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Improved glycemic control in individuals with type 1 diabe-
tes mellitus (T1DM) via the use of artificial pancreas (AP) 
systems, which integrate a continuous glucose monitoring 
(CGM) sensor, continuous subcutaneous insulin infusion 
(CSII) pump, and insulin dosing control algorithm, reduces 
the risks of immediate life-threatening conditions, such as 
severe hypoglycemia and ketoacidosis, and long-term health 
complications, such as cardiovascular disease, nephropathy, 
neuropathy, and retinopathy.1-13 A fully automated AP system 
eliminating the need for patients with T1DM to enter user 
inputs for meal and exercise announcements represents a sub-
stantial step toward achieving better insulin delivery systems. 
Although AP systems are shown to be effective compared to 
conventional multiple daily insulin injections or sensor aug-
mented pump therapy, improvements in the insulin dosing 

algorithms are needed if the AP systems are to compensate for 
meals and exercise without requiring patients to manually 
interact with the systems. Model-based predictive control has 
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Abstract
Background: Despite the recent advancements in the modeling of glycemic dynamics for type 1 diabetes mellitus, 
automatically considering unannounced meals and exercise without manual user inputs remains challenging.

Method: An adaptive model identification technique that incorporates exercise information and estimates of the effects 
of unannounced meals obtained automatically without user input is proposed in this work. The effects of the unknown 
consumed carbohydrates are estimated using an individualized unscented Kalman filtering algorithm employing an augmented 
glucose-insulin dynamic model, and exercise information is acquired from noninvasive physiological measurements. The 
additional information on meals and exercise is incorporated with personalized estimates of plasma insulin concentration and 
glucose measurement data in an adaptive model identification algorithm.

Results: The efficacy of the proposed personalized and adaptive modeling algorithm is demonstrated using clinical data 
involving closed-loop experiments of the artificial pancreas system, and the results demonstrate accurate glycemic modeling 
with the average root-mean-square error (mean absolute error) of 25.50 mg/dL (18.18 mg/dL) for six-step (30 minutes 
ahead) predictions.

Conclusions: The approach presented is able to identify reliable time-varying individualized glucose-insulin models.
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emerged as an effective insulin dosing algorithm for AP sys-
tems as it inherently considers future projections of the glyce-
mic dynamics for predictive hypo- and hyperglycemia alarms 
and manipulating insulin delivery when glucose concentra-
tions are forecast to deviate from the desired outcomes. The 
ability of the predictive controllers is dependent on accurate 
models of the metabolic system that can effectively encode a 
comprehensive understanding of the physiology of T1DM, 
handle the long dynamical effects of the insulin action, and 
characterize the effects of various diurnal disturbances on 
glycemic dynamics. Furthermore, many mathematical mod-
els of the glucose and insulin dynamics employ real-time 
feedback solely from the CGM signal, which limits their abil-
ity to automatically accommodate meals and exercise without 
manual interventions by people with T1DM.

One of the challenges to achieve a fully automated and 
reliable AP is the lack of an accurate model to represent the 
dynamic changes in physiology under various conditions. 
The future glucose measurements are difficult to predict 
accurately as glycemic dynamics vary substantially due to 
the effects of numerous factors such as current and historical 
glucose trends, carbohydrate consumption, previously 
administered insulin, exercise or physical activity levels, and 
concentrations of certain hormones. Moreover, metabolic 
processes vary substantially among subjects and temporally 
within people due to the diversified lifestyles and erratic rou-
tines of individuals. The diversity of physiology and behav-
iors in people causes the glucose-insulin dynamics and 
insulin sensitivities of individuals to vary over time, while 
large perturbations such as meals and physical activity cause 
significant excursions in glucose concentrations that may not 
be described accurately by generalized models. Hence, the 
necessity in AP systems of personalized glucose-insulin 
models rather than models with generalized parameters that 
do not reflect the dynamic characteristics of subjects in dif-
ferent situations.14-19

The glycemic models proposed in literature can be cate-
gorized as either physiological or data-driven models, often 
with carbohydrate intake and infused insulin as inputs. 
Physiological models, usually based on compartmental mod-
els, consist of simultaneous differential equations describing 
the insulin and glucose metabolism with a number of physi-
ological parameters to be identified. Detailed physiological 
models are very useful in simulations, though model com-
plexity and computational load impede their real-time imple-
mentation in AP systems. In contrast to physiological models, 
data-driven models with relatively simpler structures that 
effectively characterize the intricate relationships among the 
measured variables generally require less computational 
effort.15 Among the various empirical modeling approaches 
proposed to predict future glycemic measurements, sub-
space-based system identification methods are capable of 
efficiently identifying linear state-space models from multi-
input, multi-output sampled data of a dynamic system. 
Nevertheless, a fixed empirical model may not predict 

glycemic measurements well in all scenarios and across all 
subjects due to the significant variability in glycemic dynam-
ics. Therefore, the empirical models need to be appropriately 
adapted on-line to characterize the current dynamics of the 
individuals and make accurate short-term predictions of glu-
cose concentration measurements. For this purpose, adaptive 
system identification approaches are proposed to determine 
linear, time-varying models and effectively characterize the 
evolving glycemic dynamics, thus allowing the adaptive 
models to be valid over a diverse range of daily conditions.

Despite the predictive ability of the adaptive system iden-
tification approach, the discrete basal changes and acute 
bolus impulses present a challenging configuration for 
empirical modeling techniques. Further complicating the 
model identification procedure is the fact that administered 
insulin (basal or bolus) gradually accumulates in the blood-
stream and is eventually utilized by the body. One of the fac-
tors that prolongs the utilization of administered insulin is 
the significant time delays involved in the diffusion and 
absorption of the subcutaneously injected insulin analogues. 
For instance, the plasma insulin response to subcutaneously 
infused fast-acting insulin has a time lag of approximately 15 
minutes, peak effect at about 45-90 minutes, and an overall 
effective duration of 4-6 hours. The protracted effects of the 
administered insulin may cause glucose concentration mea-
surements to continue rising in response to carbohydrate 
consumption even though sufficient insulin is already admin-
istered. Under such postprandial circumstances where insu-
lin effects are not observed in CGM measurements for 
lengthy periods of time after insulin infusion, methods rely-
ing entirely on data-driven models may lead to inappropriate 
generalizations with regards to the effects of insulin. This 
well-recognized artifact of modeling glycemic measure-
ments can be addressed by filtering the administered insulin 
dose into a newly constructed variable that readily accom-
modates the effects of previously administered insulin. It is 
well recognized that filtering the input variables has a sig-
nificant effect on the predictive performance of the identified 
model. Although such schemes are shown to improve glyce-
mic prediction accuracy, the filtering algorithms utilized, 
whether based on numerical signal processing techniques or 
derived from compartment models describing the underlying 
physiological phenomena, are often time-invariant. The 
application of fixed time-invariant filters thus may be subop-
timal and may diminish the potential for improvement, espe-
cially when employed simultaneously with adaptive system 
identification techniques. Utilizing PIC estimates from an 
adaptive and personalized PIC estimator as the newly estab-
lished input for the identification algorithm provides a fil-
tered variable that improves prediction ability. In contrast to 
the conventional insulin on board approach that estimates the 
amount of active insulin in the body through static appropria-
tions of action profiles and decay curves, the estimated PIC 
is a physically meaningful and quantifiable measure of insu-
lin the bloodstream that may benefit control design as well. 
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The estimated plasma insulin concentration (PIC) can be 
considered as a more appropriate input variable in the identi-
fication of a dynamic model for predicting future glucose 
concentrations because it directly quantifies the insulin in the 
bloodstream that affects the glycemic evolution.20-24

Besides the effects of administered insulin, another limi-
tation of current AP systems is the requirement of manual 
meal and exercise announcements. Several studies have 
incorporated unannounced meals through the estimation of 
time-varying parameters or analysis of glucose trends.25-30 
Concerning the automation of AP systems, additional physi-
ological variables related to physical activity are also consid-
ered to automatically accommodate exercise.31-34 Despite 
this progress, automatically handling of unannounced meals 
and exercise in adaptive and personalized glycemic models 
for AP systems is not sufficiently studied.

Motivated by the above considerations, in this work, an adap-
tive and personalized compartment model that translates the 
abrupt bolus and discrete basal changes into estimates of PIC is 
integrated with an adaptive system identification approach to 
characterize the transient dynamics of glycemic measurements. 
The adaptations by the recursive system identification assist in 
handling stochastic disturbances like the effects of meal con-
sumption and physical activities. Furthermore, the system identi-
fication algorithm is extended to improve reliability for use in 
fully automated artificial pancreas systems. The proposed 
approach involves the modification of the recursive predictor-
based subspace identification (PBSID) algorithm to incorporate 
constraints on the fidelity and accuracy of the identified models, 
correctness of the sign of the input-to-output gains, and the inte-
gration of heuristics to ensure the stability of the recursively 

identified models. To achieve this, the proposed adaptive models 
also include estimated meal effects and the reported exercise 
related biometric variables by BodyMedia SenseWear armband 
as additional inputs to automatically accommodate unannounced 
meals and exercise. The proposed adaptive and personalized 
modeling approach considering the effects of unannounced 
meals and exercise on the transient glycemic dynamics is applied 
to 15 clinical data sets involving closed-loop experiments of the 
AP systems.

Methods

The predictor-based subspace identification (PBSID) 
approach is used to identify a recursively updated state-space 
model characterizing the glucose-insulin dynamics. The 
PBSID algorithm estimates a vector autoregressive with 
exogenous inputs model and uses it to construct matrices 
related to the state-space model parameters. A low-rank 
approximation then identifies a state sequence, and the state-
space model parameters are recursively updated. The PBSID 
technique is further extended to provide stable, time-varying, 
and individualized models for glycemic predictions by using 
estimates of PIC and meal effects, and measured physiologi-
cal signals. The estimates of PIC and meal effects are obtained 
by-using an adaptive and personalized PIC estimator designed 
based on the Hovorka’s glucose-insulin dynamic model. In 
this section, a review of the PBSID algorithm for the identifi-
cation of linear, time-varying state-space models is provided, 
followed by a brief overview of the adaptive and personalized 
PIC estimator. Figure 1 shows a flowchart of the proposed 
personalized and adaptive modeling algorithm.

Figure 1. Flowchart of the proposed personalized and adaptive modeling algorithm.
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Adaptive Modeling Approach

In this work, a recursive subspace-based system identifica-
tion approach is used to build linear, time-varying state-space 
models of the form:

x A x B uk k k k k k+ = + +1 ω

 y C x D uk k k k k k= + + ν  (1)

where x∈Rnx , u∈Rnu  and y∈Rny  denote vectors of the 
state, input, and output variables, respectively, with ω  and 
ν  denoting the vectors of process disturbance and measure-
ment noise (respectively) that are assumed to be zero-mean 
white Gaussian sequences. The input variables considered 
are the insulin concentration in the bloodstream, energy 
expenditure, and the estimated meal effects, and the output 
variable is the CGM measurement. The system matrices 
Ak ,  Bk ,  Ck ,  and Dk  are the state transition, input, output, 
and direct feedthrough matrices of appropriate dimensions 
(respectively) that are adaptively estimated at each sampling 
instance using subspace identification techniques. A detailed 
description of the proposed technique is provided in 
Appendix A, as well as in Hajizadeh et al14 and Houtzager 
et al.35 The identification procedure employs constraints on 
the estimated model coefficient matrices to ensure that the 
appropriate gains are determined relating the insulin to the 
glucose outputs. In another consideration of the fidelity of 
the identified models, constraints are also imposed to restrict 
the identified model to be stable. Consider the system matri-
ces Θk k k k kA B C D= [ ], , , ,  to constrain for fidelity and sta-
bility of the identification. Then the constrained optimization 
problem becomes
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where a weighted quadratic norm of the deviation of the pre-
dicted CGM outputs is penalized from the actual CGM mea-
surements while ensuring that the estimated model 
coefficients satisfy the imposed constraints Θ ΩΘk ∈  for 
model fidelity and stability purposes. The constrained opti-
mization problems are solved using the computationally effi-
cient quadratic programming solver, which seeks to minimize 
a scalar function in multiple variables within a region speci-
fied by constraints and bounds. A detailed description of the 
proposed technique is provided in Appendices B and C.

One modification compared to traditional glycemic models 
is the use of PIC as an input to the system identification proce-
dure. The insulin present in the bloodstream is derived from 
the insulin subsystem of Hovorka’s model, which translates 
the abrupt basal and discrete bolus inputs into PIC estimates 
with time-varying model parameters simultaneously estimated 
using a nonlinear observer.36,37 The observer is of the form 

 x f x u yk
obs

k k k k
$ $ $%+ = ( )1 , , ,θ  (3)

where xk  denotes the estimated state vector, with PIC an 
estimated state variable, uk  is the infused (basal and 
bolus) insulin, yk  is the CGM measurements providing 
feedback correction for the estimation of states and param-
eters, and θ k  are the model parameters that are estimated 
simultaneously with the state variables to characterize the 
time-varying physiological processes of people. The esti-
mated parameters of Hovorka’s model include the time to 
maximum insulin absorption ( tmax I, ), the fractional elimi-
nation rate of insulin from the bloodstream ( ke ), and the 
gut absorption rate ( UG ) representing the rate of appear-
ance of glucose in the blood from consumed meals. The 
on-line estimation of the insulin compartment parameters 
characterizes the transient pharmacodynamics of subcuta-
neously administered insulin. The estimation of the glu-
cose appearance rate allows for quantification of the 
effects of unannounced meals on the glycemic dynamics 
without requiring user specified information on the 
amounts of carbohydrates consumed. The easily attain-
able demographic information of subjects, such as weight, 
height, BMI, age, total daily insulin and duration with 
T1DM, is exploited to personalize the initialization of the 
PIC estimator. To this end, the readily available demo-
graphic information is used to identify a relationship 
between the demographic variables and the model param-
eters to be individually initialized to each patient. Data-
driven approaches, such as partial least squares (PLS) 
regression models, are widely used when the exact under-
lying mathematical relationship between two sets of data, 
demographic inputs and the output parameters, is not 
explicitly and mathematically formalized through funda-
mental physiological models. PLS is a multivariate regres-
sion method for modeling the relationship between two 
groups of data consisting of numerous noisy and corre-
lated variables while appropriately handling potentially 
incomplete measurements with missing data. The PLS 
based regression relationship is derived from data col-
lected from several experiments. The latent variables of 
the PLS model are identified to maximize the prediction 
performance of the model. This is achieved by finding 
components that maximize the covariance between the 
independent and the dependent variables. The indepen-
dent variables matrix consists of the demographic infor-
mation of the patients, such as bodyweight, height, BMI, 
total daily insulin dose, and the dependent variables 
matrix is defined to be the parameters of the PIC estimator 
that were determined for each patient using actual clinical 
experimental PIC measurements. Following the initializa-
tion of the parameter values using the PLS regression 
models, the proposed estimation technique can rapidly 
converge to provide good estimates of the PIC in a timely 
manner by using only the CGM measurements and infused 
insulin data. A detailed description of the proposed tech-
nique is provided in Appendix D, as well as in Hajizadeh 
et al.22-24
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Subjects and Clinical Study Experiments

The subjects involved in this study were recruited by the 
Kovler Diabetes Center, University of Chicago Medical 
Center, Chicago, Illinois, and were scheduled for a visit at 
the University of Chicago General Clinical Research 
Center. The subjects included adults 19-39 years with 
T1DM. All subjects used CSII pump therapy by adjusting 
the insulin infusion flow rate based on suggestions from a 
generalized predictive controller.6,30,31,38 Subjects wore 
their personal insulin pump, a continuous glucose monitor 
(CGM; Medtronic Guardian-Real Time Continuous 
Glucose Monitors [Medtronic, Northridge, CA] or Dexcom 
G4 Platinum [Dexcom, San Diego, CA]) and a BodyMedia 
SenseWear Pro3 (BodyMedia, Pittsburgh, PA) armband 
reporting physiological signals. Each patient’s visit was 
approximately 60 hours long during the closed-loop experi-
ment using a multimodule multivariable adaptive artificial 
pancreas system.24,29,39-42 The subjects’ own insulin type 
and pumps were used during the experiments. Subjects par-
ticipated in two exercise bouts of 20- to 30-minute sessions 
before and after lunch. Overall 10 subjects participated in 
the 15 clinical closed-loop experiments. Table 1 shows  
the characteristics of the participants of the closed-loop 
studies.

Results

The efficacy of the proposed adaptive system identification 
algorithm for identifying high fidelity glycemic models is 
demonstrated using 15 clinical datasets. The output of the 
model is the predicted CGM measurements and the inputs 
are the estimates of the PIC, meal effect (UG ), and energy 
expenditure values in units of metabolic equivalents (MET). 
The two performance indices used to evaluate the perfor-
mance of the proposed method are the mean absolute error 
(MAE) and root mean square error (RMSE).

The MAE and RMSE are calculated based on the follow-
ing equations:

 MAE
y y
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The MAE and RMSE are two of the most common metrics 
used to measure the prediction accuracy. MAE measures the 
average magnitude of the errors in a set of predictions, with-
out considering their direction. It’s the average over all sam-
ples of the absolute differences between prediction and 
actual observation where all individual differences have 
equal weight. RMSE is a quadratic scoring rule that also 
measures the average magnitude of the error. It is the square 
root of the average of squared differences between prediction 
and actual observation. Both the MAE and RMSE express 
average model prediction error in units of the variable of 
interest. Both metrics can range from 0 to ∞ and are indiffer-
ent to the direction of errors. They are negatively oriented 
scores, which means lower values are better. Taking the 
square root of the average squared errors has some interest-
ing implications for the RMSE. Since the errors are squared 
before they are averaged, the RMSE gives a relatively high 
weight to large errors. This means the RMSE should be more 
useful when large errors are particularly undesirable.

The quantitative results for all 15 clinical experiments are 
presented in Tables 2 and 3. These performance indices are 
computed based on one- and six-step-ahead predictions. The 
one- and six-step-ahead prediction are used to show the per-
formance of the proposed technique in predicting the future 
outputs. The average RMSE (MAE) for one- and six-step-
ahead CGM prediction are 4.93 (3.17) and 25.50 mg/dL 
(18.18 mg/dL), respectively. The RMSE (MAE) values for 

Table 1. Demographic Information of the Clinical Subjects.

Demographic criteria Mean ± standard deviation

Age (years) 26.13 ± 5.76
Body weight (kg) 79.29 ± 15.40
Height (m) 1.73 ± 0.08
Body mass index (kg/m2) 26.33 ± 4.18
Total daily insulin dose 

[basal] (U)
45.75 [26.79] ± 12.73 [11.66]

Duration of time with 
diabetes (years)

18.30 ± 8.10

Waist (cm) 90.72 ± 13.57

Table 2. Performance Indices Values for the Modeling Results 
Using the Proposed Personalized and Adaptive Modeling 
Algorithm for All Clinical Experiments Based on the One-Step-
Ahead Prediction.

No.
MAE 

(mg/dL)
RMSE 

(mg/dL)
Median 
(mg/dL)

First quartile 
(mg/dL)

Third quartile 
(mg/dL)

 1 3.16 4.50 1.96 0.83 3.80
 2 2.86 3.80 2.66 1.28 4.24
 3 3.22 5.78 1.66 0.62 3.67
 4 3.91 5.22 3.03 1.48 5.65
 5 2.97 4.15 2.02 0.93 3.65
 6 2.56 4.10 1.86 0.78 3.49
 7 2.90 4.50 2.03 0.89 3.45
 8 3.16 4.27 2.58 1.15 4.67
 9 2.71 4.29 1.72 0.80 3.50
10 3.79 6.58 2.37 1.05 4.37
11 3.89 5.79 2.61 1.19 5.02
12 2.88 4.84 1.85 0.72 3.57
13 2.29 3.30 1.61 0.67 3.15
14 4.25 8.44 2.50 1.21 4.48
15 3.06 4.45 2.13 0.97 4.25
Avg 3.17 4.93 2.17 0.97 4.07
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the one-step-ahead predicted CGM are less than 8.44 mg/dL 
(4.25 mg/dl), and for the six-step-ahead predicted CGM is 
less than 32.96 mg/dL (22.02 mg/dL), which demonstrates 
the effective performance of the adaptive system identifica-
tion technique to model the glycemic dynamics.

The proposed adaptive system identification method is 
able to provide stable and adaptive state-space models at 
each sampling time. Figure 2 shows the predicted and actual 
CGM values along with the inputs of the model (the esti-
mates of the PIC and meal effect parameter, and the energy 
expenditure values) and maximum norm of model eigenval-
ues for a selected experiment. The results for the clinical 
experiments (Figure 2) show that the maximum norm of 
eigenvalues of the models is maintained within the unit circle 
and evolve over time to best describe the available input and 
output data, thus ensuring stability of the identified models. 
Furthermore, the estimated and predicted CGM values 
closely track the actual CGM measurements. The state-space 
model is identified such that the available input-output data 
is well characterized by the system realization while the sta-
bility and fidelity of the identified models is guaranteed. 
Compared to only using the PIC as a model input, additional 
inputs capturing the effects of meals and physical activity, 
such as the estimated meal effect parameter and energy 
expenditure, significantly improve the prediction ability of 
the modeling approach (Figure 3). Although the model using 
PIC and meal effect as inputs does not show statistical sig-
nificance compared to the proposed model using PIC, meal 
effect and energy expenditures as input variables, the stan-
dard deviation is biased by the outliers, which influences the 
statistical hypothesis test. To elucidate this bias caused by the 

outliers, a one-sided test for statistical significance is used to 
compare the model (b) with the proposed model (d), which 
shows statistical significance (P value = 0.04 for MAE and 
0.029 for RMSE). The results demonstrate that the use of the 
PIC as a filtered insulin input, the incorporation of estimates 
of the meal effect obtained through the nonlinear observer 
algorithm, and the inclusion of energy expenditure as an aux-
iliary input from the BodyMedia SenseWear armband 
improve the identified glucose-insulin dynamic models.

The Clarke error grid approach is used to assess the clinical 
significance of differences between glucose predictions gener-
ated by the proposed technique and measured values.43-46 The 
method uses a Cartesian diagram, in which the six-step-ahead 
CGM predictions obtained by the presented technique are dis-
played on the y-axis, whereas the real (measured) CGM values 
are displayed on the x-axis. The diagonal represents the per-
fect agreement between the two, whereas the points below and 
above the line indicate, respectively, overestimation and 
underestimation of the actual values. Zone A (acceptable) rep-
resents the glucose values that deviate from the real values by 
±20% or are in the hypoglycemic range (<70 mg/dl), when 
the reference is also within the hypoglycemic range. The val-
ues within this range are clinically exact and are thus charac-
terized by correct clinical treatment. Zone B (benign errors) is 
located above and below zone A; this zone represents those 
values that deviate from the reference values, which are incre-
mented by 20%. The values that fall within zones A and B are 
clinically acceptable, whereas the values included in areas C-E 
are potentially dangerous, and there is a possibility of making 
clinically significant mistakes. Based on the results presented 
in the Table 4, we can see that 98.87% of values fall within 
zones A and B. There is no cases fall within zone E that is the 
most dangerous case and just 1.13% of values fall within 
zones C and D. Figure 4 shows of the Clarke error grid analy-
sis for a select experiment (subject 7).

In addition to the MAE and RMSE performance indices 
and Clarke error grid analysis, the low risk of missing hypo-
glycemia (below 70 mg/dL) or hyperglycemia (above 200 
mg/dL) is a key feature of an efficient and reliable identified 
glucose-insulin dynamic model. We have also calculated the 
results for the percentage of the cases which the hypoglyce-
mia or hyperglycemia are missed. Nine out of 15 experi-
ments have CGM values below 70 mg/dl, and the average 
and standard deviation of missed hypoglycemia for these 9 
experiments are 24.09% ± 16.50%. Thirteen out of 15 
experiments have CGM values above 200 mg/dl, and the 
average and standard deviation of missed hyperglycemia for 
these 13 experiments are 07.83% ± 05.29%.

Discussion

A physiological model derived from the insulin compartment 
subsystem of Hovorka’s model is incorporated in this work 
with adaptive data-driven models developed using a recur-
sive subspace identification technique. A computationally 

Table 3. Performance Indices Values for the Modeling Results 
Using the Proposed Personalized and Adaptive Modeling 
Algorithm for all Clinical Experiments Based on the Six-Step-
Ahead Prediction.

No.
MAE 

(mg/dL)
RMSE 

(mg/dL)
Median 
(mg/dL)

First quartile 
(mg/dL)

Third quartile 
(mg/dL)

 1 18.28 26.01 10.47 4.80 24.86
 2 16.45 20.45 14.23 8.44 22.47
 3 17.31 25.94 10.58 4.13 21.85
 4 21.45 27.29 16.28 7.30 30.03
 5 21.66 30.26 13.90 5.76 27.60
 6 16.12 21.91 11.70 5.80 22.53
 7 17.71 25.22 11.56 5.21 24.62
 8 18.36 24.80 13.54 6.59 24.77
 9 17.51 26.92 10.65 4.45 22.27
10 19.35 27.09 13.95 7.18 24.56
11 19.08 25.11 14.08 6.84 26.71
12 16.82 25.43 9.89 4.77 18.93
13 14.71 20.96 10.00 4.65 19.32
14 22.02 32.96 14.87 6.69 27.15
15 15.89 22.13 9.95 4.73 19.74
Avg 18.18 25.50 12.38 5.82 23.83
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Figure 2. Modeling results for a select experiment (subject 7) showing (a) the six-step (30 minutes ahead) predicted and actual CGM 
values, (b) the estimated plasma insulin concentration and actual PIC values (not used in model development), (c) the estimated meal 
effect parameter for capturing unannounced meals, (d) the energy expenditure in units of metabolic equivalent (MET) for incorporating 
unannounced exercise, and (e) the maximum norm of eigenvalues of the stable time-varying identified models.

Figure 3. Comparison of six-step (30 minutes ahead) prediction accuracies across all experiments using the mean absolute error 
(MAE) and root mean square error (RMSE) for prediction with different model inputs: (a) PIC; (b) PIC and energy expenditure; (c) PIC 
and meal effect; and (d) PIC, energy expenditure, and meal effect. All hypothesis tests computed using two-sided paired t-tests at 5% 
significance level and are relative to the proposed model (d), which considers PIC, energy expenditure, and meal effect as input variables.
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efficient nonlinear observer is used to estimate the time-
varying parameters and the meal effect, thus facilitating the 
explicit incorporation of unannounced meals. The results for 
the proposed integrated compartment model with adaptive 
subspace identification techniques are promising. The pro-
posed adaptive models may be used in the design of a model-
based predictive control algorithm.

There are several benefits to the integration of compart-
ment models with adaptive models. First, the PIC estimates 
are adaptive and individualized to particular patients, thus 
providing accurate real-time estimates of the amount of 
active insulin present in the bloodstream. The plasma insulin 
information can be readily used to impose constraints on the 
insulin dosing computation algorithm. Second, in contrast to 
the discrete basal and acute bolus insulin variations, the esti-
mated PIC from the compartment model readily provides a 
more appropriate and filtered input variable for model iden-
tification. Third, the adaptive subspace identification tech-
nique renders the recursively identified glycemic models 
valid over a diverse range of daily activities without requir-
ing onerous and obscure information such as the amount of 
carbohydrate consumption or quantification of physical 
activity levels.

Although meal and exercise announcements may improve 
the prediction ability of the proposed approach, unannounced 
meals and exercise are considered in this work to refrain 
from the inconvenience of user inputs and avoid the potential 
hazards of erroneous entries. The proposed adaptive model-
ing approach with an integrated compartment model utilizes 
additional auxiliary input variables such as the energy expen-
diture bio-signals to consider the effects of physical activity 
on glycemic dynamics.

Any insulin model capable to translate the abrupt bolus 
and discrete basal changes into estimates of PIC can be used. 
In this work, insulin subsystem of Hovorka’s model has been 
used since the PIC estimator is designed based on the 
Hovorka’s glucose-insulin dynamic model and we have 
developed personalization techniques based on the PLS 
models to individualize the parameters of this insulin subsys-
tem for each specific patient.

PIC measurements are available from the clinical experi-
ments, however, this information is not used in the develop-
ment of the PIC estimation model and the on-line and 
real-time prediction of future CGM values. We use the clini-
cal measurements of PIC to validate the estimates of the PIC 
obtained through the nonlinear simultaneous state and 
parameter estimation technique. As the PIC estimates are 
accurate, we employ the PIC estimates in the identification 
of adaptive state-space models. This ensures that only CGM 
measurements, infused insulin information, and physiologi-
cal measurements from an nonintrusive wearable activity 
tracker are used in the on-line modeling and predictions of 
future glucose values.

For any data-driven modeling approaches where the 
model is obtained based only on input and output data mea-
sured form the underlying system, the quality and accuracy 
of the data play an important role on the performance of 
identified model. The time and frequency of calibrations 
have a significant effect on accuracy of the CGM measure-
ments and consequently on the predictions accuracy. Subjects 
calibrated the CGM at least twice each day according to 
manufacturer instructions. The participants used their per-
sonal glucometers, and the CGM calibration may have 
occurred in nonideal glucose trends. CGM accuracy is great-
est when the CGM is calibrated during a stable glucose 
period (flat arrows on CGM), but this was not always the 
case when the subjects chose to calibrate.

The steady-state value of the gut appearance rate (UG) 
parameter should be zero during fasting time, provided all 
model parameters are personalized for each subject and 
the basal insulin rate stabilizes the BGC around a steady-
state value. The purpose of considering the UG in the PIC 
estimator is to handle any unknown disturbances present 
in the system, including the effects of unannounced meals 
(such as main meals or fast-acting carbohydrates for treat-
ment of hypoglycemia) or any other uncertainties in the 
model parameters (such as EGP0, F

c
01  and FR parameters). 

To design the PIC estimator, other than the two model 
parameters ( t Imax,  and ke ) that are individualized using 
the PLS models, the other parameters of Hovorka’s model 
are not personalized because personalization of all param-
eters requires sufficient data (more detailed information) 
on the subject’s glucose-insulin dynamics. Since the 
steady-state value of UG is a function of several factors 
including the parameters of Hovorka’s model, the steady 
state value of the UG can be a nonzero value even during 
fasting period.

Table 4. Percentages in Each Zone Based on Clarke Error 
Grid Analysis for the Modeling Results Using the Proposed 
Personalized and Adaptive Modeling Algorithm for All Clinical 
Experiments Based on the Six-Step-Ahead Prediction.

No. A B C D E

 1 77.30 21.44 0.00 1.26 0.00
 2 79.67 19.42 0.91 0.00 0.00
 3 85.43 14.37 0.20 0.00 0.00
 4 66.48 31.25 0.00 2.27 0.00
 5 77.08 21.48 0.18 1.26 0.00
 6 78.46 21.18 0.00 0.36 0.00
 7 82.64 17.15 0.00 0.21 0.00
 8 77.84 21.26 0.00 0.90 0.00
 9 88.60 10.40 0.00 1.00 0.00
10 76.65 22.37 0.19 0.78 0.00
11 70.48 27.24 0.19 2.10 0.00
12 83.62 16.19 0.00 0.19 0.00
13 81.95 17.13 0.00 0.92 0.00
14 76.04 21.80 0.90 1.26 0.00
15 78.87 19.25 0.00 1.89 0.00
Avg 78.74 20.13 0.17 0.96 0.00
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The most challenging periods for the CGM predictions 
are the times that exercise and meal affect the glucose-insu-
lin dynamics. Since, any information about these unknown 
disturbances such as their time, intensity, amount and dura-
tion are not known in advance, the accuracy of multistep-
ahead predictions that is just based on current and past data 
decreases during these periods until the model parameters 
are updated based on measurements in those specific peri-
ods. One of the reasons that a recursively updated model is 
necessary for a fully automated artificial pancreas system 
(unannounced meal and exercise) is to update the model 
parameters at each sampling time using new measurements 
to adapt the model for that specific period. As shown in 
Figure 3, including the MET values and meal effects esti-
mates improves the performance of the identified model for 
predicting the CGM values. In addition to analyzing the 
global error metrics, investigating the local error variabilities 
around the unannounced meals and exercises can be useful.

To design a fully automated artificial pancreas system that 
can operate without any user input, in addition to CGM data, 
information that could help the artificial pancreas control 
system to detect exercise and act properly for that period is 
needed. This information can be physical activity signals 
measured by wearable devices. To achieve this, different bio-
signals have been used in artificial pancreas systems. The 

metabolic equivalent task (MET), or simply metabolic 
equivalent, is a physiological measure expressing the energy 
cost of physical activity (PA) and is defined as the ratio of 
metabolic rate (and therefore the rate of energy consump-
tion) during a specific PA to a reference metabolic rate. MET 
is used as a means of expressing the intensity and energy 
expenditure of activities in a way that is comparable among 
people. We have developed a real-time MET estimation 
algorithm by using noninvasive measurements of physiolog-
ical variables by our research group at Illinois Institute of 
Technology. In this approach, these MET values are derived 
using heart rate, galvanic skin response, skin temperature, 
blood volume pulse, and accelerometer.

The performance of proposed technique has been verified 
using different indices based on one-step-ahead predictions 
and six-step-ahead predictions. Different indices are consid-
ered to show the ability of the identified model in tracking 
the real measurements as well as predicting the future trend 
in CGM measurements. As we extend the prediction horizon, 
the accuracy of the predicted values decreases (as it can be 
seen from 1 step to 6 steps ahead of prediction) due to several 
reasons including unknown phenomena like exercise, stress 
or meal that may take place. So choosing the prediction hori-
zon is a trade-off between knowing long-term information 
about the future measurements and their accuracy.

Figure 4. Figure of the Clarke error grid analysis for a select experiment.
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For few clinical experiments (e.g. No. 14 in Table 3) the rela-
tive high value of performance indices (MAE and RMSE values) 
is observed in comparison to the average values. The proposed 
technique is a data-driven technique and the quality of the mea-
sured data (eg, CGM and physiological variables that may be 
corrupted with noise and outliers) have a significant effect of the 
performance, as well as the fact that any information about the 
meal and exercises are not used. Predicting such abnormal mea-
surements is very challenging and updating the glucose-insulin 
dynamic models using poor quality of data may result in bad 
performance in predicting the future trend of measurements.

One of the limitations of our clinical experiments is the 
exercise times are close to the meal times. Although people 
with type 1 diabetes usually consume carbohydrates before, 
during, and after exercise to avoid hypoglycemia and the 
proposed approach demonstrates that the effects of meals 
and exercise have well been captured by the modeling tech-
nique, in our future clinical work, the clinical experiments 
will be conducted to test the algorithm under different condi-
tions such as. no meals very close to the exercise time.

Conclusion

An adaptive system identification algorithm is proposed to 
determine reliable dynamic glycemic models for use in AP 
systems. The proposed modifications to the recursive system 
identification algorithm assist in handling uncertain distur-
bances such as unannounced meals and exercise, stochastic 
measurement noise, and other adverse phenomena. The effi-
cacy of the proposed approach is demonstrated using case 
studies involving the modeling of time-varying glucose-
insulin dynamics in clinical experiments, and the results 
demonstrate the approach is able to identify reliable, time-
varying, and personalized glycemic models.

Appendix A

Recursive System Identification Algorithm

The dynamics of the system can be described using a linear, 
time-varying state-space model of the form:

x A x B uk k k k k k+ = + +1 ω

 y C x D uk k k k k k= + + ν  (A1)

where x∈Rnx, u∈Rnu  and y∈Rny  denote vectors of the 
state, input, and output variables, respectively, with ω  and 
ν  denoting the vectors of process disturbance and measure-
ment noise (respectively) that are assumed to be zero-mean 
white Gaussian sequences. The system matrices Ak ,  Bk ,  
Ck ,  and Dk  are the state transition, input, output, and direct 
feedthrough matrices of appropriate dimensions, respec-
tively. Using Kalman filter theory, equation A1 can be refor-
mulated to the innovation form:

x A x B u K ek k k k k k k
 

+ = + +1

 y C x D u ek k k k k k= + +  (A2)

where x∈Rnx  denotes the predicted state vector, e y yk k k= −  , 
and K Rn nx y∈ ×  denotes the Kalman gain matrix. The feedback 
through the Kalman gain is capable of mitigating the effects of 
some disturbances and smoothing out the measurement noise.

The foundation of the recursive PBSID approach is the 
one-step-ahead vector autoregressive with exogenous inputs 
(VARX) model given by:

 y u yk k
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where yk k


−1  is the predicted output for kth  sampling 
instance given the prior inputs u uk k p, ,… −  and outputs 
y yk k p− −…1, ,  for some horizon p  into the past.35 The VARX 

model parameters to be estimated are:
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The conventional approach for recursive implementation of 
the PBSID algorithm involves the use of adaptive filters, 
such as recursive least squares (RLS), that can efficiently 
estimate the VARX model parameters by tracking the 
dynamic changes in the data. Such an approach is effective 
as it assigns less weight to the older measurements that may 
no longer be representative of the current state of the system 
than the newer measurements.

The following briefly describes the PBSID algorithm for 
completeness. To obtain the state estimates, and hence a real-
ization of the system matrices, the stacked vector of output 
measurement variables yk p p− ,  is defined with respect to the 

past window of length p  as y y y yk p p k p
T

k p
T

k
T T

− − − + −= … , 1 1 , 

and the stacked vector of input variables uk p p− ,  is defined 

similarly. Recognizing that the predicted state xk  is given 
by:

 x xk k p
 = + +− − −A u yp

k p p k p p , ,ϒ  (A5)

where   and ϒ  denote the extended controllability matri-
ces  = … 

−A B ABBp 1  and ϒ = … 
−A K AK Kp 1 , and 

assuming that the state transition matrix is nilpotent with 
degree p , meaning that the contribution of the initial state 
xk p

−  is negligible for sufficiently large p  (that is, Ap≈ 0  for 
some sufficiently large p ), the predicted state can be 
expressed as:

 xk ≈ +− −u yk p p k p p, ,ϒ  (A6)

Premultiplying the predicted state in equation A6 by the 
extended observability matrix Γ  gives:
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 Γ Γ Γxk ≈ +− −u yk p p k p p, ,ϒ  (A7)

where the extended observability matrix Γ  is

 Γ =
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It is readily observed that the product of the matrices Γ  
and Γϒ  can be constructed from the estimated VARX model 
coefficient matrices as:
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where f  is the future window length. Therefore, after esti-
mating the VARX coefficient matrices, the estimated coeffi-
cient matrices θu  and θy  can be used to determine all 
quantities on the right-hand side of equation A7, and a singu-
lar value decomposition (SVD) can be carried out to readily 
obtain a low-rank approximation of the state sequence. 
Nevertheless, updating the SVD factorization while main-
taining a consistent basis is not straightforward.

To avoid the complications of repeatedly updating an 
SVD factorization in recursive identification, a selection 
matrix S  of appropriate dimensions can be determined at 
each sampling time such that the basis of the state estimation 
is consistent. Using the selection matrix, equation A7 can be 
reformulated as:

 x S Wk
 ≈ +( )− −k k k p p k p pu y , ,ϒ  (A11)

where Wk  is a predefined weight matrix. The selection 
matrix Sk can be recursively updated through the projection 
approximation subspace tracking (PAST) method.47 The esti-
mated state sequence is then employed along with the inputs 
and measured outputs to estimate the system matrices Ak ,  
Bk ,  Ck ,  Dk ,  and Kk  by solution of recursive least squares 
problems.

Appendix B

Ensuring Stability of Identified Models

A concern regarding the typical recursive identification algo-
rithm is that stochastic disturbances and measurement noise 
may render the identified models unstable even though the 
underlying system in inherently stable. Although an optimi-
zation problem may find the most appropriate and stable sys-
tem realization, the solution time may be prohibitive. In this 
work, the optimization problem is substituted with a simple 
algorithm that incorporates line search mechanism to reduce 
the innovation term in the RLS filter. The optimization prob-
lems to be solved at each sampling instance for determining 
the system matrices are:
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 .  The solutions 
to these optimization problems can be updated at each sam-
pling time through recursive least squares filters. If the iden-
tified system becomes unstable, the innovation term 

ek
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where β  is successively reduced in a line search approach 
until Ak  is stable and Pk  is the error covariance matrix. 
Reducing the innovation term translates to discarding the 
new information, perhaps including disturbance or noise 
effects, that caused the identified system to become unstable. 
Note that without knowing the stochastic noise and distur-
bance characteristics, it is difficult to remove all the effects 
from the state transition matrix that cause the instability. 
Therefore, reducing the innovation term in the RLS algo-
rithm until the identified system is stable provides a verifi-
able stable system realization for implementation.

Appendix C

Retaining Fidelity of Identified Models

The RLS filters can efficiently estimate the VARX model 
parameters employed in the PBSID algorithm by tracking the 
dynamic changes in the data. Nevertheless, measurement 
noise and unknown disturbances can cause inopportune over-
fitting and may lead to incorrect signs for the input-output gain 
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terms, which is problematic as the controller designed using 
the inaccurate model may suggest wrong input actions. 
Although this undesired adverse effect can be reduced through 
larger forgetting factors that reduce sensitivity to noise and 
disturbances, the drawbacks of a sluggish response may be too 
onerous for certain applications. To overcome the adverse 
effects of the adaptive filters, the filtering approach is replaced 
with a constrained convex linear least squares optimization 
problem in this work. The problem of updating the VARX 
model parameters is then recast as finding the optimal param-
eters for the most recently available historical data over a past 
window p  as follows

Ξ
Ξ ΩΞ

k p k k i i

p
k i i

p
argmin J u y

k

*
, ,= { } { }( )

∈
− = − =0 1

 s t. . y u yk k
i

p

k i
u

k i

i

p

k i
y

k i


−
=

−
( )

−
=

−
( )

−= +





∑ ∑1
0 1

θ θ  (C1)

with the objective function
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where ΩΞ  denotes the region of admissible VARX model 
parameter and Ξk  is the array of (constrained) VARX model 
parameters, taking values in a nonempty convex set 
Ω Ξ Ξ Ξ ΞΞ = ≤ ≤{ }:�min max , and Ξmin  and Ξmax  denote the 
lower and upper bounds on the VARX model parameters. 
Incorporating constraints on the VARX model parameters 
ensures the sign of the gain relating the inputs to the outputs 
is correct in the identified state-space model, which improves 
the prediction ability. Note that the computational load of the 
optimization problem can be minimized through appropriate 
initialization by using the solution from the previous sam-
pling time as an initial guess of the optimum solution.

Appendix D

Estimating and Incorporating Disturbance 
Variables

To estimate the unmeasured disturbances and incorporate the 
disturbance estimates in the system identification algorithm, 
the unscented Kalman filter (UKF) is used with a fundamen-
tal first-principles model. Hovorka’s model, a widely utilized 
physiological model for describing the insulin action and the 
glucose kinetics system, is used in this study for designing the 
UKF estimator.36,37 A brief description of Hovorka’s model is 
provided for completeness. The model consists of nine state 
variables and various differential equations that describe the 
glucose-insulin dynamics, the subsystem pertaining to the 
BGC dynamics, the subsystem concerning the subcutaneous 
insulin infusion, and the subsystem for the glucose transport 
from plasma to interstitial tissues. The BGC dynamics are 

described using a two-compartment model. The two state 
variables Q t1 ( )  and Q t2 ( )  denote the mass of glucose in the 
accessible and nonaccessible compartments, respectively. As 
precise information about the time and quantity of meals is 
difficult to ascertain, meal information is considered as an 
unknown disturbance characterized by the gut absorption 
rate, U tG ( ) . To capture the meal intake, the time-varying gut 
absorption rate parameter in the dynamics of the state vari-
able Q t1 ( )  is determined by the PIC estimator to automati-
cally quantify the effects of the consumed carbohydrates. 
Another two-compartment model, with state variables S t1 ( )  
and S t2 ( ) , defines the absorption rate of subcutaneously 
administered insulin. The PIC, denoted I t( ) , is represented 
by a first-order differential equation. The measure of insulin 
action on glucose kinetics is calculated through three vari-
ables: the influence on glucose transport and distribution 
x t1 ( ); the utilization and phosphorylation of glucose in adi-
pose tissue x t2 ( ); and the endogenous glucose production in 
the liver x t3 ( ). The relationship between BGC and subcuta-
neous glucose reported by CGM measurements is considered 
a first-order dynamic equation.

The glucose-insulin dynamic model can be written in the 
form

dX t

dt
f X t u t

( )
= ( ) ( )( ),

 y t h X t( ) = ( )( )  (D1)

where
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S t S t I t x t x t x t
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T

denotes the vector of state variables, h X t( )( )  denotes the 
measurement function and y t( )  as the subcutaneous glucose 
output measurement given by G tsub ( ) . As precise informa-
tion about the time and quantity of meals is difficult to ascer-
tain, meal information is considered as an unknown 
disturbance to be characterized by the gut absorption rate 
U tG ( ), which is included as an extended state in the model to 
capture the effect of meal intake.

The dynamics of the augmented system, after incorporat-
ing uncertainty in the dynamics of the system (referred to as 
process noise) and measurement noise in the discrete-time 
sampled outputs, can be expressed as

dX t

dt
f X t u t G t t t N Q t

′
′ ′( )

= ( ) ( )( ) + ( ) ( ) ( ) ∼ ( )( ), , ,ω ω 0

 y h X N R tk k k k= ′( ) + ∼ ( )( )′ ν , ,ν 0  (D2)

where ω t( )  and ν k  represent the process and observation 
noise vectors, respectively, Q t( )  and R t( )  denote the 
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covariance and variance of the process and measurement 
noise, respectively, and ′( )X t  denotes the augmented state 
vector including the uncertain model parameters to be simul-
taneously estimated.

In the UKF algorithm, the unscented transformation (UT) 
method is employed for calculating the statistics of a random 
variable that undergoes a nonlinear transformation such as 
the augmented Hovorka’s glucose-insulin dynamic model.

The UKF algorithm can handle the nonlinear dynamics of 
the glucose-insulin model, is robust to noise, and has the 
ability to compensate for deviations and converge to the true 
value of the augmented states through the Kalman-gain-
based correction term added to the estimation. The UKF cap-
tures the statistical distribution characteristics of a nonlinear 
system through a series of sigma points i k i n, , , , ,∈{ }0 2  
and each point is associated with a corresponding weight ωi .  
The sigma points are propagated through the nonlinear sys-
tem dynamics to yield the propagated states χi k k, | −1  and the 
corresponding weighted average of the transformed points 
xk k
| −1  and the weighted covariance of the prior state esti-

mates Px k k, | −1. Similarly propagating the sigma points 
through the measurement function yields the outputs 

i k k, | −1
 

and the associated weighted average yk k| −1. Furthermore, the 
covariance matrices Py  and Pxy  are obtained through the 
sigma points. The Kalman gain Kk  and posterior updates for 
the state estimate xk k

|  as well as the posterior error covari-
ance matrix Px k k, |  of the augmented state estimate are given 
by the standard Kalman update equations:

 Kk xy y= −P P 1  (D3)

 x x K y yk k k k k k k k
 
| | |= + −( )− −1 1  (D4)

 P P Px k k x k k k y k
TK K, | , |= −−1  (D5)

Furthermore, the estimated vector of state variables x  can be 
augmented with disturbance variables or time-varying model 
parameters for simultaneous state and parameter estimation, 
provided that the augmented system is also observable. The 
estimated values are then considered as additional input vari-
ables in the recursive system identification approach to 
improve the prediction ability.
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