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Visceral fat mass as a novel risk factor
for predicting gestational diabetes
in obese pregnant women
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Abstract

Objective: To develop a model to predict gestational diabetes mellitus incorporating classical and a novel risk factor, visceral fat mass.

Methods: Three hundred two obese non-diabetic pregnant women underwent body composition analysis at booking by bioimpedance analysis. Of

this cohort, 72 (24%) developed gestational diabetes mellitus. Principal component analysis was initially performed to identify possible clustering of the

gestational diabetes mellitus and non-GDM groups. A machine learning algorithm was then applied to develop a GDM predictive model utilising

random forest and decision tree modelling.

Results: The predictive model was trained on 227 samples and validated using an independent testing subset of 75 samples where the model

achieved a validation prediction accuracy of 77.53%. According to the decision tree developed, visceral fat mass emerged as the most important

variable in determining the risk of gestational diabetes mellitus.

Conclusions: We present a model incorporating visceral fat mass, which is a novel risk factor in predicting gestational diabetes mellitus in obese

pregnant women.
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Introduction

The rising prevalence of gestational diabetes is concerning because of

the risk of pregnancy complications such as macrosomia, shoulder

dystocia, caesarean section and neonatal hypoglycaemia and also

because of the risk to the mother and offspring of diabetes and

cardiovascular disease in later life.1–3 Changes in the diagnostic cri-

teria for gestational diabetes mellitus (GDM), the obesity epidemic,

increasing maternal age and unhealthy lifestyles have all been impli-

cated in the increasing prevalence of GDM.4,5

Identifying women at greatest risk of GDM early in their preg-

nancy would allow lifestyle modification interventions and possibly

drug treatments to be implemented in order to reduce the risk of

complications.6 Metformin, for example, can be used to reduce the

risk of GDM in women with polycystic ovaries.7

Various strategies are adopted to detect overt or gestational dia-

betes in pregnancy depending on the local prevalence of diabetes.

Some centres in the UK have adopted the IADPSG strategy, which

recommends universal testing though our local policy was to continue

using WHO criteria.4 Our current policy of GDM screening is based

on selective screening of women at high risk of GDM based on

(i) maternal age, (ii) body mass index (BMI), (iii) history of polycystic

ovarian syndrome as defined by the Rotterdam criteria,8 (iv) family

history of diabetes, (v) previous GDM, (vi) ethnicity and

(vii) previous macrosomia. Selective screening using risk factors

above has low sensitivity (50–69%) and specificity (58–68%) and in

one study, 39% of women with GDM would have been missed if only

selective risk factor testing had been used.9 Better selection processes

for selective screening may reduce the need for oral glucose tolerance

testing in women at low risk with resulting savings in costs and in

burdensome diagnostic testing.

Obesity is a strong predictor for GDM with odds ratios compared

with normal weight women of about 3 for women with Class I obe-

sity10 and 5–8 for Class II and III obesity.11 Nevertheless, only 24%

of Class I obese12 or Class II and III obese13 women developed GDM

in the control arms of two recent prospective trials investigating the

possible beneficial effects of metformin in these women. Abdominal

obesity may be a better predictor both for GDM and future devel-

opment of diabetes outside pregnancy.10,14

In a prospective study of 302 obese pregnant women, we found

that central obesity as assessed by early pregnancy waist-hip ratio

(WHR) and visceral fat mass (VFM) measured by bioimpedance
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was an independent predictor of GDM in addition to classical risk

factors.15

The aim of this study was to develop a mathematical model to

accurately predict GDM in obese pregnant women in early pregnancy.

We used principal component analysis (PCA) initially but since the

PCA showed no clear clustering of the GDM and non-GDM groups,

machine learning using decision tree and random forests were used.

Patients and methods

The London–Surrey Borders Research Ethics committee advised us

that ethical approval is not required for the study as all women would

only undergo routine clinical investigations and management. No

study specific procedure is undertaken on any of the participants.

Details of the study methods have been previously published.15 In

brief, we enrolled 302 obese pregnant women with no established dia-

betes attending the weight management clinic at St Helier Hospital,

Carshalton, Surrey, UK in 2010–2011. The median age of these women

was 31 years (range 26–34 years), the median BMI was 38.2 kg/m2

(range 36.1–41.4 kg/m2) and the median VFM was 182.8 units (range

164.3–207.7 units). About 74.5% of the women were Caucasian. All

women underwent 75 g oral glucose tolerance test between 24 and 28

weeks of gestation. GDM was defined by the 1999 WHO criteria.16

Seventy-two of the 302 enrolled women (23.8%) subsequently devel-

oped GDM and were medically managed in the joint antenatal

obstetric and diabetes clinic by a standard protocol. All women

underwent body composition analysis at booking (median gestation

(weeks): 1514–17) by Direct Segmental Multi-Frequency Bioelectrical

Impedance Analysis Method (DSM-BIA Method) using an Inbody

720R machine. This method is based on the electric resistance differ-

ence between the fat and other components.17 The device measures

body mass index, WHR, lean body mass, total percentage body fat

(PBF) and visceral fat area. The InBody 720 has been validated and

correlates well with intraabdominal fat area assessed by CT scan18 and

DEXA.19 It has been also been shown to be safe in the second and

third trimesters of pregnancy and has also been validated against deu-

terium and hydro-densitometry techniques for body composition

analysis.20,21

Data mining and analysis

The dataset consisted of the following variables; maternal age,

weight, body mass index, percentage body fat, visceral fat mass,

lean body mass, history of polycystic ovarian syndrome, family his-

tory of diabetes, history of hypertension and previous macrosomia.

PCA was performed on this dataset. PCA is a multivariate analysis

for clustering input data according to their variance. PCA showed no

clear clustering of the GDM and non-GDM groups. We then applied

decision tree and random forests algorithms to the data after feeding

the computer programme with the training dataset to recognise the

presence or absence of gestational diabetes. This process is termed

supervised machine learning.22–24

A decision tree algorithm classifies data items by asking a series of

questions about the features associated with the items. Each question

is contained in a node, and every internal node points to one child

node for each positive answer to its question. There is a hierarchy in

the questioning, encoded as a tree. In its simplest form, yes-or-no

questions are asked, and each internal node has a ‘yes’ child and a

‘no’ child. An item is sorted into a class as it passes down from the

topmost node, the root, to a node without children, a leaf, depending

on the answers. The item is then assigned to the class that has been

associated with the leaf it reaches. If trained on high-quality data,

decision trees can make very accurate predictions.23

Random forest (RF) is an ensemble algorithm of decision trees

aggregated together. This method constructs multiple versions of the

training data by sampling with replacement (bootstrapping), and

combining the machine learning algorithms to make predictions.21

RF was implemented with 200 trees using the ‘randomForest’

function from the ‘randomForest’ package in R.25 The performance

of the developed model was validated using the Monte Carlo cross-

validation method.26 For K¼ 100, the samples from each dataset

were randomly distributed into training and testing datasets in 100

different splits. Then, the performance was calculated as an average

of the performance of the 100 models. Firstly, the input dataset

(n¼ 302) was randomly split over 100 iterations into a training data-

set, which contained 70% of the samples (n¼ 227), and a testing

dataset (n¼ 75) composed by the remaining samples. The training

dataset was then used to build the model while the testing dataset

was used to calculate the performance of such model. As the perfor-

mance is calculated as a mean of 100 individually trained and opti-

mised models, the outcome is less likely to suffer from optimistic

prediction accuracy and/or over-fitting.

Results

Mathematical modelling

The optimisation confusion matrix (Figure 1) indicates that the

model achieved 100% classification accuracy where all 227 training

samples were correctly classified. The model validation achieved an

initial prediction accuracy of 81.13%; where 61 out of 75 samples

were correctly predicted (Figure 1). Upon running a series of 200

iterations, while randomly reshuffling samples within the training

and testing subsets, the model stabilised after 20 iterations as shown

from the performance accumulative mean, achieving a mean perfor-

mance of 77.53%. However, 14 patients were wrongly classified.

Visceral fat mass emerged as the most important variable for

predicting GDM by the RF method as shown in Figures 2 and 3.

This was followed by BMI, weight, PBF and waist hip ratio. The less

important variables were family history of diabetes, hypertension,

previous big baby and history of polycystic ovarian syndrome. The

Figure 1. 0 represents no GDM and 1 represents GDM. The figure on the left hand side is the optimisation confusion matrix for
prediction of GDM. The model achieved 100% classification accuracy where all 227 training samples were correctly classified as GDM
or no GDM. The figure on the right hand side is the validation confusion matrix. The model predicted 61 out of 75 samples correctly
achieving an initial prediction accuracy of 81%.
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decision tree used a value of VFM< 210 as the first split in the deci-

sion tree.

Discussion

In this analysis, VFM emerged as the most important variable in

determining the risk of GDM, followed by BMI, weight, PBF and

WHR. Traditional predictors like previous GDM, history of polycys-

tic ovarian syndrome, family history of diabetes and previous big

baby were less important. These results add to the growing evidence

of the importance of central obesity and in particular, visceral fat

mass in the development of GDM.

The model correctly classified all 227 training samples and

achieved a mean validation performance of 77.53% thereby provid-

ing good prediction accuracy. However, even though 97% of the no

GDM were classified correctly, only one third of the GDM were

correctly classified. Since only 24% of patients developed GDM in

the original training dataset, there was an unbalanced distribution of

samples among both classes, resulting in a slight bias in the model

prediction towards the no GDM class. A larger training database

with consequently more positive GDM would be required for train-

ing the model better thereby improving the predictive performance of

the model.

To our knowledge, this is the first attempt to create a mathemat-

ical model to predict GDM incorporating VFM. Traditional predic-

tors based on maternal history are easy to measure and widely

applicable. The importance of central obesity and features of the

metabolic syndrome in the development of GDM has long been

recognised.24

A strong association between measures of abdominal obesity (waist

circumference, WHR and CT-assessed intra-abdominal fat area) and

the development of type 2 diabetes is also well established.14

Measuring VFM by bioimpedance is simple and can easily be done

in the clinical setting. In our experience, midwives very quickly learn

how to perform this measurement and the test takes less than 5 min.

We have previously reported that VFM but not PBF correlates with

fasting glucose and HbA1c particularly in women developing GDM.15

This finding emphasises the importance of metabolically active visceral

fat.

The clinical significance of this study is the potential for early and

personalised risk stratification for GDM allowing low-risk women to

avoid unnecessary diagnostic testing, repeated clinic visits and addi-

tional growth scans. Conversely, those at high risk can start lifestyle

interventions early to reduce the risk of complications.

The strength of this study is that we measured a range of clinically

relevant and novel predictors of GDM simultaneously rather than

one novel measure measured in isolation. As such, the model created

has greater validity. We also acknowledge limitations. The sample

size was relatively small and a larger dataset will be needed to further

train the model and improve its accuracy. In addition, our dataset

was predominantly Caucasian and hence we were unable to include

ethnicity in the model.

In summary, existing prognostic models for GDM lack a strong

predictive value and are not commonly used in routine clinical care

Figure 2. Ranking of variables in predicting GDM. Visceral fat area emerged as the most important input variable followed by BMI,
weight, percentage body fat (PBF) and waist hip ratio (WHR). Less important variables included family history of diabetes, hyper-
tension, previous big baby and history of polycystic ovarian syndrome.
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nor are they recommended by current clinical guidelines. The addi-

tion of VFM in early pregnancy in the predictive model helps dis-

criminate between high- and low-risk pregnancies but this need to be

confirmed in larger studies with diverse populations.
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