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Type 1 diabetes mellitus (T1DM) is an autoimmune condi-
tion resulting in absolute insulin deficiency and a life-long 
need for insulin replacement.1 Glycemic control in T1D 
remains a challenge, despite the availability of modern insu-
lin analogs,2 and the improvement in insulin therapy by 
means of either multiple daily injections (MDI), the com-
bined use of CGM3 and continuous subcutaneous insulin 
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Abstract
Objective: Our aim is to analyze the identifiability of three commonly used control-oriented models for glucose control in 
patients with type 1 diabetes (T1D).

Methods: Structural and practical identifiability analysis were performed on three published control-oriented models for 
glucose control in patients with type 1 diabetes (T1D): the subcutaneous oral glucose minimal model (SOGMM), the intensive 
control insulin-nutrition-glucose (ICING) model, and the minimal model control-oriented (MMC). Structural identifiability was 
addressed with a combination of the generating series (GS) approach and identifiability tableaus whereas practical identifiability 
was studied by means of (1) global ranking of parameters via sensitivity analysis together with the Latin hypercube sampling 
method (LHS) and (2) collinearity analysis among parameters. For practical identifiability and model identification, continuous 
glucose monitor (CGM), insulin pump, and meal records were selected from a set of patients (n = 5) on continuous 
subcutaneous insulin infusion (CSII) that underwent a clinical trial in an outpatient setting. The performance of the identified 
models was analyzed by means of the root mean square (RMS) criterion.

Results: A reliable set of identifiable parameters was found for every studied model after analyzing the possible identifiability 
issues of the original parameter sets. According to an importance factor ( δmsqr ), it was shown that insulin sensitivity is not 
the most influential parameter from the dynamical point of view, that is, is not the parameter impacting the outputs the 
most of the three models, contrary to what is assumed in the literature. For the test data, the models demonstrated similar 
performance with most RMS values around 20 mg/dl (min: 15.64 mg/dl, max: 51.32 mg/dl). However, MMC failed to identify 
the model for patient 4. Also, considering the three models, the MMC model showed the higher parameter variability when 
reidentified every 6 hours.

Conclusion: This study shows that both structural and practical identifiability analysis need to be considered prior to the 
model identification/individualization in patients with T1D. It was shown that all the studied models are able to represent the 
CGM data, yet their usefulness in a hypothetical artificial pancreas could be a matter of debate. In spite that the three models 
do not capture all the dynamics and metabolic effects as a maximal model (ie, our FDA-accepted UVa/Padova simulator), 
SOGMM and ICING appear to be more appealing than MMC regarding both the performance and parameter variability 
after reidentification. Although the model predictions of ICING are comparable to the ones of the SOGMM model, the 
large parameter set makes the model prone to overfitting if all parameters are identified. Moreover, the existence of a high 
nonlinear function like max( ),⋅ ⋅  prevents the use of tools from the linear systems theory.
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infusion (CSII), and lately the use of automated insulin 
delivery systems, that is, the artificial pancreas (AP).4

Regarding the design of control structures for AP, a large vol-
ume of available literature is specifically devoted to the design 
of model predictive control (MPC)-based schemes.5-13 However, 
in spite of the well-known advantages of this strategy, the lack 
of reliable control-oriented models of the glucose-insulin sys-
tem limits the success of such approaches, for both physiology 
inspired models14-16 or black-box models.9,17,18 As stated in the 
literature, model individualization with “manageable” models 
(ie, minimal models) remains a challenge for two main reasons: 
(1) errors in CGM devices and (2) the complex and variable 
dynamics of the glucose homeostasis which is largely depen-
dent on many uncontrolled factors like patient behavior, circa-
dian rhythm, and other metabolic disturbances.14,17,19 Therefore, 
in spite of the large structural uncertainty, in order to obtain the 
best out of the available models for AP design, appropriate 
model identification (individualization) should be performed to 
minimize the overall model uncertainty.

Model identification consists in finding the model param-
eters’ numerical values such that the model describes the 
available data in predefined optimal way (e.g., deviation/cost 
minimization). However, nonlinear model identification is in 
general a very challenging task due to the lack of either prac-
tical or structural identifiability.20

Model identification of control-oriented models in diabe-
tes technology has been typically carried out in an informal 
way, giving most priority to insulin sensitivity (the gain of 
insulin action onto glucose uptake) for model individualiza-
tion without assessing the role and impact of this and other 
parameters on the system output (measurements).14-17,21-31 
For example, in Patek et al14 the insulin sensitivity is the only 
parameter used for model individualization of SOGMM with 
the remaining parameters fixed at population values. In Lin 
et al,15 the authors used an alternative representation of the 
minimal model for glucose control in patients at the intensive 
care unit (ICU). In this contribution, the authors identified the 
model in two steps: first on the glucose compartment and then 
on the insulin pharmacodynamics. The insulin sensitivity is 
considered as a critical parameter to be fitted every hour. The 
authors used parameter sensitivity analysis to assess the good-
ness of fit of the identified model. In Magdelaine et  al,16 a 
linear model of the glucose-insulin system is proposed. This 
model exhibits beneficial stability properties to correct non 
desired steady-state behaviors if compared with existing min-
imal models. After stating the structural identifiability prop-
erty of the model, the model is directly identified using a 
least-square cost function. In this contribution, the authors 
claim that their model fits over two days of clinical data for a 
given patient with T1D. In Hann et al,21 the minimal model is 
rewritten in integro-differential form. In a first attempt, almost 
all parameters were fixed with population values and only the 
insulin sensitivity SI  and the time-varying fractional clear-
ance of plasma glucose at basal insulin pG  are identified. 
After a sensitivity analysis is performed on the model 

parameters, the authors realized about the little influence of 
pG  on the model output and the importance of including 
αG ,  a parameter for the glucose clearance saturation, into the 
identification process. In Cobelli et  al,22 Caumo et  al,23 
Pillonetto et al,24 and Dalla Man et al,25 the structural identifi-
ability of the minimal model is studied using different sce-
narios. In the latter publication, the model is analyzed with 
three different representations of the rate of glucose appear-
ance. In this analysis, the volume of distribution of glucose 
V  is found nonidentifiable and the rate parameter p1  is 
found to be nonuniquely identifiable (ie, locally structurally 
identifiable). After fixing V and p1 , the remaining identifi-
able parameters are identified using data from 22 normal sub-
jects after a meal glucose tolerance test (MGTT). In Chin and 
Chappell,26 the authors addressed the structural identifiability 
analysis of the minimal model by assuming different setups. 
First, the identifiability of the two-equation minimal model is 
studied by assuming only the measurement of plasma glu-
cose. According to their findings, p2 ,  the insulin action time 
constant, is not identifiable. When expanded to a three-equa-
tion minimal model with switching state (G t p( ) < 5  and 
G t p( ) > 5 ), the authors showed that the model remains struc-
turally globally identifiable, under the assumption of mea-
sured plasma insulin and glucose. In Kanderian et al,27,28 the 
Medtronic Virtual Patient (MVP) model, which is based on 
Bergman’s minimal model, is identified with closed loop data 
(insulin and glucose). The identification was performed in 
three steps: (1) known insulin delivery rates were used to esti-
mate parameters of the insulin PK model, (2) measured insu-
lin profile and known meal CHO content is used to identify 
six additional parameters, (3) inclusion of intraday variation 
for insulin sensitivity SI , endogenous glucose production 
EGP , glucose effectiveness at zero insulin GEZI  whether 
results are not satisfactory. In Messori et al,17 the authors indi-
vidualized the linearized UVa/Padova model around a basal 
working point. Identification is performed using closed-loop 
in silico data from the simulator (100 virtual subjects) and a 
cost function minimizing the square deviation of the model 
with respect to the entire dataset with two additional terms 
acting as soft constraints over low and high glycemic values. 
The solution of the proposed optimization problem was found 
by means of simulated annealing (SA) heuristic.

Alternative methods have also been presented.29,30 In 
Herrero et al,29 the minimal model is reparametrized to ren-
der globally structural identifiable. The parameter identifica-
tion is performed through the set inversion via interval 
analysis (SIVIA) assuming a set of acceptable errors (inter-
vals) from standard intravenous glucose tolerance test 
(IVGTT) data. The authors claimed the use of a computa-
tionally efficient implementation to overcome the extensive 
computational complexity derived from the method. In 
Laguna et  al,30 the authors used the Cambridge model12 
(Hovorka’s model) together with interval analysis, tackling 
the model uncertainties with interval models. Unlike the 
above methods, interval analysis provides an envelope of 
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glucose covering all the possible glucose trajectories given 
an allowed parameter variability.

As it was evidenced, model individualization in diabetes 
technology has been typically addressed without a formal 
procedure or method, that is, direct identification is made 
without exploring possible problems in the model structure 
or in the amount and quality of the available data. A possible 
hypothesis explaining why identifiability analysis is usually 
overlooked by some researchers is perhaps due to the avail-
ability of powerful software suits able to solve complex 
numerical optimization problems.26 However, disregarding 
possible identifiability issues will probably produce ill-posed 
problems, and with this, multiple solutions for a given 
parameter set. In some cases, structural identifiability is 
studied under different conditions and using different model 
structures; only few contributions addresses possible practi-
cal identifiability issues.

Analyzing both structural and practical identifiability 
give a clear path to obtain unique representations for a given 
experimental dataset. In this regard, this manuscript presents 
a complete identifiability analysis of three commonly used 
models for AP design. The models are selected according to 
(1) the number of equations and (2) different model struc-
tures, that is, models are control-oriented models with simi-
lar number of equations but with alternative descriptions of 
the main variables in the glucose metabolism. Our study dif-
fers from the existing ones as possible structural and practi-
cal (related to the amount and quality of data) limitations of 
the analyzed models are carefully addressed to guarantee a 
reliable model identification/individualization.

Methods

Participants and Data Selection

CGM (Dexcom G5, San Diego, CA) and insulin pump data 
(Tandem Diabetes Care, Inc, San Diego, CA) together with 
meal information (timing and carbohydrate counting) and 
physical activity data (fitbit, San Francisco, CA) were col-
lected during an IRB-approved clinical trial (clinicaltrials.
org NCT02558491) at the University of Virginia 
(Charlottesville, VA, USA) for 15 study subjects on continu-
ous subcutaneous insulin infusion (CSII) and 10 study sub-
jects on multiple daily injections (MDI), all having been 
diagnosed with type 1 diabetes for at least six months. Each 
patient experienced two identical outpatient admissions of 
48 hours (separated by four weeks or more), experiencing 
both meal and exercise challenges designed to induce glu-
cose variability. In the time in between the admissions, the 
patients were asked to perform at least three exercise bouts 
every week. In order to go through the details of the role of 
identifiability on model individualization, 7-day data in 
between the admission periods was selected from five sub-
jects (group CSII) in rest periods, that is, data from 1h before 
to 3h after exercise periods were excluded. For analysis 

purposes, the data is divided into 6h intervals, every 6h inter-
val corresponding to an experiment.

Models Under Study

In all the models, it is assumed that the only measurement 
comes from the CGM. Therefore, y  will correspond to the 
plasma glucose concentration in every model.

The Subcutaneous Oral Glucose Minimal Model—SOGMM.  Con-
sider an extended version of the minimal model, known as 
the subcutaneous oral glucose minimal model (SOGMM)14

x t S x t x t S G
k f
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x tg g b

abs

g
1 2 1 4( ) = − + ( )( ) ⋅ ( ) + ⋅ +

⋅
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	 x t k x t k x tabs4 4 3( ) = − ( ) + ( )τ 	 (1d)

	 x t k x t J td ctrl5 5( ) = − ( ) + ( ) 	 (1e)
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with I t x V BWI( ) /= ⋅( )7  the insulin concentration (mU/l), 
x t tx1 7( ), ( ),  the state variables of the system, namely, 
plasma glucose concentration (mg/dl), proportion of insulin in 
the remote compartment (1/min), glucose mass in the stomach 
(mg), glucose mass in the gut (mg), insulin amount in the first 
compartment (mU), insulin amount in the second compart-
ment (mU), and plasma insulin (mU), respectively, ω( )t  the 
rate of mixed-meal carbohydrate absorption (mg/min), and 
Jctrl  the insulin input signal (mU/min). The parameters of (1) 
are presented in Table 1. Basal glucose is computed as indi-
cated in Patek et al:14

	 G HbA cb = ⋅ −1 28 7 46 7. . 	 (2)

where HbA1c is the patient’s most recent glycated hemoglobin.

The Intensive Control Insulin-Nutrition-Glucose (ICING) Model.  Con-
sider an extended version of the Bergman’s minimal model, 
known as the intensive control insulin-nutrition-glucose model 
(ICING) presented elsewhere.15 Although this model is origi-
nally used for tight glycemic control at the intensive care unit 
(ICU), it was found to be suited for patients with T1D after 
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some modifications: the terms for parenteral feeding and endog-
enous insulin production are neglected to represent the glucose-
insulin dynamics for a patient with T1D in an outpatient 
setting.
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where x1 (mmol/l) is the blood glucose or plasma glucose, 
x2 (mU/l) the insulin concentration in the interstice, x3
(mU/l) the insulin concentration in plasma, x4 (mmol) the 
amount of glucose in the stomach, x5 (mmol) the amount 
of glucose in the gut, uex (mU/min) the exogenous insulin, 
and D (mmol/min) the amount of ingested carbohydrates. 

P (mmol/min), as defined below, corresponds to the glu-
cose appearance into the blood stream from the enteral 
nutrition

	 P min d x t Pmax= ( )( )2 5 , 	 (4)

The description of the model parameters together with its 
units and numerical values (seed or population values) are 
presented in Table 2.

The Minimal Model Control-Oriented.  Consider a control-ori-
ented model of the glucose-insulin system, presented else-
where in Magdelaine et al.16
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where x t tx1 5( ), ( ), denotes the plasma glucose concentra-
tion in (mg/dl), the plasma insulin concentration in (U/l) and 
its derivative in (U/l/min), and the carbohydrate digestion in 
(g/min) and its derivative in (g/min/min). The description of 

Table 1.  Model Parameters With Population Values for SOGMM.

Symbol Meaning Value Range Units

Sg Fractional glucose effectiveness 0.01 0 0 1, .[ ] 1/min

Vg Distribution volume of glucose 1.6 Fixed dl/kg

kabs Rate constant—oral glucose consumption 0.01193 Fixed 1/min

kτ Time constant related with oral glucose absorption 0.08930 Fixed 1/min

p2 Rate constant of the remote insulin compartment 0.02 Fixed 1/min

f Fraction of intestinal absorption 0.9 Fixed —

VI Distribution volume of insulin 0.06005 0 5,[ ] 1/kg

kcl Rate constant of subcutaneous insulin transport 0.16 0 0 1, .[ ] 1/min

kd Rate constant of subcutaneous insulin transport 0.02 0 0 1, .[ ] 1/min

SI Insulin sensitivity 0.0006 [ . , ]0 5 1210 104 4× ×− − 1/min/mU/l

BW Body weight Known Fixed kg

Gb Basal glucose concentration Eq. (2) Fixed mg/dl

Ib Reference value for I t( ) , associated with the fasting 
plasma glucose concentration.

Steady-state Fixed mU/l
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the model parameters together with its units and numerical 
values (seed or population values) are presented in Table 3.

Identification Methodology

In the present study, it is considered that the only available 
source of information (measurement) comes from the plasma 
glucose concentration (CGM). We follow the procedure in 
Figure 1. The arrows indicate the (possible) existence of an 
iterative process where a subprocedure can be revisited once 
preliminary results from the following/preceding subproce-
dure is obtained. At the end, model identification is per-
formed by the minimization of the mean square error (MSE) 
through the defined dataset.

The performance of the models after identification will be 
assessed by means of the root mean square (RMS) criterion

	 RMS y
N

yi
N

i i= −( )∑ =
1

1

2
 	 (6)

where N , y , and y  stand for the number of data points, the 
CGM measurements, and model output, respectively.

Identifiability Analysis

Let’s consider the following nonlinear ODE model repre-
senting the system dynamics of the phenomena of interest

Σ( ) :
( , , ) ( , , )

( , ,
θ

θ θ

θ

x t f x t t f x t t u t

y g x t

ij

m

i( ) = ( ) + ( ) ⋅ ( )
= ( )

=∑0 1

tt)






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where x n∈  is the system state, u m∈ is the input (exter-
nal excitations), y n∈ 0  the system output (measurements), 
f0  and fi  with i m= …1, ,  are a vector fields whose entries 

are analytic functions of their arguments, and θ Θ∈ ⊂ ∈x np  
is the vector of parameters within a feasible space Θ . In this 
regard, we define an experiment setup with ne  different 
experiments and ns  different sampling times.

Structural Identifiability.  Structural identifiability is a theoreti-
cal property of the model structure depending only on the 
system dynamics, the observation and the stimuli functions.32 
Formally, this property is defined as the possibility of assign-
ing unique values to model parameters from the observables 

Table 2.  Model Parameters With Population Values for ICING Model.

Symbol Meaning Value Range Units

PG Patient endogenous glucose removal 0.006 0 1,[ ] 1/min
SI Insulin sensitivity 0.002 [ . , ]0 5 1210 104 4× ×− − l/mU/min
αG Saturation of insulin-stimulated glucose 0.0154 Fixed l/mU
EGPb Basal endogenous glucose production 1.16 0 5,[ ] mmol/l
CNS Insulin independent central nervous system glucose uptake 0.3 Fixed mmol/min
VG Glucose distribution volume 13.3 0 50,[ ] l
VI Insulin distribution volume 3.15 Fixed l
α I Saturation of plasma insulin disappearance 0.0017 Fixed l/mU
nC Rate parameter 0.003 Fixed 1/min
nI Transcapillary diffusion rate 0.003 Fixed l/min
nK kidney clearance rate of insulin from plasma 0.0542 Fixed 1/min
nL Patient specific liver clearance 0.1578 Fixed l/mU
d1 Transport rate 0.0347 Fixed 1/min
d2 Transport rate 0.0069 Fixed 1/min
Pmax Saturation value of x5 6.11 Fixed 1/min

Table 3.  Model Parameters With Population Values for MMC Model.

Symbol Meaning Value Range Units

Vi Insulin distribution volume 2.5 BW — dl
VB Glucose distribution volume 0.65 BW — dl
kb Insulin independent glucose utilization 128/BW — mg/dl/min
BW Body weight known — kg
ksi Insulin dependent glucose utilization 300 0 500,[ ] mg/U/min
Tu Time constant 82.6 0 500,[ ] min
ku Static gain 16.45 0 100,[ ] min
Tr Time constant 75.4 Fixed min
kr Static gain 18.28 Fixed min
kl Endogenous glucose production 2.24 Fixed mg/dl/min
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(system outputs) but assuming noise-free and continuous-
time data.32 In this regard, a parameter θi pi n, , ,= …1  is  
said structurally globally identifiable if for almost any 

θθ* = …( )∈θ θ θ1 2
* * *, , , n

n

p

p

	 Σ Σ( ) ( )* *θθ θθ= ⇒ =θ θi i
	 (8)

This property means that if a parameter or set of parameters 
under study are found to be structurally globally identifiable, 
it is possible to obtain a unique numerical value for every 
parameter under the stated conditions (noise-free and contin-
uous-time data). Global structural identifiability can be hard 
to characterize, therefore, as an alternative, a parameter 
θi pi n, , ,= …1  is said structurally locally identifiable if for 
almost any θθ ΘΘ* * * *( ,, , )= … ∈θ θ θ1 2 np

, there exists a neighbor-
hood V ( )*θ  such that

	 θθ θθ θθ∈ = ⇒ =V i i( ) ( ) ( )* * *θ θ θand Σ Σ 	 (9)

Methods assessing structural identifiability can be found in 
the literature, and the reader is directed to the review from 
Chis et  al.33 Here, we chose the method of the generating 
series approach (GS).34 The method relies on the fact that the 
system outputs can be expanded in series with respect to time 
and inputs, using as coefficients the function g x( , , )θ 0  and 
all the successive Lie derivatives along the vector fields 
f fi0 and ,  that is, L Lf fg g

i0
, ,  L Lf f g0 0

,  L Lf fi
g

0
,  and so on. 

As a matter of illustration, the Lie derivative of g  along f0  
can be written as

L f g
g

x
f

0 0=
∂
∂
,

where ⋅ ⋅,  denotes the scalar product between two vectors. 
It is important to emphasize that the GS approach does not 
specify an upper bound for the order of the derivatives to be 
taken to prove/disprove the property. Therefore, either the 
Lie derivatives are taken until a solvable set of algebraic 
equations in the parameters is found or until, after some coef-
ficient, all subsequent coefficients become zero. The advan-
tage of this method over the Taylor series approach is that the 
obtained mathematical expressions are easier to handle.33 

Since the amount of Lie derivatives can be overwhelming, 
Balsa-Canto et al introduced the concept of the identifiability 
tableaus33 to (1) organize the Lie derivatives, (2) systematize 
the resulting algebraic equations, and (3) handle possible 
structural identification issues. The tableau depicts the non-
zero elements of the Jacobian of the series coefficients with 
respect to the parameters. In this sense, the tableau is an array 
with as many columns as parameters and as many rows as 
nonzero computed coefficients. Once enough nonzero coef-
ficients guarantee the full-rank condition of this array, at 
least the local identifiability of the parameters can be stated. 
Structural identifiability of the models is studied by a combi-
nation of the GS approach34 and identifiability tableaus35 by 
means of the GenSSI tool.36

Practical Identifiability.  Structurally identifiable parameters 
may not though be identifiable in practice. Practical identifi-
ability deals with whether the parameters can be estimated 
with sufficient precision using experimental data.37 Lack of 
practical identifiability can result from (i) parameters with-
out influence on the system outputs and (ii) correlated param-
eters, that is, the effect of some parameter is affected or 
overshadowed by the effect of some other parameter or 
parameters.

Global Parameter Ranking.  Global parameter ranking 
proposes to sort the model parameters with respect to their 
impact on the system outputs. In this sense, the parameters 
impacting the outputs the most can be either selected for a 
further structural identifiability analysis or for model identi-
fication. The most common approach for parameter ranking 
involves the use of parametric sensitivities38 like

	 S
y

i j

y y t

j

i
,

( , ),

( )θ
θ

θ θ θ

=










∂
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	 (10)

where θ  is evaluated at some nominal value θ . A relative 
parametric sensitivity is easily found by normalizing both 
outputs and parameters. However, in order to make the anal-
ysis valid to the entire parameter space, a global approach 
needs to be used.35,39 Although Monte Carlo approaches 
stand out as the most common approaches, these techniques 

Figure 1.  Identification procedure. { }θset j  indicates the evolution of the identification parameter set according to the identifiability 
analysis. The star indicates the final set for identification.
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require considerable computational effort and a large number 
of samples.40 Balsa-Canto et al showed a global parameter 
ranking strategy based on the Latin hypercube sampling 
(LHS) method and the use of five importance factors which 
give more precise estimates with lower computational effort 
compared to Monte Carlo approaches.35

Once the sensitivities are computed for every sample, the 
importance factor for parameter θi is defined as

	 δθ θ
i i i
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where ne  refers to the number of experiments, no  the num-
ber of observables, nlhs the number of samples in the LHS 
algorithm, ns to the specific sampling times used in a given 
experiment with a given observable, n n n n nD elhs o s= ⋅ ⋅ ⋅ ,  
and s t

i ij
l e

sθ ,
, ( ) the sensitivity of parameter θi  with the observ-

able j ,in experiment e  (using tsi sampling time), and sam-
ple l  in the LHS method. Then, parameters can be ordered 
according with their δθi

msqr values. In the specific case of the 
glucose-insulin system (1.6) can be simplified as
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since there is only one observable (CGM trace) and in every 
experiment the same sampling time is used. Note that (12) 
depends on the number of samples in the LHS method as 
well as the number of experiments. Our findings show simi-
lar results using nlhs =1000 and either ne = 7  (1-day data for 
every experiment) or ne = 28  (6h data for every experi-
ment). Ranking of parameters is performed using the follow-
ing parameter clusters: (1) Sensitive parameters are in order 
of importance and sum more than the 80% of the total δmsqr ,  
(2) almost insensitive parameters are parameter subsets gath-
ering less than the 1% of their respective total δmsqr ,  and (3) 
mildly sensitive parameters are in between. The latter param-
eters can be used to refine the identification procedure when 
allowed, that is, whether identifiability is not compromised. 
Sensitive parameters are then selected to continue with the 
identification analysis.

Correlation Among Parameters.  As stated before, even the 
effect of most significant parameter(s) might be overshad-
owed by the effect of others.35,41 Analysis of the correlation 
between parameters can indicate such deficiency.35,37 To 
avoid a pair-by-pair analysis of parameters, a collinearity 
analysis of the entire subgroup can be performed instead.41,42 
The collinearity analysis is based on the linear dependence 
definition: the parameters are linearly dependent (collinear) 
if there exist k  scalars αi ≠ 0  with i k= …1, ,  such that

α α α1 1 2 2 0s s s$ $ L $
,: ,: ,:+ + =+ k k

where si ,: is a vector of the sensitivity matrix related to 
parameter θi . A way to approximate this result is by means 

of the degree of collinearity among a group of parameters 
which is defined as41,42

	 C
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where θset is the set of considered parameters for the collin-
earity analysis, S

set


θ is the submatrix of the sensitivity matrix 

with the vectors related to the set θset , and λθset  is the small-

est eigenvalue of the matrix S S
set set

T 
θ θ .  The larger the collin-

earity index the more dependent the set of parameters are. 
According to Brun et  al,42 a threshold of CD set( )θ < 20 is 
highly desired. Due to the complexity and high variability of 
the glucose dynamics, the collinearity analyses were per-
formed in 6h datasets instead of 1-day datasets.

Results

Structural Identifiability Analysis

It is important to note that none of the three models consid-
ered in this analysis is either locally or globally structurally 
identifiable considering the original parameter set, that is,
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In the case of SOGMM and MMC models, the authors indi-
cated a reduction of the parameter sets to
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since both BW  and f are a priori known (and then fixed) in 
SOGMM and because constitutive equations are provided for 
V V kB I b, , and  in the MMC in terms of the body weight (BW)
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which lead again to nonidentifiable models (from the struc-
ture). With the above scenario, there exist many combina-
tions of parameters to be analyzed from every model in order 
to obtain a subset of structurally identifiable parameters, 
making the procedure cumbersome. Therefore, a method 
helping in that selection is of paramount importance. In this 
case, we circumvented the above issue by means of the 
global ranking of the parameters in terms of the parameter 
sensitivity, that is, what are the parameters impacting the out-
put the most.

SOGMM.  Consider the parameter set θ1, .SOGMM  Using the 
global ranking of parameters, we found the six most impact-
ing parameters in this model, that is,
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Figure 2.  Identifiability tableaus for SOGMM.

Figure 3.  Identifiability tableaus for ICING model.

θ2,SOGMM I V S k S kb i i cl g d=  

However, as it will be confirmed later, Ib  is found to be 
highly correlated to other parameters (from the given experi-
mental data). After dropping Ib , the new set becomes

θ3,SOGMM V S k S kI i cl g d=  

where is found, by means of GS method and the identifiability 
tableaus, that all the parameters are locally structurally identi-
fiable as shown in Figure 2. Note that 120 coefficients are gen-
erated by means of the Lie derivatives (left) from which 5 
coefficients are found to fulfill the rank condition (right).

ICING Model.  Using the global ranking of parameters and a 
similar analysis as before we found that the set

θ1 2,ICING V P EGP d S V n n n nG G b I G I K L I C=  α

is globally structurally identifiable. Figure 3 show the 
identifiability tableaus with more than 700 coefficients of 
the series (left) and 11 relations fulfilling the rank condi-
tion. Moreover, Pmax  was determined to be nonidentifiable 
which is explainable by the use of the “min” function in (3) 
and (4).

MMC.  Using the global ranking of parameters and a similar 
analysis as before we found that

θ2,MMC si u r r lk T T k k= [ ]

is globally structurally identifiable. Figure 4 show the 
identifiability tableaus with around 22 coefficients of the 
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series (left) and reduced tableaus indicating the fulfill-
ment of the rank condition (and the uniqueness in the 
solution).

Practical Identifiability Analysis

The parameters of every model are ranked with respect to 
δmsqr  in (1.6) as importance factor using AMIGO2 toolbox.43 

Figure 4.  Identifiability tableaus for MMC.

Figure 5.  Global ranking of parameters for patient 1 in seven days using the three models.

As stated before, similar results were found by using 
nlhs =1000  and either ne = 7  (1-day datasets) or ne = 28  
(6h datasets). Figure 5 shows the importance factor δmsqr for 
all the parameters in the three studied models considering 
every experiment as 1-day of data in patient 1. Although 
δmsqr  does vary from one experiment to the next, the varia-
tion pattern (ranking) is almost homogeneous, leading to 
robust ordering of the parameters.
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Figure 6.  Global ranking of parameters for patients 1-5 during day seven using the three models.

Table 4.  Parameter Clustering in the Studied Models.

Model Sensitive Mildly sensitive Almost insensitive

SOGMM I V k S S kb I cl I g d, , , , , Gb , p2 V k kg abs, , τ

ICING P V EGP P CNSG G b max, , , , S V d dI G I, , , ,α 1 2 αI I C K Ln n n n, , , ,
MMC k T ksi u u, , − k k Tl r r, ,

Figure 6 shows the global ranking of the parameters for 
all the selected patients during the last dataset. In spite of 
the numerical differences, the relations among parameters 
within a subject are maintained, therefore the rank remains 
with no change. Table 4 summarizes the different effects 
of the parameters on the system output (plasma glucose 
concentration). Sensitive parameters sum the 97%, 99%, 
and 85% of total δmsqr  for SOGMM, MMC, and ICING, 
respectively.

Using the above results, the parameters labeled as “almost 
insensitive” are fixed with population values. Then, consid-
ering the results from the structural identifiability analysis, 
we update the sets of parameters to be identified as
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From the above parameter sets, the collinearity of the paramet-
ric sensitivities is investigated for every patient in different 
time windows. As stated before, datasets with 6h data each are 
used in this analysis to account for the intrapatient variability 
and dynamic changes contained in the CGM traces. Moreover, 
this short-term analysis will also allow further investigation of 
the data reliability for model identification at different times of 
the day. After evaluating the collinearity of the parametric 
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sensitivities for the different combinations of parameters, the 
following sets were found to be the best conditioned in most of 
the evaluated time windows
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Tables 5-7 show the evaluation of the condition CD set( )θ < 20
for the five evaluated patients (#P) in all the defined time 
windows (1-28) for the three models. “x” marks show datas-
ets where the parameters are possibly correlated and hence 
are not suitable for identification. From the visual inspection 
of these tables, we found that the above parameters sets have 
correlation issues in 41, 35, and 71 out of the 140 datasets for 
SOGMM, ICING, and MMC, respectively.

Model Identification

The three models are identified with the parameter sets 
defined above and with the suitable datasets for identifica-
tion as presented in Tables 5-7. The variation intervals of the 
parameters to be identified are presented in Tables 1-3. 
Figure 7 shows the model identification for patient 1 using 
the three models. The parameter variability of the models 
after every 6h identification is presented in Figure 8. The 
RMS index is presented in Table 8 for all patients. Note that 
MMC model was not able to provide results for patient 4, 
possibly for limitations in the model structure.

Several runs were performed by comparing θ4,SOGMM  vs 
θall SOGMM, , θ3,ICING  vs θall ICING, , and θ3,MMC  vs θall MMC,  
(where θall model,  refers to all parameters of the corresponding 
model) after modifying either the initial guess on the 

Table 5.  Collinearity Test for θ4,SOGMM  in the Defined 6h Datasets.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

#P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✘
2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✘
3 ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✔
4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✔ ✔
5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘

Check marks indicate that the condition CD set( )θ < 20  is met in the corresponding dataset. Otherwise, an “x” mark is used.

Table 6.  Collinearity Test for θ3,ICING  in the Defined 6h Datasets.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

#P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔
2 ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔
3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔
4 ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔
5 ✔ ✔ ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔

Check marks indicate that the condition CD set( )θ < 20  is met in the corresponding dataset. Otherwise, an “x” mark is used.

Table 7.  Collinearity Test for θ3,MMC  in the Defined 6h Datasets.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

#P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✔
2 ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✘
3 ✘ ✔ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘
4 ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✔ ✘ ✔
5 ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘

Check marks indicate that the condition CD set( )θ < 20  is met in the corresponding dataset. Otherwise, an “x” mark is used.
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parameters and the state’s initial condition. Although some 
times the models fit the data very well (according to the RMS 
criterion), the identified parameters θall model,  did not con-
verge to any specific value which show the nonuniqueness of 
the solutions.

Discussion

In this study, three commonly used control-oriented models 
for artificial pancreas systems are investigated in terms of 
their properties to be individualized (identified) to field col-
lected data. While previous contributions gave a big role to 
the insulin sensitivity, likely due to its role in the evolution of 
mathematical models of glucose metabolism,44,45 the pre-
sented results indicate that insulin sensitivity is not the 
parameter impacting the model output the most in the three 
studied models.

While structural identifiability16,22-26 has been significantly 
more studied than practical identifiability24,31 in control-oriented 
models for artificial pancreas design, it appears that direct iden-
tification is typically performed disregarding the potential pit-
falls from the misestimation of model parameters. However, as 
it has been widely shown in diverse contributions,20,35,41 both 
properties are necessary to guarantee the uniqueness of the iden-
tified parameters and hence the model usefulness.

In this contribution, we showed a straightforward identifi-
cation/individualization methodology for control-oriented 
models in diabetes technology capable of reproducing outpa-
tient data from patients with T1D. Our methodology uses 
existing procedures and tools such as the generating series 
approach, identifiability tableaus, global parameter ranking, 
and collinearity analysis to investigate possible structural or 

practical issues before performing parameter identification. 
When compared to direct identification of the whole param-
eter set, our approach gives a subset of identifiable parame-
ters which in turn reduces the computational load from the 
solution of the identification problem while guaranteeing the 
uniqueness of the solution.

Results from the present study showed that the studied 
models are able to reproduce the experimental data in 6h 
intervals or less in spite of their different model structure. 
This may be explained by the structural uncertainty of mini-
mal models when compared to maximal models which are 
able to reproduce experimental data for longer periods of 
time.46 This fact and high intrapatient and interpatient vari-
ability makes online identification a desired feature for use 
of these models in dosing strategies.

As it was evidenced, structural identifiability analysis 
needs to be revisited once the global ranking of parameters is 
performed. Therefore, a good idea is to start with the global 
parameter ranking and propose a candidate parameter set for 
structural identifiability. If the structural identifiability test 
rejects a sensitive parameter then this parameter should be 
dropped (as with Pmax  in ICING model).

Global parameter ranking reveals possible insensitivity 
of the observables to some parameters. Moreover, using 
the global ranking, we may define the parameter set with 
most influence on the system output. In our case, we 
obtained parameter sets summing the 97%, 99%, and 85% 
of total δmsqr  for SOGMM, MMC, and ICING, respec-
tively, although more than 80% would give a yield trad-
eoff. It is important to point out that alternative importance 
factors may give different rankings and therefore this fact 
needs to be further studied.

Figure 7.  Model calibration of the three analyzed models for patient 1. The rightmost figure shows a zoom of the first day.
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The collinearity test shows possible linear dependence 
among candidate parameters as a whole for a given dataset 
instead of examining the correlation for every pair of 
parameters. In this way, ill-conditioned data (sometimes 
referred as weak data) need to be avoided or replaced if 
possible. As shown in Tables 5-7, not every dataset was 
conditioned for identification for the given sets of parame-
ter candidates θ θ4 3, ,, ,SOGMM ICING  and θ2, .MMC  A possible 

explanation for this is perhaps the inputs were applied in 
such a way that provided indistinguishable input-output 
relationships from the available information. In this regard, 
design of experiments may play an important role for model 
individualization.47,48

While a good model fitting is shown in Figure 7 for the 
three models in almost all the scenarios, what is important to 
highlight is the uniqueness of the identified parameters (since 

Figure 8.  Parameter variation (after identification) in all the used data batches.

Table 8.  Model Performance Using the RMS (mg/dl) in All Patients (#).

Model RMS (#P1) RMS (#P2) RMS (#P3) RMS (#P4) RMS (#P5)

SOGMM 15.64 18.46 51.32 22.16 18.15
ICING 15.80 20.75 17.61 21.81 26.61
MMC 18.62 18.85 30.35 − 29.51
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similar performances may be obtained with the full parame-
ter sets). However, we found that the optimization did not 
converge for MMC (patient 4) as the linear model might be 
found limited to represent such complex data.

From the three studied models, ICING is perhaps more 
prone to overfitting if all parameters are used for identifica-
tion since it has more parameters (degrees of freedom) and 
almost the same number of equations if compared with 
SOGMM and MMC. Although MMC is found to be the sim-
plest model, the lack of parameter interpretability hampers 
the definition of practical parameter ranges. Moreover, our 
analysis indicates larger variability over the parameters of 
this model, inferior accuracy, and high correlation.

Conclusion

Model individualization in diabetes technology has typically 
been carried directly, that is, given a parameter set determined 
in an arbitrary way, the parameters are identified from the 
optimization of a certain cost function. In this contribution, 
we presented a thorough and easy-to-follow identification 
procedure based on the structural and practical identifiability 
properties. In this sense, it was found that structural identifi-
ability, global parameter rank, and correlation analysis of the 
parameters give a complete picture for parameter selection in 
terms of model individualization (patient-adjusted models). 
Identification results show acceptable fitting with the studied 
models with respect to real CGM and insulin pump data from 
patients with T1D in an outpatient setting while guaranteeing 
the uniqueness of the parameter selection. As far as we are 
aware, this is the first time that a thorough identifiability anal-
ysis is performed on control-oriented models for artificial 
pancreas systems.
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