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Abstract 

An effective HIV-1 vaccine probably will need to be able to induce broadly neutralizing HIV-1 antibodies (bNAbs) 
in order to be efficacious. The many bNAbs that have been isolated from HIV-1 infected patients illustrate that the 
human immune system is able to elicit this type of antibodies. The elucidation of the structure of the HIV-1 envelope 
glycoprotein (Env) trimer has further fueled the search for Env immunogens that induce bNAbs, but while native 
Env trimer mimetics are often capable of inducing strain-specific neutralizing antibodies (NAbs) against the parental 
virus, they have not yet induced potent bNAb responses. To improve the performance of Env trimer immunogens, 
researchers have studied the immune responses that Env trimers have induced in animals; they have evaluated how 
to best use Env trimers in various immunization regimens; and they have engineered increasingly stabilized Env trimer 
variants. Here, we review the different approaches that have been used to increase the stability of HIV-1 Env trimer 
immunogens with the aim of improving the induction of NAbs. In particular, we draw parallels between the various 
approaches to stabilize Env trimers and ones that have been used by nature in extremophile microorganisms in order 
to survive in extreme environmental conditions.
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Background
The development of an effective and safe vaccine against 
HIV-1 requires a detailed understanding of the virologi-
cal and immunological characteristics of HIV-1 infection. 
The virus has the ability to mutate very quickly, result-
ing in great viral diversity and making the development 
of an effective vaccine very challenging. Therefore, many 
research groups in the HIV-1 vaccine field pursue the 
development of a vaccine that can induce broadly neu-
tralizing antibodies (bNAbs), i.e. antibodies that can tar-
get the functional envelope glycoprotein (Env) on many 
different virus isolates.

A focus of vaccine design is the generation of soluble 
Env trimer mimetics that can induce such antibodies and 
much progress has been made over the last few years 
in generating recombinant Env trimers that resemble 
the native Env spike. This required negating the inher-
ent instability and flexibility of the native Env trimer 
and was accomplished by molecular design, resulting in 

soluble stable Env trimers, of which SOSIP.664 trimers 
were the prototype [1–4]. The clade A BG505 SOSIP.664 
trimer, now the gold standard in HIV native-like trimer 
immunogen design, allowed the determination of the 
high-resolution structure of the Env trimer [5–7]. A 
recent structure of the membrane-derived JR-FL trimer 
confirmed that the soluble and stabilized BG505 trimer 
resembled the native Env trimer present on the viral 
membrane [8]. Moreover, the SOSIP.664 design could be 
extrapolated to HIV-1 isolates other than BG505, thereby 
expanding the toolkit for HIV-1 vaccine design [9–14]. 
When used as immunogens in animal trials, SOSIP.664 
proteins from various strains elicited autologous (strain-
specific) Tier-2 neutralizing antibodies (NAbs); however, 
these immunogens failed to elicit potent bNAbs in most 
animals [15–18].

Here, we describe several approaches that have been 
pursued in order to increase the performance of soluble 
Env trimer mimetics as immunogens to induce NAbs. 
First, we review different methods that have been used 
to improve the stability of HIV-1 Env trimers, includ-
ing forced viral evolution, structure-based design, high 
throughput screening of mutant trimers and selection 
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of improved trimers by mammalian cell display. We 
also review which epitopes on Env trimer mimetics are 
targeted by the immune system, and we assess different 
immunization strategies in which Env trimer immuno-
gens can be employed, including cocktail and sequential 
vaccination regimens.

Generating and validating mimetics of the native 
Env spike
The native Env trimer is unstable and flexible (confor-
mationally heterogeneous), and the same applies to early 
generation soluble Env trimer derivates. As a conse-
quence it took many years to elucidate its high-resolution 
structure by X-ray crystallography and cryo-electron 
microscopy (EM) techniques [19–21]. Initial low resolu-
tion cryo-electron tomography reconstructions of mem-
brane-bound and soluble trimers provided new insights 
[22, 23], but high-resolution structures of the trimer were 
solved by using BG505 SOSIP.664 and the wide assort-
ment of potent bNAbs that became available over the last 
decade [5, 24, 25]. Large gains in resolution were obtained 
with the first Env trimer crystal structure (4.7 Å resolu-
tion), which included a complex of the BG505 SOSIP.664 
trimer with the V3-glycan bNAb PGT122 [20], and the 
first cryo-EM derived model of the same trimer in com-
plex with the CD4 binding site bNAb PGV04 at a resolu-
tion of 5.8 Å [19]. In addition to providing lattice contacts 
to facilitate crystallization and 3D features to facilitate 
EM reconstruction, these bNAbs also provided validation 
of the structures, as the respective bNAb epitopes were 
clearly present.

The next step was to improve the resolution of the 
trimer structure by complexing the trimer with a com-
bination of several new bNAbs. The use of the 35O22 
bNAb directed to the gp120-gp41 interface and antibod-
ies of the PGT121-family increased the resolution to ~ 3.5 
Å and then 3.0 Å, and provided new details of the pre-
fusion conformation of gp41, especially in HR1, a par-
tially disordered region [6, 7, 26]. The SOSIP platform 
has been applied to trimers from different HIV-1 clades 
and their structures in complex with diverse bNAbs have 
also been elucidated, providing valuable new information 
for structure-based vaccine design [12, 21, 27–30]. Over-
all, the structures of all SOSIP trimers showed a highly 
similar trimer core, but revealed some differences in the 
variable loops that emanate from the core [21].

Another breakthrough came with the elucidation of 
the cryo-EM structure of a membrane-derived JR-FL 
trimer that was stabilized by the bNAb PGT151, but 
not by SOSIP mutations [8]. The overall structural fea-
tures of the membrane-derived trimer as well as bNAb 
epitopes agree well to those of the soluble SOSIP trim-
ers. However, subtle differences were observed in the 

HR1 region of gp41, where the I559P substitution in 
the soluble trimer breaks a helix that is present in the 
full-length Env structure, exactly as it was meant to do 
[1, 8]. The high similarity of the membrane-derived and 
the soluble version of the Env confirm the value of the 
SOSIP design for generating soluble Env spike mimet-
ics. A modification of the SOSIP design involves the 
introduction of a flexible Gly-Ser linker between gp120 
and gp41 to replace the furin cleavage site, sometimes 
with additional modifications, effectively resulting in 
single chains trimers that do not require furin cleavage 
[31–33].

Designing next‑generation Env trimers: learning 
from HIV‑1 itself
A strategy to stabilize the Env trimers is by understanding 
and exploiting stability on the virus. To protect Env from 
NAbs, the virus evolves in a Darwinian way by selecting 
mutations in Env, in particular its variable loops, and by 
masking the protein surface with a shifting glycan shield. 
Virus evolution can also be exploited in the lab to obtain 
valuable information about mutations that can stabilize 
the Env trimer while retaining its functionality [34–37]. 
Such mutations can then be used to stabilize recombi-
nant Env vaccine candidates.

By culturing HIV-1 virus under harsh conditions such 
as unphysiological temperatures (45–55  °C) or incre-
mental concentrations of denaturant (GuHCl), Leaman 
and colleagues identified a more stable Env mutant that 
contained seven mutations compared to its wild-type 
counterpart. Most of the mutations were located in the 
gp120-gp41 interface, including positions 535 and 543 
(Fig. 1, Table 1) [34]. These substitutions were also identi-
fied by an earlier study in which the sequence of the early 
generation but relatively stable KNH1144 SOSIP protein 
was compared to that of the unstable JR-FL SOSIP [38]. 
De Taeye et al. introduced, when not present, the 535M 
and 543N mutations into distinct clade B (AMC008 and 
B41) and clade C trimers (ZM197M) in order to increase 
their trimerization and stability [10]. 

Other substitutions that can improve native-like trim-
ers were selected based on studies on how the virus 
becomes dependent on the entry inhibitor VIR165, and 
how HIV-1 can adapt to cold [39, 40]. These substitu-
tions are located in C1 domain of gp120 (E64K, H66R 
and H66A; Fig. 1, Table 1) and likely keep the virus in the 
prefusion conformation by impeding steps towards the 
CD4-bound conformation by interacting with the HR1 
region in gp41 [10, 41]. Thus, mutations that increase 
the stability of the native Env spike on virions can also be 
useful for the development of stable soluble native-like 
Env immunogens.
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Designing next‑generation Env trimers: learning 
from extremophile organisms
SOSIP trimers based on  most virus isolates other than 
BG505 initially did not form stable native-like trimers 
efficiently. However, the available trimer structures pro-
vided sufficient structural details to design modifications 
that improve the structure and stability of Env trimers, 
and that allowed generating stable trimers from many 
different isolates and clades.

When considering how to stabilize vaccine antigens, 
much can be learnt from nature. Extremophile bacte-
ria and archea, which thrive in extreme environmental 
conditions such as high and low temperatures (between 
45–122  °C and below − 15  °C, respectively) or alkaline 
and acidic conditions (pH > 11 and pH < 1, respectively) 

[42–44], have evolved highly stable proteins compared 
to their mesophilic homologues [43, 45]. In extremophile 
organisms, natural evolution has applied six methods of 
protein stabilization. Several of these methods have been 
applied, either intentionally or not, to HIV-1 Env trimer 
vaccine design.

First, thermophilic proteins often have an increased 
number of hydrophobic residues at domain and oli-
gomer interfaces, facilitating tighter packing of pro-
tein domains [46, 47]. A similar strategy was applied to 
HIV-1 Env trimers to stabilize the trimer and prevent the 
exposure of non-NAbs [48–53]. For example, de Taeye 
et  al. avoided the spontaneous exposure of the V3 loop 
by increasing the hydrophobic interactions within the 
V3 domain and between the V3 and V1V2 domains, by 
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Fig. 1  Amino acid substitutions that help stabilize soluble native-like trimers. Crystal structure of the BG505 SOSIP.664 trimer (5CEZ; [7]) displaying 
amino acid substitutions that stabilize native-like soluble trimers (see text for details). Two protomers are colored in white and one protomer is 
colored according to different regions. In gp120: V1V2 in cyan, V3 in magenta, inner domain layer 1 in blue, layer 2 in yellow, layer 3 in orange, 
N- and C-termini in green. Gp41 is colored in red. Boxes show detailed views of regions of the Env trimer that contain stabilizing amino acid 
substitutions. The substitutions were modeled by using the mutagenesis tool in Pymol molecular graphics system version 2.0.6 [102]
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Table 1  Amino acid substitutions that stabilize soluble native-like trimers

a  Torrents de la Pena et al. Cell Rep. 2017
b  Guenaga et al. J Virol. 2015
c  de Taeye et al. Cell. 2015
d  Steichen et al., Immunity. 2016
e  Chuang et al. J Virol. 2017
f  Ringe et al. J Virol. 2017
g  Rutten et al. Cell Rep. 2018
h  Sullivan et al. J Virol. 2017
i  de Taeye et al. J Biol Chem. 2017
j  Guenaga et al. Immunity. 2017
k  Binley et al. J Virol. 2000
l  Sanders et al. J Virol. 2002
m  Guenaga et al. Plos Path. 2015
n  Do Kwon et al., Nat. Struct. Mol. Biol. 2015
o  Dey et al., Virol. 2007
p  Fusion peptide
q  Heptad repeat 1
r  Disulfide loop
s  Heptad repeat 2

Hydrophobic Aromatic Proline/glycine Disulfide bonds Charged Other

C1 E49C-L555Ca E47Db E106Tb

H72C-H564Ca K49Eb

A73C-A561Ca E64Kc

V65Kb

H66Rc

T106Ed

V1 L154Me Y177We S164Eb

V2 I165Lb Q171Kf

I172Vf I192Rf

C2 A204Ig I203Fh I201C-A433Cm,n

M271Id F223Wd

F288Ld

T290Ad

V3 N300Me N302Y/Fj H308Rb

N302Me A316Wc

R304Vd A319Yd

S306Li

R308Li

T320Le

C3 N363Qd

C4 Y420Me I201C-A433Cm,n E429Rb R432Qb

C5 A501C-T605Ck A500Rb

FPp F519Rj F516Sd

L520Rj

HR1q D589Vg T538Fh L556Pg E49C-L555Ca L568Dd I535N/Mc,g,o

I548Fh I559G/Pl H72C-H564Ca K588Eg L543Nb,c

I573Fg A561Pd A73C-A561Ca G588Rb N553Sb

L568Gj V570Hd

T569G/Pj,l R585Hd

K588Qg

DSLr A501C-T605Ck

K655Ig E647Fg M629Ph

HR2s K658Vg N651Fg S636Gj

E662Ab
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introducing two Leu residues (S306L, R308L) in the V3 
loop (Fig. 1, Table 1) [53]. Similarly, Chuang et al., Kulp 
et al., Steichen et al. and Rutten et al., introduced hydro-
phobic mutations in the trimer core (A204I, T320L, 
E381M, Q422L) or the trimer stem (D589V, K655I, 
K658V, E662A) using structure-based design and mam-
malian cell display, which resulted in increased Env pack-
ing and reduced flexibility (Fig. 1, Table 1) [49–51, 54].

Second, extremophile proteins contain a higher num-
ber of aromatic amino acids, which can enhance protein 
thermostability through ring stacking interactions as 
well as hydrophobic packing [55–57]. In structure-based 
HIV-1 immunogen design, several groups used the same 
principle and introduced aromatic residues to reduce 
V3 exposure (A316W, A319Y), and to increase stability 
of the trimer apex (Y177W, N302Y, N302F), the trimer 
base (E647F, N651F) and the trimer interface (gp120-
gp41 interface: A223W, T538F and I548F; gp41-gp41 
interface: I573F) (Fig. 1, Table 1) [10, 48–51, 54]. Overall, 
the introduction of hydrophobic and aromatic residues 
accounts for ~ 45% of the total number of mutations that 
are described in the literature to increase Env trimer 
stability.

Third, proteins from thermophilic organisms tend to 
have an increased number of charged residues involved 
in internal ion pairing and hydrogen bonding, as well as 
an increased number of positively charged residues at the 
solvent-exposed surface to provide stability at the surface 
[57]. For HIV-1 Env trimers the introduction of charged 
amino acids at the gp120 and gp41 interface also con-
tributed to formation of well-ordered native-like trim-
ers from different clades with enhanced thermostability 
(A500R, A558R) (Fig. 1, Table 1) [13, 58].

Fourth, proteins from thermophilic organisms usu-
ally contain many more predicted disulfide bonds than 
mesophilic organisms, which increases protein stabil-
ity dramatically [45, 59, 60]. In mesophiles, proteins 
with many disulfide bonds are rare. As a consequence, 
there is a strong positive correlation between the num-
ber of disulfide bonds in proteins and the maximum 
growth temperature of thermophilic organisms [45, 
59, 60]. Some viruses, such as influenza and vaccinia 
viruses, contain a disulfide bond that links the two 
Env subunits together, but HIV-1 Env naturally does 
not have such a disulfide bond, resulting in shedding 
of the gp120 subunit. The first step of generating sta-
ble native-like trimers was therefore the introduc-
tion of a disulfide bond between the gp120 and gp41 
subunits (A501C-T605C) (Fig.  1, Table  1) [2]. To sta-
bilize the flexible trimer interface, additional disulfide 
bonds have been introduced in the Env trimer: an 
intersubunit disulfide bond (A73C-A561C) and an 
interprotomer disulfide bond (E49C-L555C) (Fig.  1, 

Table 1) [7, 61]. Furthermore, an intrasubunit disulfide 
bond (I201C-A433C) described by Kwon et  al. and 
Guenaga et  al. also stabilized the trimer in its pre-
fusion state (Fig. 1, Table 1) [62, 63]. Combining three 
non-native disulfide bonds (A501C-T605C + A73C-
A561C + I201C-A433C or A501C-T605C + A73C-
A561C + E49C-L555C) resulted in hyperstable trimers 
that reached melting temperatures of up to 81  °C and 
92 °C, respectively [61].

Fifth, thermophilic organisms increase the number of 
proline and glycine residues in loops to provide confor-
mational rigidity to the protein [43]. In the HIV field, 
similar approaches have been used to generate soluble 
Env trimers. Since the HR1 region forms a helix in the 
post-fusion state and it adopts a partially disordered 
conformation in the pre-fusion state, we introduced the 
I559P mutation in the loop of HR1 to destabilize the 
post-fusion state of gp41 and stabilize the pre-fusion state 
[1]. Similarly, the introduction of glycine or proline resi-
dues in the HR1 and HR2 (N554G, L556P, A558P, I559G, 
T569P, T569G and S636G) further stabilized soluble 
HIV-1 Env trimers (Fig. 1, Table 1) [1, 54, 58]. Kong et al. 
computationally modeled HR1 loops with low Gibbs free 
energy that resulted in increased numbers of proline resi-
dues and rigidification of the HR1 loop [64].

A last mechanism that thermophilic organisms apply to 
survive at high temperatures is the reduction of aspara-
gine and glutamine residues to prevent deamidation. This 
strategy has not been (intentionally) used for HIV vac-
cine design yet.

Thus, strategies to stabilize Env trimers from BG505 
and other isolates using high throughput screening, 
selection by mammalian display, and structure-based 
design, in many ways mirror what extremophiles have 
achieved in nature to survive under extreme conditions. 
The resulting improvements in stability of soluble Env 
trimers allow us to use these immunogens in immuno-
genicity studies by facilitating the generation of a toolkit 
of trimers from different clades. Several of these trimers 
have been evaluated as immunogens and some studies 
have suggested that in some cases increased thermo-
stability translates into increased immunogenicity [61, 
65]. Furthermore, by increasing the trimer shelf life and 
avoiding cold chain transportation and storage will help 
to eventually produce a vaccine that is globally available.

Evaluating Env trimers in vivo: learning 
from immunization experiments
Native-like Env trimers have been tested as immuno-
gens in small animals, mostly rabbits, and nonhuman 
primates. These studies indicated that native-like trimers 
consistently induced, for the first time, NAb responses 
against hard-to-neutralize (Tier 2) primary HIV-1 



Page 6 of 11Torrents de la Peña and Sanders ﻿Retrovirology  (2018) 15:63 

isolates. However, heterologous primary isolates were 
not, or only weakly and sporadically neutralized. Highly 
stable native-like trimers have been designed to improve 
the immunogenicity of the trimer by increasing its half-
life in vivo and thus the presentation of bNAb epitopes. 
Immunogenicity studies with the highly stable trim-
ers did not increase the generation of autologous NAb 
responses, but they induced weak heterologous Tier 2 
responses in some cases. While trimer thermostability 
in vitro is a useful parameter that can be linked to in vivo 
observations [61, 65], it will also be important to investi-
gate additional stability parameters such as trimer stabil-
ity in serum at 37 °C.

Immunization with SOSIP trimers also induced strong 
non-neutralizing antibody (non-NAb) responses against 
V3 epitopes and neo-epitopes at the bottom of the trimer 
[10, 15, 16, 66]. Heterologous primary isolates were not, 
or only weakly and sporadically neutralized, pointing to 
possible directions of further research to improve native-
like trimer immunogens.

First, it has recently been shown that the NAb 
responses in animals immunized with BG505 SOSIP 
trimers are dominated by specificities targeting a hole 
in the glycan shield, specifically the peptidic surface sur-
rounding amino acids at positions 241 and 289, where 
most virus isolates have N-linked glycans [17, 67]. While 
autologous NAb responses might in some cases be a 
starting point for generating bNAb responses [7, 68], 
they could also distract or compete for such responses. If 
the latter scenario were true, one might want to dampen 
immunodominant isolate-specific, glycan-hole directed 
NAb responses. One strategy to counteract the immu-
nogenicity of the BG505 specific glycan hole would be 
to immunize with trimers that contain glycans at posi-
tions N241 and N289. Previous studies have shown that 
immunizations with trimers based on isolates with a 
denser glycan shield (AMC008 and ZM197M) induced a 
broader heterologous NAb response compared to trimers 
from isolates with large holes in the glycan shield (BG505 
and B41), which supports the pursuit of this strategy [69].

Second, immunization with BG505 SOSIP.664 trimers 
induced a strong response against non-NAb V3 epitopes 
[10, 50, 53, 70], leading to the hypothesis that this immu-
nodominant V3-response interfered with the generation 
of bNAb responses. When rabbits were immunized with 
an improved version of the trimer, the BG505 SOSIP.
v4 trimer, which contained the A316W mutation that 
sequestered the V3 epitope, these SOSIP trimers induced 
weaker anti-V3 responses and V3-directed Tier 1A virus 
NAb responses, without affecting the autologous NAb 
response [10, 16]. In a next iteration of trimer design, 
two additional hydrophobic residues were incorporated 
in the V3 loop of the BG505 SOSIP.v4 trimer (R306L and 

R308L) to completely abolish the responses against the 
V3 loop [53]. Although these modifications reduced V3 
immunogenicity, they did not improve the autologous 
NAb responses, nor did they result in a broadening of the 
NAb response. Similar results were recently obtained by 
Kulp et al. using different V3 designs [16, 50].

Third, the generation of soluble Env trimers resulted in 
the exposure of neo-epitopes at the bottom of the trimer, 
which is occluded by the viral membrane when the Env 
trimer is presented on virions. It has been suggested that 
the bottom of the trimer presents another immunodomi-
nant non-NAb epitope that could interfere with NAb 
responses [66, 70]; M. J.  van Gils,  C. A. Cottrell, A. B. 
Ward, R. W. Sanders unpublished data). To prevent the 
exposure of this epitope one could hide it, for example by 
placing the trimer on a nanoparticle.

Although interference by V3 and trimer bottom non-
NAb responses is an attractive hypothesis, there is no 
formal proof yet that these non-NAb responses interfere 
with more desirable NAb and bNAb reponses. However, 
the V3 and trimer bottom non-NAb epitopes are usu-
ally solely of peptidic nature. B cells recognizing such 
epitopes are much more frequent in the naïve B cell 
repertoire and probably have higher affinity than naïve 
B cells recognizing composite peptide-glycan bNAb 
epitopes [70]. Higher affinity B cells might have a selec-
tive advantage over the lower affinity B cells targeting 
bNAb epitopes, because they might bind and process 
more antigen and, as a consequence, receive more T 
cell help. This will make it unlikely that B cells with the 
intrinsic capacity to mature into bNAbs will thrive in an 
environment that favors B cells targeting non-NAb or 
strain-specific glycan hole NAb epitopes. However, these 
arguments are somewhat theoretical in the HIV-1 con-
text and the immune responses raised against Env trim-
ers in animal and human vaccination experiments should 
be dissected in more detail to address these concerns.

To improve our understanding of the fate of Env trim-
ers in vivo a number of studies focused on the germinal 
center responses against Env trimers. Macaques were 
immunized with stable Env trimers and germinal center 
cells from the lymph nodes were collected over time 
using fine needle aspirates (FNA), thereby avoiding the 
need to take lymph node biopsies and thereby blunt-
ing the response in that lymph node [18, 70]. While all 
the macaques generated immune responses against the 
trimer, the NAb responses correlated quantitatively with 
GC B cell frequencies. These studies provide a frame-of-
reference for further studies on germinal center B cells 
and Tfh cells and their roles in epitope immunodomi-
nance and subdominance. Furthermore, insights in the 
amount of Env that enters the lymph nodes and the half-
life of the Env protein in circulation would help efforts to 
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study how the immunogen is delivered to B cells and how 
this can be improved. Previous work on other immuno-
gens, including on gp120, suggest that it is worthwhile 
to exploit fluorescently tagged native-like trimers and 
to answer some of these questions, especially whether 
highly stable trimers show longer trimer half life in the 
presence of serum and proteases [71–73].

Evaluating Env trimers in vivo: learning 
from different immunization regimens
Until now, monovalent immunization with soluble HIV-1 
Env trimers has only induced strong NAb responses 
against autologous viruses, and only weak and sporadic 
heterologous Tier 2 NAb responses. One strategy to 
increase neutralization breadth involves exploring dif-
ferent vaccine regimens such as cocktails of different 
immunogens. HIV-1 is a highly diverse pathogen, as 
is influenza virus. For influenza virus we use annually 
updated vaccines composed of a trivalent or tetravalent 
cocktail of different inactivated influenza viruses. How-
ever, annual influenza vaccination only protects against 
viral variants that are closely related to the vaccine 
strains, which exemplifies how difficult it is to induce a 
bNAb response against highly diverse viruses. The search 
for a universal flu vaccine shares similarities with the 
search for a bNAb-inducing HIV-1 vaccine.

To increase neutralization breadth, we have explored 
the use of cocktail and sequential regimens [17, 69]. 
We observed that immunization with a combination of 
immunogens in a cocktail formulation or in sequence 
did not induce bNAbs, but merely autologous NAb 
responses. Furthermore, the autologous NAb responses 
were prominent against the most immundominant 
trimer of the cocktail [69]. Thus, the immune response 
shows narrow specificity, similar to what has been 
reported for influenza vaccines [74]. These results indi-
cate that an HIV-1 Env vaccine based on a cocktail or 
sequence of randomly chosen trimers is unlikely to 
induce bNAbs.

An alternative to the cocktail and sequential formu-
lations could be to guide naïve B cell lineages towards 
bNAb activity by rational design. Since in natural infec-
tion the bNAbs develop through the co-evolution of the 
virus and the antibodies, one strategy that is being pur-
sued is immunization with longitudinal Env sequences 
from patients that developed a bNAb response [75–80]. 
This strategy aims to recapitulate the evolutionary path 
of the virus and assumes that the development of the 
bNAb response largely depends on viral characteris-
tics. Another, but somewhat related strategy, termed 
germline-targeting, focuses on the activation of rare 
subsets of naïve B cell that express B cell receptors (ger-
mline precursors) that have the intrinsic capacity to 

develop into bNAbs. SOSIP trimers generally do not bind 
inferred germline versions of bNAbs and several groups 
are designing immunogens that bind specifically to ger-
mline antibodies to guide the B cell responses towards 
the development of broadly neutralizing antibodies [51, 
81–87].

Trimers can also be used to boost responses that are 
primed by epitope-specific immunogens. For example, 
Xu et  al. applied trimers in an immunization regimen 
aimed at focusing immune responses to the fusion pep-
tide. They immunized guinea pigs and macaques with a 
fusion peptide coupled to the carrier protein KLH, and 
boosted the responses with stabilized BG505 SOSIP 
trimers. This immunization strategy induced autologous 
NAb responses in all the animals and substantial NAb 
responses against heterologous Tier-2 viruses in some 
animals [88]. When they isolated the antibodies that were 
responsible for the broad neutralization they could con-
firm that these antibodies targeted the fusion peptide on 
both autologous and heterologous viruses [88].

Another strategy to overcome the low affinity of the 
immunogens to the desired but rare germline precursors 
of bNAbs is to multimerize the antigen, thereby increas-
ing the potency of the Ab response by cross-linking the B 
cell receptors. The use of liposomes and ferritin nanoc-
ages that present Env trimers on their surface indeed 
improve the NAb response [89–91]. The flexibility of the 
nanoparticle system would allow the incorporation of 
trimers from different clades or lineages to enhance NAb 
responses against conserved B cell epitopes.

Applying the lessons learnt to other viral 
pathogens
We described how to make stable HIV-1 Env trimers for 
structural and immunological studies and how to use 
them in the quest for an HIV-1 vaccine. However, the les-
sons learnt in the HIV-1 field can also be applied to other 
viruses and vice versa. Similar to HIV-1 Env, other viral 
fusion proteins, such as the respiratory syncytial virus 
(RSV) F protein, are intrinsically metastable and easily 
switch from the pre-fusion to the post-fusion form. While 
a lot of efforts had to be invested to produce a stable solu-
ble HIV-1 Env trimer, the influenza HA protein is com-
paratively stable and can be easily expressed. In contrast, 
the RSV F protein is, similarly to HIV Env, quite unstable 
and it adopts the post-fusion conformation when purified 
as soluble protein. While McLellan and colleagues intro-
duced a disulfide bond and hydrophobic residues to keep 
the RSV glycoprotein in the pre-fusion state [92], Krarup 
et al. prevented the transition of this protein to the post-
fusion state by introducing helix-breaking prolines in the 
refolding region 1, quite similar to what has been done 
for HIV-1 Env [93].
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Recently, high-resolution structures of other viral 
glycoproteins were solved, including those of human 
parainfluenza virus 5, ebola virus, lassa virus, human 
betacoronavirus HKS1, lymphocytic choriomeningitis 
virus, herpes simplex virus 1 and severe fever with throm-
bocytopenia syndrome virus [92, 94–100]. The above-
mentioned strategies that worked for HIV-1 Env have 
also benefited the stabilization and native-like pre-fusion 
forms of several of these glycoproteins. To keep the Mid-
dle East respiratory syndrome coronavirus (MERS-CoV) 
glycoprotein in the pre-fusion state, Pallesen et al. intro-
duced two prolines at the start of the central helix of the 
protein, similarly to the I559P substitution introduced 
in the HIV-1 Env trimer [1, 96]. Similarly, to retain the 
lassa virus glycoprotein in the pre-fusion conformation, 
Hastie and colleagues incorporated a proline in the HR1 
domain [98]. To further improve the stability the authors 
introduced a disulfide bond between the two subunits 
and improved the cleavage site as previously done for the 
HIV-1 Env trimer. Thus, the general strategy is to retain 
the viral glycoprotein in the pre-fusion conformation by 
structure-based design [2, 92, 96].

To further improve the immunogenicity of Env trimers, 
we can also learn from the recombinant vaccines against 
viral pathogens that are currently available. Hepatitis B 
virus, hepatitis E virus and human papillomavirus use 
recombinant virus-like particles as the immunogen [101]. 
These vaccines are self-assembling nanoparticles that 
mimic the native virions and expose neutralizing epitopes 
on their surface. As previously discussed, improvement 
of the nanoparticle design in the HIV-1 vaccine field is 
being pursued by several groups including us. In short, 
the strategies used to improve HIV-1 immunogen design 
provide a template to design vaccine candidates for other 
viruses and vice versa.

Conclusion
Here, we reviewed the latest design strategies to stabi-
lize the soluble HIV-1 Env trimers as well as different 
immunization strategies maximize their value. The devel-
opment of native-like trimers as immunogens, the availa-
bility of high-resolution structures, the design of different 
immunization strategies, the promise of germline-tar-
geting and nanoparticle presentation, combined with 
an increased understanding of the host immunological 
responses against Env trimers, should advance the field of 
HIV-1 trimer vaccinology. These efforts should advance 
the HIV-1 field and provide lessons for subunit vaccines 
against other viruses for which diversity is an issue, such 
as, but not limited to, influenza virus, dengue virus and 
hepatitis C virus.
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