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Abstract

A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, 

computational models describing key event relationships linking a molecular initiating event 

(MIE) to an adverse outcome. A qAOP provides quantitative, dose-response and time-course 

predictions that can support regulatory decision-making. Herein we describe several facets of 

qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of 

confidence, and (d) potential applications. The qAOP used as an illustrative example for these 

points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and 

population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP 

consists of three linked computational models for: (a) the hypothalamicpitutitary-gonadal axis in 

female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17β-

estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) 

synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-

dependent population trajectory. While development of the example qAOP was based on 

experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic 

equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested 

aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the 
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quantitative predictions obtained, and TEQ-based application to multiple chemicals, may be 

sufficient to justify the cost for some applications in regulatory decision-making.

Introduction

A vision for toxicity testing in the 21st century that was laid out by the US National 

Research Council (1) focuses on the assessment of critical mechanistic endpoints involved in 

the induction or early progression toward overt toxicity, rather than direct observation of 

toxic effects themselves (2). The adverse outcome pathway (AOP) framework has developed 

as a systematic approach for describing the scientifically credible basis for linking a 

toxicant-induced molecular initiating event (MIE: interaction of a chemical with a 

biomolecule in the body of an organism that causes a perturbation in its biology) to an 

adverse outcome (AO) considered relevant to risk assessment (generally defined at the 

individual or population level) (3). Efforts are underway to populate an AOP knowledgebase 

(AOP-KB; aopkb.org) with AOPs structured and described according to a key set of 

principles and internationally-harmonized guidance (4, 5). This includes defining a set of 

measurable biological changes, termed key events (KEs), that reflect progression from the 

initial biological perturbation (MIE) to a specific AO and describing both the biological 

plausibility and empirical evidence that supports a causal relationship between the KEs (4). 

Thus, AOPs represent a critical bridge to link pathway-specific bioactivities (i.e., 

mechanistic endpoints) to the apical hazards that are generally considered relevant to 

regulatory decision-making.

For the purposes of describing an AOP, an underlying assumption is that the severity of 

perturbation at the MIE, in terms of dose and duration, is sufficient to drive the pathway to 

its final AO. Adaptive, compensatory, and repair mechanisms are assumed to be 

overwhelmed. Thus, qualitative AOPs provide a fundamentally hazard-based assessment 

framework. They provide an indication of what hazards can plausibly, and based on 

available evidence, be connected with a particular perturbation of normal biology. However, 

they do not necessarily define the probability or severity of the AO that can be expected 

under a specified exposure scenario. Consequently, while many AOPs may have immediate 

utility as tools for hazard identification, hypothesis-driven testing, and prioritization, most 

are not appropriate for quantitative risk assessment.

The term quantitative AOP (qAOP) refers to a loosely defined, but relatively advanced stage 

in the progression of AOP development and description. At this stage, quantitative 

understanding of the relationships underlying transition from one KE to the next, as well as 

critical factors that can modulate those relationships, are sufficiently well defined to allow 

quantitative prediction of the probability or severity of the AO occurring for a given 

activation of the MIE (4, 6). Information concerning the quantitative understanding of what 

defines the transition from one KE in an AOP to the next is thus captured and included 

(where possible) in the KE relationship descriptions (7). That quantitative understanding 

may take many forms, depending on the extent of the available, relevant data. In the case of 

a relatively limited dataset containing little or no or dose-response and time-course 

information, the relationship between adjacent KEs may be as simple as a linear regression 
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equation linking an upstream with an immediately downstream KE. With richer datasets, 

reflecting fuller dose-response and time-course designs, the quantitative understanding may 

be encoded into sophisticated biologically based models that simulate complex, non-linear, 

dynamics that can result from feedback loops, adaptive and compensatory responses, 

stochastic influences, interactions with other pathways, and/or influences of external or 

internal modulating factors. Whatever form they take, quantitative understanding of the KE 

relationships encompassed in an AOP description can facilitate a broader spectrum of 

applications (6). Consequently, there is interest in developing the quantitative understanding 

and description of AOPs to the extent that regulatory needs warrant and resources allow.

The goal of this paper is to provide an introduction to the concept of qAOPs. We seek to 

define the key attributes of a qAOP. The development and application of a qAOP are 

illustrated for an example AOP linking aromatase inhibition to reproductive dysfunction in 

fish and potentially other oviparous vertebrates (8). The importance of defining the relative 

confidence in the qAOP for support of decisions in different regulatory contexts is also 

described. While by no means comprehensive or illustrative of the many forms a qAOP may 

take, the fundamental concepts introduced here are intended to help inform the practice of 

qAOP development as an important component in the transition to the predictive toxicology 

paradigm envisioned by the NRC (1).

qAOP – an example

An AOP linking the MIE of aromatase inhibition to the AO of reproductive impairment (Fig. 

1; 8) was one of the first described in accordance with OECD guidance and entered into the 

AOP-Wiki (https://aopwiki.org/aops/25). The AOP consists of eight key events reflecting the 

synthesis and circulation of 17β-estradiol (E2; Fig. 1, KEs 2, 3), synthesis and circulation of 

the egg yolk precursor vitellogenin (VTG; Fig. 1, KEs 4, 5), and uptake of VTG into 

developing oocytes (KE6) to support ovulation and spawning (KE7) as is required for a 

stable or increasing population trajectory (KE8). While the description found the AOP-Wiki 

lays out compelling scientific evidence linking inhibition of aromatase enzyme activity to 

reproductive impacts considered relevant for risk assessment and management, the 

qualitative description does not address the question of whether exposure to concentration 

“X” of aromatase inhibitor “Y” for duration “Z” should be expected to cause a significant 

reduction in cumulative fecundity or population trajectory. However, in the case of this AOP, 

a series of computational models that capture critical elements of the biological systems 

dynamics that underlie transition from one KE in the pathway to the next were developed 

independently and then coupled together as a qAOP.

qAOP first component - HPG axis model: In the case of the aromatase inhibition 

AOP, feedback responses along the hypothalamic-pituitary-gonadal (HPG) endocrine axis 

and associated compensatory responses strongly influence the dose-response, time-course 

behaviors underlying KEs 1–5 (Fig. 1). Cheng et al. (9) described a computational model of 

aromatase catalyzed conversion of testosterone (T) to E2 and subsequent stimulation of 

VTG production and its dynamic regulation via endocrine feedback and VTG transport 

mechanisms. The model was calibrated using data from laboratory experiments where 

fathead minnows (Pimephales promelas) were exposed to the aromatase inhibitor fadrozole 

Conolly et al. Page 3

Environ Sci Technol. Author manuscript; available in PMC 2018 September 12.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://aopwiki.org/aops/25


(fadrozole hydrochloride, CAS # 102676–31-3). A regulatory circuit coded in the model 

senses decreased levels of E2 associated with aromatase inhibition and in response 

upregulates ovarian aromatase activity. This regulatory circuit allows partial or even full 

recovery of plasma E2 during exposure to the aromatase inhibitor, depending on the degree 

of ongoing aromatase inhibition in a manner consistent with experimental observations (10). 

Also, when exposure to the inhibitor ends, the induced aromatase activity transiently 

generates a level of E2, greater than that in controls, that eventually returns to normal. A 

second regulatory circuit controls the rate of VTG uptake into the ovary to maintain ovarian 

VTG levels when the blood level of VTG varies. This circuit describes negative regulation of 

a VTG transporter, with the transporter being upregulated when ovarian VTG levels fall (9).

qAOP second component - Oocyte growth dynamics model: A second 

independent model that captures the relationship between circulating plasma VTG and 

oocyte development and spawning (Fig. 1; KEs 5–7) is termed the oocyte growth dynamics 

model (OGDM) (11, 12). Measured or model-predicted plasma VTG concentrations are 

used as inputs to the OGDM. Oocyte growth is driven primarily by the absorption of VTG 

into the oocyte following first-order kinetics while accounting for water and other molecules 

that are also absorbed and contribute to its growth. When oocytes reach a critical volume 

(0.52 μL based on Leino et al. (13) for mature fathead minnow oocytes) spawning occurs 

(for more details see Li et al. [11]). The OGDM predictions include daily spawning that can 

be used to calculate average fecundity, the number of eggs per spawn and the number of 

spawns per female (i.e., Fig. 1 KE 7) for comparison with experimental results.

qAOP third component - Population model: The third model incorporated into the 

qAOP is a density dependent logistic matrix model developed by Miller and Ankley (14), 

and previously applied in population modeling studies across multiple scenarios, including 

species (15, 16, 17, 18). The model uses inputs that include estimates of effects on vital rates 

(for example, alterations occurring to age-specific fecundity), a life table for the organism of 

interest, which is used to construct the Leslie projection matrix, and an estimate of carrying 

capacity. Output from the model is in the form of density dependent population trajectories. 

Further, model output can be expressed invariant of carrying capacity by plotting population 

size proportional to carrying capacity at each time step, as opposed to evaluation based on 

absolute numbers. In demonstrating model output in this manner, a value of 1.0 represents a 

population at carrying capacity and values between 0 and 1.0 represent a population below 

the carrying capacity threshold.

By coupling these three models together it becomes feasible to take a measure of a 

chemicals’ potency as an aromatase inhibitor, relative to fadrozole, and simulate dose-

response and time-course behaviors for a given exposure scenario. The models can provide 

read-outs of the expected dose-response/time-course profile of most KEs along the pathway. 

This allows for in silico predictions of the probability or severity of a defined AO for a wide 

range of exposure scenarios and chemicals. While this is just one example of the many 

forms a qAOP may take, we use the example to illustrate attributes and considerations that 

generalize to the development and application of qAOPs more broadly.
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Attributes of a qAOP

Quantitative AOPs share attributes of other types of biologically based models including 

biologically based dose-response models, toxicodynamic models, systems biology models, 

and population models. These kinds of models focus on biological determinants of response, 

motivated by the realization that the more accurately this biology is described, the more 

accurate the predictions provided by the models will be. However, one attribute of qAOPs 

that differentiates them from other types of biologically based models is that they align, 

specifically, with KEs defined in an AOP. That is to say, the model (or assembly of models) 

that makes up a qAOP is able to provide a read-out of condition or state at each KE in the 

pathway (e.g., Fig. 1). Likewise, ideally, a qAOP construct should be designed to accept 

measured or predicted values associated with any KE in the pathway and provide a 

simulated output for all downstream KEs (including the AO) in that pathway. In this way, a 

qAOP serves as a computational tool for translating or extrapolating from mechanistic 

measurements of an upstream KE to a predicted probability or severity of an AO. In 

addition, as with other biologically based models, a qAOP serves as a tool for hypothesis 

generation and verification in which key model outputs align with measurable biological 

parameters.

A second, important attribute of a qAOP construct is that it is not chemical or stressor-

specific. AOPs are intended to describe a sequence of events, connecting the MIE with the 

AO, that will occur regardless of the specific identity of the chemical that perturbs a MIE or 

an intermediate KE (4). Thus, even if the qAOP is parameterized and/or validated based on 

data for a specific chemical or stressor, it should be generalizable to a broad range of 

stressors capable of eliciting perturbations captured in the AOP. In the case of the aromatase 

inhibition qAOP described above, the models were parameterized based on experiments with 

fadrozole. However, the assumption is that the qAOP can be applied to other chemicals by 

adjusting for their relative potency at the MIE and the absorption, distribution, metabolism, 

and elimination (ADME) properties that dictate how much of the chemical can reach the 

target. Thus, while chemical specific potency and ADME considerations need to be factored 

in for accurate prediction, the qAOP construct itself should be developed in a way that 

facilitates broad application across chemicals acting on a common biological target.

Like AOPs, qAOPs are pragmatic simplifications of biological complexity. A tremendous 

amount of known biology is essentially embedded in the KE relationships that link one 

measurable “check point” in the pathway to the next. This could include, for example, 

numerous steps in a signal transduction cascade linking activation of a G protein-coupled 

receptor to its effects on gene transcription. Feedback loops, compensation and repair 

processes etc. can also lie in the biology connecting one measurable KE to the next. While 

the qualitative AOP description is written in a manner that assumes such compensatory 

processes have been overwhelmed, a qAOP may need to represent specific aspects of this 

underlying biology in order to make reasonably accurate predictions of dose-response and 

time-course behaviors. Consequently, a qAOP model will often incorporate more biology 

than the AOP it aligns with, as reflected in the HPG axis model described above that 

incorporates endocrine feedback and VTG transport processes that are not represented as 

KEs in the AOP (Fig. 1). Nonetheless, as with an AOP, a qAOP need not provide a detailed 
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representation of every aspect of the biology in question but, rather, should only be as 

complex as needed to provide useful predictions. For example, the HPG axis model can 

simulate the feedback responses that elicit empirically observed compensatory behaviors 

without incorporating the specific—and elaborate—biology associated with sensing of E2 

concentrations in the hypothalamus, control of gonadotropin release from the pituitary, 

binding of gonadotropins to membrane bound G-protein coupled receptors on the surface of 

specific cell types within the ovary, resulting signal transduction and activation of 

transcription factors, etc. It uses a simplified formulation in which E2 directly influences 

gonadotropins which in turn directly influence aromatase expression. Such simplification is 

particularly useful when collecting the data needed to parameterize a more biologically 

detailed model is impractical. Thus, in the same sense that an AOP is a simplification of 

complex biology, a qAOP should be a parsimonious simulation of that biology that accounts 

for the data with a fairly straightforward (and in many cases knowingly simplified) 

explanation.

Finally, where feasible, qAOPs should employ the modular construction utilized for AOPs to 

help facilitate the eventual construction of qAOP networks. For example, Ankley et al. (3) 

presented a network of three AOPs that converge on a common KE of reducing hepatic VTG 

production in fish. For the three AOPs forming the network, the KEs upstream of reduced 

hepatic VTG differ. In one case, the MIE involves antagonism of estrogen receptor (ER) 

signaling in the liver (https://aopwiki.org/aops/30). A second case involves aromatase 

inhibition in the ovary and reductions in circulating estrogen concentrations (the AOP 

depicted in Fig. 1). The third case involves negative feedback presumably originating in the 

brain leading to decreased gonadal steroid production and subsequent reductions in 

circulating estradiol concentrations (https://aopwiki.org/aops/23). Rather than build an 

independent qAOP model for the entire sequence of KEs in each AOP, it would be useful to 

build components that can be coupled together as needed. In the present case, the HPG axis 

model applies specifically to the aromatase inhibition AOP. However, the OGDM and 

Population models would apply to all three AOPs.

Practical Considerations for qAOP Construction

As noted previously, a qAOP at its simplest could consist of a regression equation based on 

limited MIE, KE, and AO data. However, in moving from the qualitative characteristics of 

an AOP intended for hazard identification to qAOPs intended to predict quantitative 

dynamics of dose-response and time-course, capturing both the adaptive capabilities of the 

biological system of interest and the effects of important modulating factors become 

important. For example, adaptation can alter, in a time-dependent manner, the quantitative 

characteristics of the KE relationships, and thus the overall quantitative MIE-AO 

relationship. Regulatory motifs such as feedback and feedforward loops can create complex, 

time-dependent, dynamics as a function of the magnitude and duration of the input stimuli 

(19). These dynamics cannot be adequately simulated based on the two-dimensional data, 

but rather require characterization of more complex dose-time response surfaces, which 

allow for the shape of the dose-response curve to change with time. Thus, characterization of 

KE relationships that support identification of adaptive responses should involve 

experimental designs incorporating multiple time-points and doses (e.g., 9, 20, 21). 
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Development of the HPG axis model included in the aromatase inhibition qAOP was based 

on exactly those kinds of studies (10, 22). Likewise, modulating factors may alter the shape 

of those surfaces dramatically. Thus, experimentation to define how key modulating 

variables alter those surfaces may also be important.

While the modeling itself becomes more complex as more biological detail, variables, and 

additional data are included, perhaps the more significant consideration is the kind of 

experimental designs required to obtain data that support the modeling. While experimental 

characterization of dose-time-response surfaces is informative, it is time-consuming and 

expensive and so it is important to consider “value added” in terms of the investment. There 

will generally be a correlation between the amount and types of relevant data collected and 

the level of confidence in the AOP and qAOP. Model predictions change as KE relationships 

are calibrated against progressively more complete datasets (reflecting experimental designs 

that increasingly capture dose-response and time-course behaviors). As datasets become 

more comprehensive, the resultant changes in model predictions should become smaller, 

suggesting greater confidence in the predictions and, therefore, reduced uncertainty. In that 

respect, an iterative process in which models are developed based on available data, 

predictions from those models are tested, and then the models refined based on the results 

and any model short-comings is often a pragmatic way to guide the investment of 

experimental resources to allocate to qAOP development.

Much of the “art” of qAOP development lies in deriving models of sufficient detail to 

provide reasonably accurate predictions across a wide range of scenarios while at the same 

time incorporating sufficient abstraction or simplification to make the model development 

and verification tractable from a resource investment perspective. There are no “hard” rules 

that define the appropriate level of abstraction or detail to include in a qAOP. Indeed, the 

answer to that question will often depend on the intended application and the associated 

degree of certainty that application requires. Nonetheless, there are a few guiding principles 

to keep in mind.

First, AOPs and qAOPs are intended to be chemical agnostic. While it is recognized that 

chemical-specific differences in potency and ADME properties are important determinants 

that should be factored into qAOP-based predictions, they should be handled external to the 

qAOP construct itself. Relative potencies and key chemical-specific determinants of internal 

dose at the MIE should be entered as input parameters to the qAOP model(s), not embedded 

into the models themselves. This allows the reproducible biological responses to 

perturbation of the MIE to be modeled in a generalizable manner that can flexibly tailored 

on a case by case for chemical-specific predictions.

Second, qAOPs need to be practical. Both AOPs and qAOPs are intended to facilitate 

predictive toxicology. They arise from the need to more effectively utilize our understanding 

of biology to predict effects that we cannot afford to measure, either due to the costs and 

time involved, or ethical and practical considerations (e.g., the inability to conduct in vivo 

toxicity studies in humans, endangered species, organisms that cannot be held/reared in 

captivity, etc.). While significant investment may be needed to develop and test a qAOP 

construct, the goal is to produce models with broad practical application. Just as a qAOP 
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model tailored to a single chemical is not the intent in developing a qAOP, likewise, qAOPs 

tailored to just a small subset of an AOP’s applicability domain is similarly undesirable. In 

this respect, when developing the qAOP, it is desirable to do so with an aim toward 

encompassing or generalizing to as much of the applicability domain of the associated AOP 

as possible. With regard to the aromatase inhibition qAOP example, this means that although 

the model was initially built on data for a single fish species (FHM) exposed to one model 

aromatase inhibitor (fadrozole), additional efforts are focused on identifying the key species-

specific and chemical-specific parameters to modify in the model(s) to allow the construct to 

be more broadly generalized. This has already been demonstrated for the population model 

component of the qAOP, where life-table parameters for different species can easily be 

inserted into the model structure to facilitate its use for other species (17). In order to make 

this practical, the parameter changes needed to tailor the model for different species, sexes, 

life-stages, etc. that fall within the applicability domain of the AOP should be as few in 

number as possible, ideally be parameters that are easily measured or estimated using cost 

effective methods, and should be easy to change within the model structure, without need for 

specialized expertise in coding, etc. (e.g., through development of a graphical user interface 

where key model parameters could be input by a user).

As described by Ankley et al. (3), qAOPs require data across the full range of biological 

organization from molecular up through individuals and, for ecological effects, populations. 

Parameter values can often be set to measured values from existing literature or, when 

necessary, can be obtained through targeted experimental work. Nonetheless, there are 

usually some parameters whose values must be obtained indirectly by optimizing the fit of 

model predictions to data. Informal optimization, where parameter values are adjusted 

manually until a visually good fit to data is obtained, is valuable for learning about model 

behavior. Formal optimization (e.g., 23), used to minimize a least squares or some other 

form of cost function, has the advantage of being reproducible, which is not necessarily true 

of informal approaches. In practice, the parameter values appearing in a “final” version of a 

qAOP will include both those measured in the laboratory and obtained through formal 

optimization. Optimization procedures along with sensitivity analyses may also be useful for 

identifying critical parameters that can be altered to tailor the model for different species or 

scenarios to broaden its applicability domain.

Evaluation of Confidence in qAOP Predictions

qAOPs are members of a larger class of computational, biologically-motivated models 

developed with the goal of improving quantitative understanding of the relationship between 

toxicant exposure and health-related outcomes. Other members of the class include PBPK 

models and biologically based dose-response (BBDR) models (24, 25). Lau et al. (24) state 

that “Biologically based dose–response (BBDR) modeling represents a novel approach for 
quantitative assessment of health risk by incorporating pharmacokinetic and 
pharmacodynamic characteristics of a chemical and by relating the immediate cellular 
responses to a cascade of aberrant biological actions that leads to detectable adverse 
outcomes.” The US EPA Guidelines for Carcinogen Risk Assessment (26) state that 

“toxicodynamic models” of a chemical agent’s mode of action are the preferred approach for 

analysis of cancer risk. Thus, although the AOP concept was only recently formally 
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described (3), the essential operative features of AOPs and qAOPs and their potential for 

support of regulatory decision-making have been recognized for some time.

As computational models, qAOPs tend to be structurally complex and parameter-rich. 

Crump et al. (27) expressed concern that development of BBDR (and by extension, qAOP) 

models inevitably introduces uncertainties such that any use of the model to predict low dose 

risk is “…unlikely to be fruitful in reducing uncertainty in quantitative estimates of human 

risk from low-level exposures…” The theoretical justification for qAOP development is 

simply that (a) the quantitative relationship between the MIE and the AO is determined by 

the relevant biology and (b) the more accurate the description of this biology in the qAOP, 

the more accurate its predictions.

The concern stated by Crump et al. (27) is therefore only valid to the degree that there are 

problems with either the technical aspects of model development or with assumptions about 

model structure and parameterization. Quality control for technical aspects of model 

development is important and has been thoroughly addressed in numerous publications (e.g., 

28, 29). A biologically based model structure that is complex relative to more empirical or 

statistical models can, at first glance, appear to be introducing complexity and hence 

uncertainty. However, it is important to recognize that the biologically based model is 

explicitly representing biology that is implicit in the simpler models. For example, a 

benchmark dose (BMD) model describes dose-response data empirically, without specific 

reference to any of the underlying biology that determines the shape of the dose-response 

curve. A biologically based model would explicitly describe at least some of the mechanistic 

basis determining the dose-response behavior, and so makes explicit the mechanism that is 

implicit in the BMD model. Thus, there is no introduction of uncertainty per se, only a 

transition from an implicit to an explicit representation of the actual complexity of the 

system.

The validity of assumptions regarding model structure and parameterization does require 

evaluation by experts, since incorrect specification of the biology is of course a source of 

error. If experts cannot agree on a preferred specification, then the more conservative 

specification among multiple alternatives, predicting more risk, can be chosen. For example, 

Conolly et al. (25) used this conservative option approach to address specific uncertainties 

about biological structure by building risk conservatism into the overall dose-response 

behavior of a BBDR model for formaldehyde carcinogenicity.

In addition to the selection of risk-conservative options, uncertainties identified during 

model development and evaluation can be addressed through targeted experimentation. The 

toolbox available for studying biological systems has evolved dramatically in recent years. 

Examination of toxicological mechanisms (and the structures of AOPs) are today 

constrained not so much by limitations in laboratory technologies, as by funding and 

resource constraints and by our ability to synthesize and understand the oncoming flood of 

data. Thus, uncertainties in toxicological mechanisms, and in the computational models that 

represent these mechanisms, are addressable to the extent that resources and motivation 

allow. In addition, statistical analyses can be used to evaluate alternative model formulations 

and simplifications through, e.g., model reduction and identification of correlated variables 
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(30, 31) or parameter sensitivity analyses (32). Difficulties in communicating the complexity 

of models can be addressed by using standardized methods of model description and 

illustration such as the AOP wiki (aopwiki.org) and the OECD Effectopedia project 

(www.effectopedia.org) where graphical depictions of pathways are linked to model 

components.

Application Examples

Application Example 1: Comparing qAOP Simulation Results to Empirical Data for a 21 Day 
Continuous Exposure to Fadrozole

In this example, the qAOP (Fig. 1) was applied to predict the dose-response, time-course 

behaviors for four KE along the AOP for an exposure scenario modeled after the 

experimental design of Ankley et al. (33). In that experiment, FHM were exposed in a group 

spawning design to fadrozole continuously for 21 days at nominal concentrations of 0, 2, 10, 

and 50 μg/L (actual reported concentrations were 0, 1.4, 7.3 and 57 μg/L). Plasma E2 and 

VTG concentrations were measured at 21 days, while cumulative fecundity was reported 

before and during fadrozole exposure. While the qAOP was developed based on data from 

dose-response, time-course studies in fathead minnows exposed to fadrozole (10, 22), the 

data from the Ankley et al. study (33) were not used for model development. Thus, this case 

study provided opportunity to test the qAOP predictions against an empirical data set that 

falls firmly within the narrowest applicability domain of the qAOP (same species and 

chemical used in model development).

Ankley et al. (33) reported their data as mean ± SEM. HPG axis model simulations of the 

plasma E2 data fell within these bounds for control and 1.4 μg/L but over-predicted the data 

at 7.3 and 57 μg/L (Fig. 2A). These simulations of the 21-day E2 time-course also show the 

adaptive changes associated with upregulation of aromatase that occur during the first few 

days of continuous exposure. The basis for the adaptive behavior is fully described in Cheng 

et al. (9). Simulations of the plasma VTG data fell with the error bounds at all doses except 

for 1.4 μg/L, where the data were slightly under-predicted (Fig. 2B). These are reasonably 

good results, given that the E2 and VTG data were not used for development of the HPG 

axis model.

The OGDM was used to predict effects on fecundity using plasma VTG inputs provided by 

the HPG axis model. We followed the methods used by Watanabe et al. (21) for simulating 

group spawning design studies and performed a total of 600 simulations for each treatment 

(150 groups of four female FHM). Average fecundity, eggs per spawn and spawns per 

female were calculated (Fig. 2C). Watanabe et al. (21) showed that, using measured plasma 

VTG concentrations, the OGDM simulated reproduction metrics very well (i.e., average 

fecundity [eggs/female/day], eggs per spawning per female, and cumulative fecundity). 

Given this predictive accuracy, in this case study the accuracy of the OGDM predictions will 

track with the good accuracy of the plasma VTG predictions provided by the HPG axis 

model (Fig. 2B).

Predictions provided by the OGDM of daily spawning for each simulated fish over a 42-day 

period were provided as inputs to the population dynamics model. For each exposure 
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concentration, the population model was executed over a 10-year simulation period and 

results were recorded using an annual time step (Fig. 2D). Population-level outcomes were 

not empirically tested (33). Thus, the accuracy of the predicted population impacts cannot be 

directly evaluated. They do, however, provide some insight into potential population 

significance of the reductions in cumulative fecundity observed, based on relevant life-table 

parameters for the species. The results suggest that, at even the lowest concentration tested, 

1.4 μg/L, continuous exposure would exceed that adaptive capability of the fathead minnow 

and result in a dramatic population decline, absent other off-setting demographic parameters 

(e.g., decreased mortality rates resulting from less competition for habitat and food 

resources)..

Application Example 2: Derivation of Response-Response Relationships

At present, the aromatase inhibition qAOP relies on three independent models that span the 

KEs in the AOP. While the models are described and cited as part of the KE relationship 

descriptions in the AOP-Wiki (https://aopwiki.org/aops/25), they are not necessarily readily 

accessible or simple to run for a naïve user, nor do they align one-to-one with the KERs in a 

modular fashion. One way to enhance the accessibility and use of the quantitative 

understanding afforded by the models is to generate response-response functions for each 

KE relationship along the AOP. These could be entered into the AOP descriptions in the 

form of parameters for a regression equation describing key response-response relationships. 

Thus, the second application case study illustrates how the aromatase inhibition qAOP 

models were used to develop quantitative response-response relationship information that 

could be directly input to the AOP-Wiki and easily be used by consumers of that 

information.

As noted in Application Example 1, during the first few days of continuous exposure to an 

aromatase inhibitor, the regulatory circuits encoded in the HPG axis model attempt to 

compensate for the effects of aromatase inhibition and can achieve varying degrees of 

recovery of plasma E2 and VTG, depending on the extent of the aromatase inhibition (Figs. 

2A, 2B). As accommodation completes, the model reaches a new, albeit stressed, steady 

state. Under this condition, we generated response-response plots for aromatase inhibition as 

a function of fadrozole concentration (Fig. 3A), plasma E2 as a function of aromatase 

inhibition (Fig. 3B), plasma VTG as a function of plasma E2 (Fig. 3C), fecundity as a 

function of plasma VTG (Fig.3D) and FHM population size as a function of fecundity (Fig. 

3E).

These response-response plots allow visual, semi quantitative estimation of changes in KEs 

and the AO without having to actually run the computer models comprising the qAOP (Fig. 

4). For example, read-across of the response-response plots shows that female FHM 

exposure to 2.3 μg/L fadrozole was predicted to inhibit aromatase activity by 50% (Fig. 4A), 

reduce plasma E2 by 30% (Fig. 4B), plasma VTG by about 80% (Fig. 4C), average 

fecundity by about 80% (Fig. 4D), and a FHM population size by 90% (Fig. 4E). For a more 

quantitative approach, regression parameters associated with a non-linear fit to each 

response-response curve could be used to precisely estimate the value for any given point 

along each curve. Thus, the response-response functions generated represent an easily 
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transferrable means to characterize the quantitative relationships among the KEs represented 

in the AOP and allow for simple, steady state predictions of outcome. While this approach is 

more limited than the predictions that can be achieved using the full models, it still has 

considerable utility for first tier applications where a steady state prediction is sufficient to 

support a decision. Similarly, the approach could be very useful in settings where limited KE 

data are available (e.g., plasma steroid or VTG concentrations from field monitoring 

studies), and there is a desire to rapidly translate these data into potential risks at the 

individual or population levels.

Application Example 3: Estimating a Benchmark Dose for an Untested Chemical

As noted previously, qAOP models are intended to be chemical agonistic and, ideally, 

generalizable to a broad range of chemicals that can activate the MIE. As a final application 

example, we show how the qAOP developed based on data for fadrozole can be applied to 

predict an estimated BMD for an untested chemical. Specifically, a toxic equivalence (TEQ) 

calculation (34) was used with the HPG axis model to predict the effect of exposure to the 

aromatase inhibitor iprodione on plasma E2.

Iprodione, a dicarboximide fungicide, is widely used in landscape maintenance and on 

ornamental and agricultural plants (35, 36). Although most monitoring studies have not 

detected iprodione in the environment, one study at golf courses in Japan found a surface 

water concentration of 1 μg/L (37). ToxCast data (38) were used to calculate a fadrozole 

toxicity equivalent factor (TEF) for iprodione. The 50% maximum effect concentrations 

(EC50) of iprodione for aromatase inhibition was measured in the cell-free NVS ADME 

hCYP19A1 assay and this EC50 was in turn used to calculate its fadrozole TEF (0.03). This 

TEF was then used to derive the TEQ concentration of fadrozole equivalent to 1 μg/L 

iprodione (0.03 μg/L). Read across of the response-response analysis, as described above, 

predicts that continuous exposure to 1 μg/L iprodione (as 0.03 μg/L fadrozole) would result 

in negligible inhibition of aromatase (< 0.001% as calculated by the HPG axis model) and, 

subsequently, negligible effects on plasma E2, plasma VTG, average fecundity or FHM 

population status (Fig. 3).

If we assume that a 20% reduction in the fathead minnow population upon continuous 

exposure to iprodione would be an endpoint of regulatory interest, we can use read across of 

the response-response plots to semi-quantitatively estimate the associated BMD exposure to 

iprodione. Using Fig. 3, read-across associates the 20% reduction in fathead minnow 

population with a plasma E2 level of about 0.016 μM and a fadrozole exposure below 1 

μg/L, which is equivalent to an iprodione exposure of below 1 μg/L fadrozole / 

TEFiprodione, or less than 33 μg iprodione/L. The HPG axis model was then used to more 

precisely identify the BMD exposure to iprodione as between 6 and 7 μg/L (Fig. 5).

It should be noted that, in addition to aromatase inhibition, iprodione appears to also inhibit 

androgen synthesis, possibly through inhibition of steroidogenic CYPs upstream of 

aromatase. Specifically, iprodione reduces serum testosterone levels and ex vivo testicular 

testosterone production, and inhibits male pubertal development in rats (35, 36, 39). 

Confidence in the predicted effects of iprodione using the aromatase inhibition qAOP 

described above should be evaluated in this context. The ToxCast program has evaluated 
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iprodione in 41 assays involving various CYPs. Of these 41 assays, 26 were reported to have 

nonzero EC50s, and of these 26, the lowest reported EC50 was for the NVS ADME 

CYP19A1 aromatase inhibition assay (0.413 μM). The EC50 values for the other CYPs 

ranged from 1.84 to 21.3 μM. While this is not an exhaustive evaluation of possible 

interactions of iprodione with components of the HPG axis, these data do suggest that, while 

iprodione at higher concentrations is likely to interact with multiple CYPs, it is somewhat 

selective for aromatase at lower, arguably more environmentally-relevant concentrations.

Likewise, it should also be noted that in this simple example, we have only adjusted for 

iprodione’s relative potency compared to fadrozole. For a more sophisticated analysis, one 

would also want to take into consideration uncertainties associated with the ToxCast EC50s 

and potential differences in ADME between the two compounds. ToxCast EC50s are 

calculated based on the applied (unmeasured) concentration in the in vitro assays. Potential 

loss of chemical to, for example, the wall of the culture dish, is a source of uncertainty if not 

evaluated when EC50 values are used in computational models of in vivo biology, as with 

our qAOP. Armitage et al. (40) developed a computational model that illustrates how loss to 

the walls of the culture dish and other such aspects of in vitro experiments can have 

quantitatively significant effects on experimental results. ADME differences between 

chemicals are also a potential source of uncertainty. While data are available showing that 

water and fathead minnow plasma concentrations of fadrozole are similar (41), this 

equivalence may not hold for other compounds, such as iprodione, that inhibit aromatase. 

Lack of data addressing ADME is thus also a source of uncertainty when a TEF calculation 

is used to derive an equivalent concentration of fadrozole for input to the HPG axis model. 

However, while keeping these concerns in mind, the iprodione example illustrates 

conceptually how the chemical agonistic qAOP can be applied to predict a toxicological 

outcome or effect concentration for a chemical which has not been characterized in vivo. It 

is also worth reiterating that the biologically based modeling approach used for qAOP 

development leads to explicit identification of potential sources of uncertainty in qAOP 

predictions, thereby supporting targeted experimentation to address the uncertainties.

qAOPs and 21st Century Toxicology

The goal of “21st century” regulatory toxicology is to achieve a greater coverage of the 

chemical universe while utilizing fewer resources (time, money, animals). Critical to this is 

the ability to make reliable predictions of potential adverse effects of untested chemicals on 

individuals (or populations) based on rapid, inexpensive assessments of their ability to 

interact with biological systems. This type of information may be derived from 

computational models, in vitro assays, or short-term in vivo tests with pathway-specific 

endpoints. The critical role of the AOP framework in this paradigm is translation, in a causal 

manner, of these resource-efficient estimates of chemical activity into responses relevant to 

risk assessment. The qAOP is a natural evolution of this process in the context of 

quantitative predictions of AOs such that, theoretically, estimates of risk can be generated 

without any long-term animal testing. In this paper, we provide the example of a qAOP that 

can utilize easily-collected measures of chemical inhibition of a key, rate-limiting 

steroidogenic enzyme (aromatase) to predict reductions in egg production (fecundity) and, 

subsequently, population size of fish. This was achieved through linking three discreet 
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models describing different components of the AOP, from the MIE (aromatase inhibition) 

through five intermediate KEs, to impacts of regulatory interest (fecundity, population size).

There are several potential applications of qAOPs, including some directly relevant to 

existing regulatory activities. For example, the qAOP described herein would be of 

immediate utility to the US EPA endocrine disruptor screening program (EDSP), a 

legislatively-mandated effort to identify and assess potential human health and ecological 

risks of chemicals that interact with specific endocrine systems (http://www.epa.gov/endo/). 

Chemicals of concern include those that perturb the HPG axis through direct activation or 

antagonism of estrogen or androgen receptors, or through indirect effects - usually inhibition 

- of enzymes involved in sex steroid synthesis, including aromatase (http://www.epa.gov/

endo/). The EDSP is charged with evaluating around 10,000 chemicals for potential 

endocrine toxicity; it is anticipated that a critical step in the evaluation process will be the 

use of high throughput in vitro data from the US EPA ToxCast program to identify 

chemicals with the potential to interact with components of the HPG axis (42). To date, 

roughly 2,000 chemicals have been assessed for inhibition of aromatase activity in one of the 

core ToxCast assays (NVS ADME hCYP19A1). A total of 168 chemicals have been 

identified as exhibiting some degree of aromatase inhibition in this assay, with EC50 values 

ranging from 0.3 nM to 16.3 μM. As illustrated above for iprodione, potency data for the 

various aromatase inhibitors can be converted into TEQ values (relative to fadrozole) and 

compared to predicted (or, when available, measured) concentrations of the chemicals in 

relevant aquatic environments to determine potential aromatase inhibition. This resultant 

estimate can be directly incorporated into the computational models comprising the qAOP to 

produce quantitative predictions of possible effects on reproduction in individuals, and fish 

population size in the field.

In addition to this type of prospective application of qAOPs, there are opportunities for use 

in assessments of existing impacts of environmental contaminants. An example of this 

recently was provided by Miller et al. (28), who sought to use reproductive endocrine data 

from field-collected fish (white sucker, a large cyprinid species indigenous to the Great 

Lakes) to predict population status of the species at a site impacted by a pulp and paper mill 

plant. Miller et al. (28) employed a portion of the basic AOP construct used in this paper to 

link empirical steroid and fecundity information collected over the course of several years at 

the pulp mill and reference sites in northern Lake Superior, and used the resultant regression 

relationships as input to a species-specific population model. From this, they could use 

steroid data to make predictions of population trends of white sucker at the impacted site 

under different possible mitigation scenarios, such as decreased effluent discharge or 

enhanced treatment. The ability to quantitatively forecast the effects of remedial activities on 

extant populations using easily-collected data (steroid production in this instance) would be 

of great utility to efforts, such as the Great Lakes Restoration Initiative, focused on recovery 

of contaminated sites (43).

Use of the response-response approach described above avoids the need to run the 

computational models, instead allowing rapid, semi quantitative visual screening for effects 

at the individual and population levels. Further, this approach is applicable to the predictive 
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assessment of multiple aromatase inhibitors that might occur as a mixture, through an 

estimate of “total” aromatase inhibition based on summation of the derived TEF values.

Developing qAOPs from a MIE, through multiple intermediate KEs, to AOs at the individual 

and/or population levels can require a significant resource investment. For example, initial 

toxicological work underlying the aromatase inhibition qAOP described herein was 

published 15 years ago (33); in the intervening years, the core team involved in the work has 

conducted a large amount of additional research critical to the final qAOP (9, 10, 12, 22, 25, 

29, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53). While efficiency certainly will increase as 

experience grows, it is not a reasonable expectation that there will be many qAOPs in the 

near term. Rather, qAOP development efforts would be best focused on a few high-visibility/

impact MIEs or AOs of concern from a regulatory perspective. A good example of this are 

endocrine pathways of interest to the EDSP in the US and other international regulatory 

organizations (54). In fact, three of four qAOPs explored as short case examples in a recent 

workshop on the topic were focused on endocrine pathways associated with steroid synthesis 

(the current analysis), estrogen receptor activation, and thyroid signaling (6). The fourth 

example qAOP from that workshop analysis also addressed a high-visibility issue relative to 

a legislated need to reduce animal use in terms of safety testing for chemicals potentially 

causing skin sensitization (6). Other logical targets in terms of qAOP development in the 

near term include relatively complete qualitative AOPs archived, for example, in the AOP 

wiki (aopwiki.org), that have undergone a weight-of-evidence evaluation using approaches 

as described by Becker et al. (55), and rated as “strong” in the context of their intended use. 

These types of AOPs reflect relatively rich biological and toxicological knowledge bases 

likely amenable to modeling without the need for extensive collection of new data. For 

example, AOPs focused on adverse effects associated with Ah receptor activation may be 

logical candidates for qAOP development in the near future (aopwiki.org; 55).

It is worth noting that, at any point in time, a qAOP reflects the current understanding of 

KEs and KE relationships. As knowledge relevant to the qAOP increases, either through 

research specifically targeted to address data gaps or model uncertainties, or through 

activities in the broader scientific community, the qAOP can be correspondingly updated. 

Thus, qAOPs can be thought of as tools that ride the moving crest of scientific 

understanding, organize the relevant information, and identify the potential health risk 

implications of toxicant exposures.
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Figure 1. 
The aromatase inhibition qAOP. This qAOP consists of 3 linked models: fathead minnow 

HPG axis (9), fathead minnow oocyte growth dynamics (12), and fathead minnow 

population dynamics (14). The HPG axis model predicts plasma VTG concentration as a 

function of inhibition of aromatase. The oocyte model takes plasma VTG as its input and 

predicts fecundity (egg production). The population dynamics model takes fecundity as its 

input and predicts population dynamics.
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Figure 2. 
Fadrozole 21 day, continuous exposure study. HPG axis model (9) predictions after 21 days 

of continuous exposure to fadrozole at concentrations of 0, 1.4, 7.3, and 57 μg/L (41). The 

time sequence data are plotted for plasma E2 (A) and plasma VTG (B). Boxplots of 

averaged fecundity (12) are plotted against fadrozole concentration (C). Fathead minnow 

population size (14) resulting from exposure to fadrozole in comparison to control (D). Data 

in Figs. 2A and2B are shown as mean ± SEM.
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Figure 3. 
Response-response predictions. With the qAOP (9, 12, 14) at steady state, response-response 

predictions are plotted. The MIE of aromatase inhibition is plotted against fadrozole 

concentration (A). The KE of plasma E2 concentration is plotted against percent aromatase 

inhibition (B). The KE of plasma VTG is plotted against plasma E2 level (C). The KE of 

average fecundity is plotted against plasma VTG concentration (D). The adverse outcome of 

fathead minnow population size is plotted as a function of fecundity (E).
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Figure 4. 
Read-across of response-response plots to illustrate rapid evaluation of the qAOP-predicted 

effects of aromatase inhibition on key events and adverse outcome (9, 12, 14). In this 

example, exposure to 2.3 μM fadrozole causes 50% inhibition of aromatase (A), which in 

turn results in a decrease of plasma E2 to 0.012 μM (B), which in turn results in a decrease 

of plasma VTG to about 20 μM (C), which in turn results in a decrease of average fecundity 

to about 4 eggs/day (D), which in turn results in a decrease of fathead minnow population to 

about 5% of carrying capacity (E).
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Figure 5. 
Use of the qAOP (9, 12, 14) to semi-quantitatively predict a BMD for iprodione. A 20% 

decrease in fathead minnow population was considered to be a possible endpoint of 

regulatory interest. Read across (Fig. 4) of the qAOP was then used to identify a predicted 

plasma E2, continuous exposure to iprodione, as fadrozole equivalents, to identify a BMD 

assoicated with the 20% population decline (0.016 μM). The current plot, obtained with the 

HPG axis model, indicates that this level of plasma E2 is associcated with a continuous 

exposure to iprodione of between 6 and 7 μg/L.
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