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Commentary

Current Status

Glucose monitoring in diabetes therapy has been revolution-
ized by the introduction of continuous glucose monitoring 
(CGM) sensors.1-4 Most of the CGM sensors currently on the 
market are minimally invasive systems that measure glucose 
concentrations in the subcutis by a needle electrochemical 
sensor, but other systems based on optical sensing technolo-
gies (including both implantable fluorescence sensors and 
noninvasive optical sensors) have also been proposed (see, 
eg, Lee et al5 and Chen et al6 for reviews of current and future 
trends in CGM sensor technologies).

The use of CGM sensors is very beneficial for glycemic 
control, particularly for reducing HbA1c and the frequency 
of hypoglycemic events,7-11 and is potentially cost effective 
in terms of the ratio between costs and quality-adjusted life-
years.12-15 Nevertheless, the distribution of CGM sensors has 
remained limited to a small segment of the population with 
diabetes, mainly type 1 diabetes (T1D) subjects.16 The most 
recent data from T1D Exchange17 suggest that only 17%-
25% of participants use CGM.18 The use of CGM is even less 
widespread among type 2 diabetes (T2D) subjects.19-21 A 
recent study conducted among T1D Exchange participants22 
reported that the most common barriers to CGM use were 
related to high device costs and lack of insurance cover-
age,23,24 followed by the hassle of wearing devices and the 

dislike of having devices on the body; the most common rea-
sons for stopping CGM use were cost, alarm fatigue, per-
ceived sensor inaccuracy, and dislike of wearing devices.

However, the CGM usability is rapidly improving because 
of increases in sensor accuracy,25-32 extension of the sensor wear 
time, and decreases in calibration requirements.33-37 Moreover, 
some CGM devices received regulatory approval for nonad-
junctive use; that is, the patient can make treatment decisions 
without using confirmatory self-monitoring of blood glucose 
(SMBG) measurements obtained by finger stick, except in cer-
tain situations (eg, rapidly changing glucose levels or CGM 
readings that do not match the patient symptoms).38-41 The non-
adjunctive indication together with the improved CGM usabil-
ity and increasing evidence for its clinical safety and efficacy 
has stimulated new policies for system reimbursement.12 For 
instance, Medicare recently announced criteria for Dexcom G5 
Mobile (Dexcom, San Diego, CA) reimbursement to T1D and 
T2D patients on intensive insulin therapy.42 These important 
achievements will likely contribute to expanding CGM use in 
the next years.
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The increasing availability of CGM sensors is also 
stimulating the development of several interesting applica-
tions, for example, programs for retrospective CGM data 
visualization,43 mobile apps integrating CGM data with 
other relevant information for diabetes management (eg, 
medications, food intake and exercise),44-46 decision sup-
port system prototypes providing physicians with person-
alized recommendations for therapy adjustment,47-49 and 
algorithms for automatic CGM-based regulation of basal 
insulin delivery.50 Other interesting projects underway 
include the development of algorithms for automatic opti-
mization of insulin dosing parameters,51-53 and advisory 
applications for smart insulin pens and artificial pancreas 
systems.54 Table 1 summarizes the current CGM-based 
applications.

The purpose of this commentary is not to exhaustively 
review current and developing CGM technologies and appli-
cations but rather to discuss how, in our opinion, the current 
trends in CGM technological development are expected to fur-
ther increase CGM utilization in the future, possibly targeting 
not only subjects with diabetes but also people with prediabe-
tes or even healthy individuals (Section Future Developments 
in CGM Technology to Target New Population and Markets ). 
We will also propose a perspective on how the integration of 
CGM data with other relevant patient/environment data could 
open the way for the development of applications for personal-
ized diabetes management and prevention within the context 
of building a learning health care system (Section Building a 
Digital Ecosystem of Diabetes and Health Data ).

Future Developments in CGM 
Technology to Target New Populations 
and Markets

Current research in CGM technology is expected to further 
expand the adoption of CGM beyond the T1D population. 
Indeed, some of the leading companies in CGM manufac-
turing are working on developing new products that were 
announced to be smaller, less expensive and factory cali-
brated to target not only people with T1D but also the much 
wider market of people with T2D. Reduced cost and factory 
calibration are two of the most innovative features of the 
Freestyle Libre Flash (Abbott Diabetes Care, Alameda, 
CA), launched by Abbott in 2014, although this system does 
not provide continuous glucose and trend data in real time 
but instead requires the patient to place the receiver close to 
the sensor for data visualization.55 The Freestyle Libre Flash 
costs approximately one-half to one-third of the price of 
other commercial CGM systems23 (this cost difference is 
market dependent) and is now being used by more than 
400,000 people across more than 40 countries.56 In 2015, 
Dexcom (San Diego, CA) and Verily Life Sciences 
(Mountain View, CA) announced a collaboration for devel-
oping next-generation CGM products designed to be minia-
turized, factory calibrated, inexpensive and less obtrusive 

than current systems.57 Similarly, in 2016, Medtronic and 
Qualcomm Life (San Diego, CA) announced a collaboration 
to jointly develop a future generation of CGM sensors for 
T2D; these sensors are supposed to be single use, as well as 
smaller, easier to use and more affordable than current sen-
sors.58 These systems could all become accessible not only 
to people with diabetes but also to subjects affected by pre-
diabetes or obesity, thus transitioning from reactive to pro-
active health care.

Other emerging companies, such as Glucovation (San 
Diego, CA)59 and Nemaura Medical (Loughborough, United 
Kingdom),60 are working on novel low-cost CGM products 
devised not only for the medical market but also for the con-
sumer market as tools to track health and well-being. Possible 
users for these applications are people in weight-loss pro-
grams or athletes, for whom a CGM system could be benefi-
cial for monitoring metabolism and making informed 
nutritional decisions, although evidence for the benefits of 
CGM use in healthy individuals has not yet been reported.

Building a Digital Ecosystem of 
Diabetes and Health Data

The availability of smartphone- and internet-connected CGM 
sensors,61,62 together with the extension of their use to a larger 
population, will allow the creation of large databases in which 
CGM data (Figure 1a) are integrated with several other data 
sources (Figure 1b). For example, CGM data can be merged 
with information provided by other medical devices for dia-
betes, for example, SMBG devices, insulin pumps and pens, 
and the variables collected by mobile apps for diabetes man-
agement,63-67 including information on medications, diet and 
exercise. The integration of other clinical data sources, such 
as clinical registries,17 electronic health records, prescription 
registries and biomarkers collected in laboratory tests, will 
provide important clinical contextualization for CGM data. 
The integration with clinical data would facilitate the design 
of new strategies for diabetes management, improving the 
engagement of patients with their clinical care data,68 and the 
investigation of clinical patterns in the development of diabe-
tes and its comorbidities and complications.69 Information 
gathered by quality of life and health surveys70-72 will further 
enrich the database, providing useful insights into psychoso-
cial and economic factors influencing the behavior (eg, diet 
and exercise habits) and, as a consequence, health (eg, diabe-
tes complications) of subjects.

CGM data can also be combined with measurements col-
lected by several other wearable sensors, such as currently 
available smartwatches, which can track heart rate, steps/
motion, energy consumption, sleep and biometric parameters 
such as weight and body mass index,73,74 or with measure-
ments collected by new prototypes that can even measure 
blood oxygenation, skin temperature, skin blood perfusion, 
respiratory rate, cutaneous sweat, stress and exposure to 
addictive substances.75,76 A new generation of smart clothes 
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is also entering the market that can provide biometrics and 
activity data from textile-sensing technologies.77,78 Finally, 
new wearable and miniaturized sensors currently under 
development will provide real-time measurements of bio-
markers with potential clinical utility based on tear, saliva, 
sweat, or breath analysis.79

The connection of CGM and other wearable sensors to 
smartphones equipped with GPS connectivity allows data geo-
referencing. CGM data can thus be integrated with information 
about the quality of the living environment (eg, pollution data 
collected by air quality sensors) and neighborhood (eg, presence 
of parks and healthy food shops). The geolocalization of CGM 
data will allow a better understanding of the environmental fac-
tors influencing the onset of metabolic disorders and their 
course.80,81 In one study employing CGM geolocalization,82 
CGM, insulin pump and exercise tracker data were geolocalized 

to characterize patients with diabetes during exercise. Other 
studies in which health factors were geolocalized and connected 
to environmental/neighborhood factors are the Seattle Obesity 
Study83 (obesity in relation to food environment, diet quality 
and disparities) and MOSAIC84 (correlation between T2D gly-
cemic control and air pollution maps). Interesting scenarios may 
be revealed by other projects underway, such as the Kavli 
HUMAN Project,85 which aims to understand how biology, 
behavior, and environment affect health and well-being in New 
York City, and PULSE,86 which investigates novel insights into 
the relationship between environmental/behavioral factors and 
risk of developing T2D and asthma in urban environments.

The integration of CGM data with this variety of other 
patient/environment data is certainly not straightforward, and it 
would require the development of ad hoc software applications 
(summarized in Table 1) allowing interoperability between the 

Table 1.  Summary of the Current CGM-Based Applications and Possible Future Applications, Both for Data Integration and for 
Utilization of Such Data Integration.

Application Benefits

Current applications Programs for CGM data download 
and retrospective analysis

Retrospective visualization of daily glucose patterns and statistical 
summaries of glycemic excursions for improved therapeutic 
decision making

Decision support systems for 
caregivers

Assistance for health care professionals with the periodic 
adjustment of patient-specific insulin therapy parameters

Mobile apps for diabetes management Integration of data for daily diabetes management for visualization 
in portable devices

Online therapy optimization 
strategies

Automatic adjustment of patient-specific insulin therapy 
parameters

Automatic insulin delivery algorithms Automatic regulation of insulin delivery in fully or hybrid closed-
loop systems

Future applications 
for data 
integration

Platform for the integration of 
diabetes management data collected 
by medical devices or mobile apps

Potential new insight into the physiological/behavioral patterns 
associated with hypo/hyperglycemic events

Software for the integration of 
clinical data

Identification of clinical patterns associated with the development 
of diabetes, its comorbidities and its complications

Programs for quality of life and health 
survey data integration

Potential identification of socioeconomic, behavioral and health 
risk factors for the onset of diabetes and its complications

Applications for wearable sensor data 
integration

Monitoring of signals/indicators (eg, physical activity and stress) 
useful for potentially improving therapeutic decision making

Georeferencing programs allowing 
neighborhood and environmental 
data integration

Potential identification of environmental and socioeconomic risk 
factors for the onset of diabetes and its complications

Future applications 
taking advantage 
of data integration

Personalized patient decision 
support systems for daily diabetes 
management

Personalized recommendations for daily diabetes management, 
including smart hypo/hyperglycemic alerts and smart bolus/
carbohydrate advisors

Personalized decision support 
systems for subjects without 
diabetes

Personal health risk assessment, subject education about health 
risk factors and recommendations for healthy behaviors

Gamified health apps Subject engagement in a collaborative data collection process
Smart decision support systems for 

caregivers
Assistance for health care professionals in personalized therapy 

optimization, identification of high-risk patients and optimal visit 
scheduling

Public health big-data analytics Identification of high-risk populations, proactive monitoring of 
subjects, assistance in the design and assessment of intervention 
plans to reduce health risks
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different data collection systems. Such data integration will 
contribute to the generation of a digital ecosystem of diabetes 
data87 or more general health and well-being data (Figure 1c); 
these data can be used to improve our understanding of the bio-
logical, behavioral and environmental factors driving the 
development of diabetes and its complications. This integration 
will be part of a wider trend that is already observed in other 
medical areas: to create learning health care systems exploiting 
data analytics to extract new medical knowledge that cannot be 
discovered by relying on a single source of information.88-90 In 
particular, diabetes data integration will offer the opportunity to 
design data analytics (Figure 1d) for personalized diabetes 
management and prevention solutions (Figure 1e).

The integration of CGM data with other information rele-
vant to diabetes management, for example, insulin administra-
tions, diet, exercise and stress, will provide new insight into 
the physiological/behavioral patterns associated with hypo/
hyperglycemic events, which are not possible to identify by 
relying on a single data source. This insight would allow the 
development of telemedicine services91,92 and personalized 
decision support systems, which can implement, for example, 
real-time algorithms to generate smart hypo/hyperglycemia 
alerts and smart bolus/carbohydrate advisors, with the aim of 
tailoring the therapy to the personal exercise habits, stress trig-
gers and circadian rhythms of the patient.93 Caregivers could 
also benefit from the development of decision support systems 
for health care providers, such as dashboards implementing 
automatic pattern recognition to identify patients with poor 

glycemic control and models predicting diabetes complica-
tions to identify patients at high risk of developing diabetes-
related complications.94 Via patient risk stratification, tools for 
optimal visit scheduling, for example, giving higher priority to 
high-risk patients, can be designed. Moreover, software pro-
viding personalized therapy adjustment recommendations can 
be useful to assist the caregiver in revising therapy for the 
patient. Such applications can exploit not only the information 
available for a specific patient but also the evidence obtained 
from patients with similar characteristics.

The extension of CGM technology beyond diabetes will 
enable the development of software solutions for proactive 
medicine. For example, mobile decision support systems 
could be designed not only for people with diabetes but also 
for healthy individuals as tools to educate subjects about 
their personal risk factors for diabetes (and other health con-
ditions) and to promote positive behavioral changes. In addi-
tion, software applications to identify subjects at high risk of 
developing diabetes can be designed by implementing mod-
els for predicting the onset of diabetes;94 these models cur-
rently include mostly demographics, biometrics and blood 
test biomarkers as risk factors but can be potentially improved 
by the incorporation of CGM-based glucose variability indi-
ces,95,96 as well as behavioral, socioeconomic, and environ-
mental factors. This development will allow health care 
agencies to devise targeted prevention and screening plans 
for diabetes, thus promoting the efficient use of resources. 
The geolocalization of data will allow public health analysts 

Figure 1.  Possible data sources (a) that can be integrated with CGM data (b) to create a digital ecosystem of diabetes and health data 
(c) and possible applications (e) for precision and proactive medicine relying on big data analytics (d).
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to identify geographic areas where the population is at high 
risk of diabetes and more efficiently plan initiatives to reduce 
the relevant risk factors.97

However, several important challenges related to data 
integration need to be faced.88 The collection of large 
amounts of individual data will not be trivial, and strategies 
to engage the subjects in a collaborative data collection pro-
cess need to be designed, for example, the use of gamified 
apps.98-100 In addition, data security and veracity cannot be 
neglected.101 The necessity of handling the copious varied 
and complex data will require the use of big data analytics 
tools based on artificial intelligence techniques80,102,103 to 
overcome the limitations of traditional hypothesis-driven 
statistical approaches. Real-time applications will also need 
sophisticated data-storage infrastructures to easily pull and 
retrieve information. Furthermore, effective integration of 
signals that have temporal information, such as CGM time 
series, with static data that do not always provide the true 
time context, such as health records, can be challenging.89 
Last but not least, evidence about the clinical effectiveness 
and safety of such big data analytics, as well as proof of their 
clinical utility, must be provided to support employment of 
these applications in health care.88

Conclusion

The use of CGM sensors will certainly grow significantly in 
the next years in response to improvements in accuracy, reg-
ulatory approval for making treatment decisions and expan-
sions of reimbursement criteria. Moreover, cost decreases 
will extend the CGM market to new populations, possibly 
including subjects with prediabetes and even healthy people, 
as a part of well-being programs, although the effectiveness 
of CGM use in these populations has not yet been proved.

The availability of a vast amount of CGM data will con-
tribute to new insights into diabetes onset and progression 
mechanisms, especially when these data are integrated with 
data from other sources, for example, wearable sensors and 
health records. The thus-obtained digital ecosystem of diabe-
tes and health data will enable the development of big data 
analytics tools for precision and proactive medicine, for 
example, decision support systems, proactive patient moni-
toring systems and public health applications. Nevertheless, 
several delicate issues, such as technical challenges (from 
security to data volume, velocity, veracity, and variety) and 
the need to provide evidence of their clinical safety and util-
ity, must be carefully addressed.
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