data set was not generated with
the purpose of finding cell types - however, we still find it useful to illustrate the performance of the
methods in a data set where the “true clusters” (defined as the time point at which the cells where
collected) do not represent the main/strongest signal in the data (see e.g. the t-SNE plots in
Supplementary Figure 1). For the Zheng data set, it’s true that there could be confounding with
batch effects, and ambiguous cells may be excluded, which would also make clusters more
distinct. For our Zhengmix data sets, we therefore included both very different (e.g., B-cells and
T-cells) and more similar (e.g., different types of T-cells) cell types (Supplementary Figure 1). We
have expanded the discussion in the “Methods-Real data sets” section of the revised paper to
clarify these issues. 

As datasets get bigger, the scalability of each method will be an important consideration. The
authors provide a preliminary look into this via the different run time of each method in Figure 2, but
how this run time depends on the number of cells is unclear. Readers will be interested in whether
some methods scale better than others. It is worth having an additional figure of run time as a
function of number of cells (via downsampling cells and then extrapolating to larger datasets) to
fully capture the scalability of each method.

Thanks for pointing this out. We have included a plot illustrating the scalability, investigated by
downsampling of the largest data set, in Supplementary Figure 9. 

With regard to the stability between cluster runs, some methods may internally set various random

seeds to ensure reproducibility. Please double check that the stability observed in Figure 3 is not
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seeds to ensure reproducibility. Please double check that the stability observed in Figure 3 is not
simply the result of which methods uses random seeds. If a method does use an (or likely multiple)
internal random seed, the seed must be changed to accurately assess stability.

Two of the methods (TSCAN and monocle) set random seeds internally and do not allow these to
be changed by the user. Other methods (SC3, Seurat and RaceID2) set a random seed but let the
user specify it. For these methods, we explicitly set the random seed to different values in the five
runs. We have clarified this in the “Results-High stability between clustering runs” section of the
revised text. 

There are quite a number of single-cell RNA-seq clustering approaches and the list keeps growing
(https://github.com/seandavi/awesome-single-cell). Only a fraction is represented in this
comparison. While an exhaustive comparison of all methods is beyond the scope of this paper, the
authors should comment briefly on how these particular 12 clustering algorithms were chosen.

The methods were chosen to represent the most common types of algorithms used for clustering
of scRNA-seq data. We have tried to include the most widely used methods, but also to include
methods from tangential fields as well as more traditional clustering methods to serve as a
baseline. We have clarified this in the text.

While nearly all methods assessed use dimensionality reduction as a first step, it is unclear why
some were allowed to reduce to 30 dimensions while others 50. It seems that particularly as
datasets get larger with presumably more cell-types captured in each datasets, we will likely want
to increase the number of PCs to fully capture the variation present in the data. While the authors
have left the investigation into the effects of the number of PCs to future research, they should
briefly note the reason for the choice of PCs used for each method.

We extracted 50 principal components for the methods that performed an additional dimension
reduction (by t-SNE), and 30 principal components for methods where the clustering was done in
the principal component space. The only exception was FlowSOM; this was unintentional and has
been harmonized in the revised version to use the same number of PCs as the rest of the methods.

 No competing interests were disclosed.Competing Interests:
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