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Abstract

Read-across is a popular data gap filling technique used within analogue and category approaches 

for regulatory purposes. In recent years there have been many efforts focused on the challenges 

involved in read-across development, its scientific justification and documentation. Tools have also 

been developed to facilitate read-across development and application. Here, we describe a number 

of publicly available read-across tools in the context of the category/analogue workflow and 

review their respective capabilities, strengths and weaknesses. No single tool addresses all aspects 

of the workflow. We highlight how the different tools complement each other and some of the 

opportunities for their further development to address the continued evolution of read-across.
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1. Introduction

1.1 Background context

Read-across as a data gap filling technique has garnered considerable attention in recent 

years as a result of the changing regulatory landscape worldwide. The most significant 

regulations have been in Europe with Registration Evaluation Authorisation and Restriction 

of Chemicals (REACH) (EC, 2006) and the Cosmetic Regulation (EC, 2009). These 

regulations have mandated the use of non-animal approaches to address information needs 

for hazard and risk assessment. Concurrently, there has been a shift for toxicity testing itself 

to move towards a mechanistic basis exploiting high throughput screening (HTS) and high 

content (HC) in vitro approaches (NRC, 2007). The context of how these in vitro approaches 

can be interpreted is still evolving, though examples using adverse outcome pathways 
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(AOPs) have started to be developed (Patlewicz et al., 2015, Delrue et al, 2016; NRC, 2017). 

Read-across is also undergoing a transformation with increasingly efforts to exploit High 

Throughput/High Content (HT/HC) screening data as a means of substantiating biological 

similarity (Low et al., 2013; Pradeep et al., 2015; Shah et al., 2016; Zhu et al., 2016). An 

OECD work programme under the auspices of the Task Force of Hazard Assessment 

(TFHA)1 has published several examples of AOP informed Integrated Approaches to 

Testing and Assessment (IATA) that have been based on read-across where data generated as 

part of the EPA ToxCast program have been utilised (see http://www.oecd.org/

chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm 

for a list of case studies both published and under review).

Although there has been a wealth of technical guidance developed (OECD 2014; ECHA, 

2008) which describe the workflow of category/analogue development and associated read-

across, many challenges still remain. The consistency in how read-across predictions are 

made and the level of evidence required to substantiate a read-across prediction and 

document its justification persist, thus, thwarting greater acceptance of read-across for 

regulatory purposes (Patlewicz et al., 2014; 2015; Ball et al, 2016). Many researchers are 

working to address these challenges. Industry, through the European Centre for 

Ecotoxicology and Toxicology of Chemicals (ECETOC) and the European Chemistry 

Industry Council’s Long Range Initiative (Cefic-LRI), sponsored a task force and a 

workshop respectively to characterise the state of the art in read-across (ECETOC, 2012; 

Patlewicz et al., 2013a,b; 2015). Cefic-LRI has also invested in the development of software 

tools notably AMBIT to facilitate read-across predictions in particular for REACH (see 

http://cefic-lri.org/lri_toolbox/ambit/). The European Chemicals Agency (ECHA) developed 

a Read-Across Assessment Framework (RAAF) (ECHA, 2016) to establish a consistent set 

of principles for evaluating read-across justifications submitted under REACH. ECHA 

continues to sponsor the development of the OECD QSAR Toolbox (http://www.oecd.org/

chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm), a software tool for the development, 

justification and documentation of chemical categories (Dimitrov et al., 2016). The Center 

for Alternative to Animal Testing (CAAT) initiated a cross stakeholder workgroup including 

representatives from academia, industry and governmental agencies to summarise the 

available read-across guidance, and in particular to illustrate the extent to which HT/HC 

screening data could be useful in capturing biological similarity in conjunction with the 

traditional chemical similarity approaches (Ball et al., 2016; Zhu et al., 2016). Two 

additional CAAT workshops were also held, one in Europe and a second in the US to 

disseminate the learnings gained (Maertens et al, 2016). In addition, several of the most 

recent EU research programmes have been aimed at moving away from traditional animal 

testing – the SEURAT-1 programme is a particular example that included a significant read-

across component and published templates for the structuring and reporting of read-across 

predictions (Berggren et al, 2015; Schultz et al., 2015).

Hence, there has been a wealth of activity exploring ways of refining and improving the 

manner in which read-across is performed. There have also been a number of software tools 

1.TFHA has since been renamed to the Working Party on Hazard Assessment (WPHA)
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aimed at facilitating read-across prediction. Some of these tools have been in existence for 

many years, others have been developed more recently in response to regulatory drivers. 

Keeping abreast of these different tools, understanding their capacities and limitations, and 

where they might best be exploited within the context of the category/analogue workflow (as 

outlined in the OECD technical guidance (OECD, 2014)) is less clear. This article has 

attempted to clarify some of these aspects. To do so: we describe a workflow of category/

analogue development (adapted from that described in the OECD grouping guidance 

(OECD, 2014)) and associated read-across including common terms of reference; we 

describe several of the publicly available tools and indicate their capacities with respect to 

this workflow in order to provide context of where these different tools offer their greatest 

value. We then propose how a combination of these tools address specific research and 

regulatory questions. Finally, we suggest what refinements in these read-across tools would 

be most constructive in the near term.

1.2 Terms of reference

It is worth defining various terms as they are pertinent for the comprehension of the 

remainder of the article. The terms category approach and analogue approach are used to 

describe means of grouping chemicals together that are similar in some context or another. 

The term read-across is reserved for a technique of filling data gaps in either approach. 

Analogue approach refers to the grouping of a target and source analogue together whereas a 

category approach refers to the grouping of a target and at least 2 or more source chemicals. 

The target is denoted as the chemical of interest whereas source analogues refer to similar 

chemicals to the target where similarity, typically structural similarity, is used as the 

criterion. Within an analogue or category approach, there is usually one or more rationale 

underpinning the selection of the source analogues. This is captured in the definition of a 

category as described within the OECD grouping guidance (OECD, 2014) as:

“A chemical category is a group of chemicals whose physicochemical and human health 

and/or ecotoxicological properties and/or environmental fate properties are likely to be 

similar or follow a regular pattern, usually as a result of structural similarity.

The similarities may be based on the following:

• a common functional group (e.g. aldehyde, epoxide, ester, specific metal ion);

• common constituents or chemical classes, similar carbon range numbers;

• an incremental and constant change across the category (e.g. a chain-length 

category);

• the likelihood of common precursors and/or breakdown products, via physical or 

biological processes, which result in structurally similar chemicals (e.g. the 

metabolic pathway approach of examining related chemicals such as acid/ester/

salt)”.

Three main data gap filling techniques are used in characterising the hazard2 profile of the 

target chemical. These are: read-across, trend analysis and QSARs. Read-across represents 

the application of data from a source chemical(s) for a particular property or effect to predict 
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the same property or effect for the target chemical. Trend analysis refers to the development 

of an internal QSAR model using the data from the category members (selected source 

analogues) to predict the specific property or effect for the target chemical (Note: This can 

be likened to a local QSAR model). QSAR as a data gap filling technique refers to the 

application of a QSAR model developed independently from the source analogues and used 

to predict a specific property or effect of interest. These distinctions are important to bear in 

mind as some of the “read-across” tools have one or more of these data gap filling 

techniques implemented.

1.3 The Category/analogue workflow

There are a number of steps in the development of a category or analogue approach. Slight 

variations of the exact number and name of these steps depends on which technical guidance 

and publication is referenced (see OECD, 2014; ECHA, 2008; ECETOC, 2012). It is also 

important to note that this workflow only considers a discrete organic chemical as the target. 

The workflow may well vary when considering mixtures, polymers, inorganics or 

nanomaterials (see ECETOC, 2012).

The seven key steps in the workflow are as follows:

1. Decision context

2. Data gap analysis

3. Overarching similarity rationale

4. Analogue identification

5. Analogue evaluation

6. Data gap filling

7. Uncertainty assessment

1.3.1 Decision context—The first step is a consideration of the decision context. 

Decision contexts can take many forms including prioritisation, screening level hazard 

assessment, or risk assessment. The type of decision will dictate the level of uncertainty that 

can be tolerated with the read-across prediction being made. For example, a prioritisation 

decision for a target chemical can tolerate more uncertainty than a risk assessment outcome 

considering the downstream consequences of the decision context.

1.3.2 Data gap analysis—This step refers to a data collection exercise for the target 

chemical to understand what is known from a hazard perspective in order to be able to 

prioritise next steps and to determine whether any read-across approach should be broadly 

based in scope or limited to a specific endpoint. Patlewicz et al. (2014; 2015a) discussed the 

number and type of data gaps pertinent for the type of non-testing approach3 used. This step 

2.We use the term hazard broadly to encompass physicochemical, ecotoxicological, environmental fate or toxicological properties. In 
practice, data gap filling could be performed for a number of different decision contexts. For the purposes of this article, we have 
opted to place data gap filling in the context of properties pertinent for current regulatory purposes.
3.Non-testing approaches is a term that encompasses the search and retrieval of existing data, the application of structural alerts, the 
grouping of chemicals for read-across as well as Q)SARs.
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identifies what is known about the hazard profile of the chemical that informs the number of 

data gaps and the subsequent analogue identification and selection strategy.

1.3.3 Overarching similarity rationale for the category/analogue approach—
The data gap analysis for a target chemical should inform the most practical and pragmatic 

means of identifying source analogues. For example, according to the OECD guidance 

(OECD, 2014) for what a category represents, if the overarching rationale is a common 

functional group or structural similarity, this will focus the tactical approach of identifying 

analogues. If, for example, the data gap analysis shows that the only gap is for a single 

endpoint, such as skin sensitisation, then a more targeted search strategy might be applied to 

identify analogues on the basis of their common reaction mechanistic domains (Aptula et al, 

2005; Roberts and Aptula, 2008). Other rationales could also be based on types of toxicity 

effects such as nephro or hepato-toxicants or process of manufacture.

1.3.4 Analogue identification (Analogue searching)—Analogue identification is 

the process of searching for analogues similar to the target chemical. The overarching 

similarity rationale dictates how this search is conducted practically. A search on the basis of 

structural similarity where a similarity index such as the Jaccard distance (Tanimoto 

coefficient) is used as a convenient threshold to limit the number of source analogues 

retrieved would be categorised as an ‘unsupervised’ approach. Whereas, a search that is 

informed by parameters relevant to the endpoint (e.g. a specific structural alert) would be 

categorised as a supervised approach.

Willett et al (1998) provide a comprehensive description of the different similarity indices 

for chemical searching and their respective calculation formulae. Many web-based tools that 

permit structure searching typically include an algorithm to search for structurally similar 

chemicals with a Tanimoto similarity cut off. Similarity searches for chemicals are provided 

in common web based tools such as ChemID plus (https://chem.nlm.nih.gov/chemidplus/), 

Chemspider (http://www.chemspider.com/StructureSearch.aspx) as well as in commercial 

applications such as Scifinder (http://www.cas.org/products/scifinder) and Leadscope (http://

www.leadscope.com/).

1.3.5 Analogue evaluation—After a search of source analogues has been performed, a 

critical step is to evaluate the validity and relevance of these analogues. This is particularly 

important if the initial search is an unsupervised one since no assumptions would have been 

made to limit the analogue search on the basis of properties or parameters pertinent to a 

specific endpoint. Evaluation entails gathering associated property and effect information for 

the source analogues identified (see data gap filling). Source analogues with limited data, 

and particularly for the endpoint(s) of interest required for the target chemical, are not viable 

candidates for further consideration. Source analogues should be evaluated in terms of their 

similarity relative to the target chemical specifically with respect to their general 

physicochemical characteristics, metabolic profile and reactivity (Wu et al, 2010; Patlewicz 

et al, 2013a; Patlewicz et al, 2015a). A preliminary indication of the relative similarity can 

also be made by reference to existing (Q)SAR tools (ECETOC, 2012; Patlewicz et al, 2013a; 

2015a). QSAR tools can be particularly helpful to provide an estimate of physicochemical 

characteristics such as LogKow, molecular weight (MW) and vapour pressure, all of which 
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will be informative in assessing bioavailability. Tools that can identify structural alerts will 

be helpful to judge whether the toxicity profile of the source analogues relative to the target 

chemical are likely to be similar e.g. Derek Nexus (https://www.lhasalimited.org/products/

derek-nexus.htm); OECD QSAR Toolbox. Some of these structural alerts are also 

informative of chemical reactivity. For example, protein binding alerts within the Toolbox 

mimic features indicative of electrophilic reactivity. Other tools exist that are able to make 

predictions of likely metabolites which provide an indication of whether metabolic pathways 

diverge or converge to any extent. Tools that can make prediction of metabolism include 

expert systems such as TIMES (http://oasis-lmc.org/products/models/metabolism-

simulators.aspx), Meteor Nexus (https://www.lhasalimited.org/products/meteor-nexus.htm). 

Freely available tools include MetaPrint2D (Boyer et al, 2007; see also http://www-

metaprint2d.ch.cam.ac.uk/) or the Cytochrome P450 predictor (Rydberg et al, 2010a,b) that 

exists as a module in Toxtree, a software platform developed by IdeaConsult Ltd as part of a 

JRC contract (see https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/

predictive_toxicology/qsar_tools/toxtree). Considerations for evaluating analogue suitability 

are discussed in more depth in other publications including Wu et al, (2010), and Patlewicz 

et al (2013a; 2015a).

1.3.6 Data gap filling—This step requires a subjective evaluation of the validity of the 

analogues with respect to their actual experimental data, and judging the concordance and 

consistency of their effects across the members and across the endpoints (Blackburn et al, 

2011; Blackburn and Stuard, 2014; Patlewicz et al, 2015a). The data evaluation itself is 

largely expert driven though can be facilitated by data quality assessment tools such as 

ToxRTool (Schneider et al., 2009; Segal et al., 2015) to assign scores as described by 

Klimisch et al., (1997). This evaluation is best informed by construction of a data matrix to 

readily identify which data gaps need to be filled. Each data gap is then filled based on the 

available data for the source analogues. In an analogue approach, a simple extrapolation 

between source and target chemical is performed for specific effects or properties. In a 

category approach, the prediction made is either based on expert judgement using one or 

more of the source analogues, or objectively estimated by mathematical calculation using 

the source analogues. Depending on the type of property data under consideration, the read-

across prediction could be qualitative or quantitative. Other data gap filling techniques such 

as trend analysis or QSARs might also be exploited.

1.3.7 Uncertainty assessment—Although this step has not been systematically or 

consistently performed in practice, there are two main approaches – expert-driven or data 

driven. Expert-driven approaches rely on the judgement of domain scientists/experts to 

evaluate the relevance of the analogues as well as their underlying data. A framework was 

proposed by Blackburn and Stuard (2014) which describes potential areas of uncertainty, 

and provides a questionnaire to help assign a level of uncertainty using qualitative scores. 

This framework was adapted and extended by Schultz et al (2015) whereby templates were 

proposed to assist in assessing similarity in the context of chemistry, toxicokinetics and 

toxicodynamics as well as to guide the systematic characterisation of uncertainty both in the 

context of the similarity rationale, the read across data, and overall approach and conclusion. 

Similar scientific confidence considerations were outlined in Patlewicz et al. (2015a). The 
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RAAF presents a complementary framework for structuring the read-across justification and 

articulating the different sources of uncertainty (ECHA, 2016). All these frameworks allow a 

read-across prediction and its associated justification to be evaluated, however, the 

assessment is subjective expert driven and qualitative in nature. Efforts are currently being 

investigated to determine to what extent the performance of the prediction can be objectively 

evaluated to enable a quantitative assessment of the uncertainty associated with the 

prediction possible – i.e. data -driven. For example, Shah et al (2016) have devised a means 

of quantifying the uncertainty associated with a read-across prediction based on a data-

driven approach named GenRA, generalised read-across. The prediction accuracy of each 

toxicity outcome across all chemicals in a local neighbourhood was evaluated by a receiver 

operating characteristic (ROC) for the range of similarity indices (s) and nearest neighbours 

(k). The area under the curve (AUC) was then taken as a measure of performance for a given 

k and s.

2.1 Available “read-across” tools

There have been a number of software tools developed in the last decade to assist in 

category/analogue development and associated data gap filling. Here we review a 

representative selection of publicly available tools. Table 1 summarises the key features of 

each tool. The descriptions are presented in order of when the software was first developed.

Analog Identification Methodology (AIM)

Software development—The Analog Identification Methodology (AIM) was developed 

by SRC Inc for the EPA’s OCSPP (Office of Chemical Safety and Pollution Prevention). 

The current version 1.01 was released in November 2013 (https://www.epa.gov/tsca-

screening-tools/analog-identification-methodology-aim-tool) as a freely available standalone 

tool to help identify potential analogues for read-across. Previous iterations of the AIM 

methodology were web-based and date back at least a decade.

Description of tool—A target chemical is entered into the software on the basis of an 

identifier such as CAS, Name, SMILES or a structure (Figure 1). The structure can be drawn 

using the drawing palette embedded in the tool or imported as a standard chemical MOL 

file.

Analogues are searched using over 700 structural features (atoms, groups and super 

fragments) as characteristics and matched against an inventory of source analogues with 

available experimental data (in total the inventory comprises over 86,000 analogues pre-

indexed with publicly experimental data and links to data sources). The software provides 

hyperlinks to the experimental data sources available but does not actually provide the 

underlying data themselves. AIM uses a two-tiered system for identifying analogues. The 

default approach is for analogues to be selected if all fragments/atoms and super fragments 

in the target chemical are contained in the source analogues proposed. This type of query 

assumes a one to one match and is the most stringent means of identifying analogues. If no 

analogues are identified that satisfy these criteria, a second tier is performed. Many of the 

large super fragments specify orientation of atoms and these types of criteria are relaxed in 

the subsequent search. Other rules such as combining acrylates and methacrylates, allowing 
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metal substitutions, treating primary, secondary and tertiary amines equivalently or adjacent 

halogens as the same are then permitted. Specific user defined rules can also be encoded in 

the tool and stored for subsequent searches. AIM does not assign any relevance metric on 

the analogues identified to prioritise them such as a similarity index, instead it provides the 

end-user with a list of potential analogues and their associated data sources links. The end-

user must apply subjective judgement to determine the validity of any of the suggested 

analogues for the decision context of interest.

Data Sources—There are a number of different data sources indexed. In AIM, 

descriptions of each of these sources and links are provided in a pdf document that can be 

accessed by clicking on the Data Sources button within the user interface. Data sources 

include chemicals whose data have been submitted under the Toxic Substances Control Act 

(TSCA); chemicals that have been indexed within the following databases: the Aggregated 

Computational Toxicology Resource Database (ACToR), the ECOTOXicology database 

(ECOTOX), the Hazardous Substances Data Bank (HSDB), the Integrated Risk Information 

System (IRIS), the National Toxicology Program (NTP), the Agency for Toxic Substances 

and Disease Registry (ATSDR), the High Production Volume Information System (HPVIS), 

the OECD High Production Volume (HPV) chemical database, the Canadian Chemicals 

Management Programme (CMP), the OPP Pesticide Ecotoxicology database, the Distributed 

Structure-Searchable Toxicity Database Network (DSSTox), the Registry of Toxic Effects of 

Chemical Substances (RTECS), the International Uniform Chemical Information Database 

(IUCLID) and the Acute Exposure Guideline Levels (AEGLs). It should be noted that some 

of these sources have since been updated or have become superseded by new developments. 

For example, the DSSTox library is now part of the US EPA’s National Center for 

Computational Toxicology (NCCT) Chemistry dashboard (https://comptox.epa.gov/

dashboard) which is indexed to a number of different data sources. IUCLID referenced in 

AIM is IUCLID v4 which has since been superseded by later releases of IUCLID and the 

data that have been submitted for the old EU legislation has since been re-submitted in more 

detail under the REACH regulation (EC, 2006). AIM has not as yet accommodated these 

updated resources.

Output—AIM provides an output report file in the form of a html, pdf or excel file. This 

presents the user with a summary of the target chemical and presents the source analogues 

starting with the exact target match if available as well as other related analogues. These are 

ordered on the basis of the number of data sources available. Hyperlinks to the data sources 

are presented in the report to enable closer inspection. No evaluation of the quality of the 

data sources is provided in the report.

Toxmatch

Software development: Toxmatch is an open source application which encodes a variety of 

chemical similarity indices to facilitate the grouping of chemicals into categories for the 

purposes of performing objective endpoint specific read-across. It was developed by 

IdeaConsult under the terms of a EU JRC contract (https://eurl-ecvam.jrc.ec.europa.eu/

laboratories-research/predictive_toxicology/doc/Toxmatch_user_manual.pdf). Several case 

studies outlining its functionality were described by Gallegos Saliner et al (2008) and 
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Patlewicz et al (2008). The current version of the software is 1.07, which was released in 

January 2009.

Description of tool—A dataset comprising structures, activity information and 

descriptors is either introduced into the software as a training set, or one of the pre-defined 

datasets can be selected for analysis (see data sources). Pairwise similarity measures are then 

calculated for this dataset and a similarity matrix is created to visualise the structural 

diversity within the dataset. There are a range of different similarity indices that can be 

computed such as distance like similarity indices or correlation like similarity indices. The 

type of similarity index will depend on the type of chemical descriptors used to characterise 

the dataset. In Toxmatch, the following measures are included: Euclidean distance, Cosine 

similarity, Hodgkin-Richards Index, Hellinger distance and Tanimoto distance. The first four 

of these are implemented as descriptor based methods. The latter two are structure-based 

using atom environments or fingerprints. In the simplest use case, a dataset is introduced, 

depending on whether a descriptor or structure-based approach characterises the dataset, one 

of the different similarity index method will be used to derive pairwise similarity measures. 

Toxmatch provides two options for a similarity assessment: either an average similarity 

between a query chemical and its nearest neighbours, where by default, the number of 

neighbours is 10 (though a user can change the setting) or a similarity between a query 

chemical and the composite fingerprint or fragment set. The latter approach is limited to the 

Tanimoto distance and Hellinger distance. The similarity information is then used to derive a 

prediction of the endpoint (activity) of interest. The way in which this prediction is 

calculated depends on the dataset in question and whether the endpoint or activity is 

categorical or continuous in nature. If the activity is continuous in nature, the read-across 

prediction is effectively a prediction of activity based on the weighted average of the activity 

values of the k nearest neighbours i.e. the activity of the most similar (closest) chemicals are 

averaged proportionately and used to estimate the activity of a chemical of interest. If the 

activity is categorical, the read-across prediction is a classification problem. In this case, the 

read-across is slightly different as the source analogues are binned into groups and the 

similarity measure provides the means to define the likelihood that the target chemical falls 

into one or other group. The procedure also relies on k nearest neighbours and classifies the 

target chemical into the group where most of the k most similar chemicals belong.

For a de nuovo chemical, the target chemical is introduced into the test set domain of the 

software interface. A similarity with respect to the training set will identify the 10 nearest 

neighbours in the training set (by default) in order to calculate a similarity weighted average 

of the activity. A prediction of the categorical activity is made based on which activity the 

nearest neighbours to the target chemical belong to. Within the similarity matrix view 

(Figure 2), a user can browse the similarity matrix created and filter the view to identify the 

most similar analogues from the training set that meet a specific similarity threshold. A view 

of the respective source analogues and their associated experimental values, predicted values 

and similarity index can be viewed and exported by selecting the option to calculate a 

similarity with respect to the test (target) chemical.
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Data sources—Several pre-defined training sets are provided in the software including 

aquatic acute toxicity (fish), bioconcentration factor, skin sensitisation, skin irritation, 

carcinogenicity and mutagenicity. The aquatic toxicity dataset is a copy of the DSSTox EPA 

Fathead Minnow Acute toxicity (April 2006 update). The BCF dataset is taken from the 

EPA’s EPIsuite software. The skin sensitisation dataset is from Gerberick et al (2005), a 

collection of published LLNA data. Two skin irritation datasets are included; one a reference 

bank from ECETOC and a second a compilation from several other sources. The 

carcinogenicity and mutagenicity datasets are those provided by ISSCAN that were made 

available as DSSTox files. The intent with these datasets is help a user familiarise 

themselves with the functionalities and features of the tool itself rather than be an exhaustive 

repository of datasets. The sources are described in more detail in the Toxmatch user 

manual. A user can import their own dataset of toxicity information together with their own 

descriptor information – typically chemical descriptors or use the descriptor calculators 

within Toxmatch to generate chemical information.

Output—Scatter plots of the similarity index as a predictor of the activity or plots to 

explore the correlations between descriptors and activity can be generated and exported. 

Table exports of the similarity information and predicted activities can also be generated. A 

picture of the pairwise similarity matrix can also be copied and pasted or saved as a png file.

AMBIT

Software development: AMBIT is a cheminformatics software tool that was first developed 

by Ideaconsult Ltd and sponsored by Cefic LRI in 2004. The current version incorporates 

specific functionality to more efficiently support category formation and read-across to 

address the specific needs for REACH (http://cefic-lri.org/lri_toolbox/ambit/). Under 

REACH, industry registrants have to use IUCLID as means of submitting their registration 

dossiers to ECHA. IUCLID is structured to capture endpoint data and substance 

composition. Although IUCLID can be queried on the basis of a specific substance (e.g. by 

name or ID) or endpoint data, it cannot be searched on the basis of structure. The 

functionality within the current version of AMBIT enables both structure and data searches 

with IUCLID which in turn facilitate category development and read-across. Using AMBIT 

for read-across analysis creates a chemical assessment aimed at producing a report/

document suitable for regulatory submission.

Description of tool—The AMBIT system comprises a database and functional modules 

to enable different search queries to be performed. Search queries can either be performed 

on the basis of chemical identifiers (structure or IDs such as CAS) or on the basis of 

endpoint data (Figure 3).

AMBIT was updated as part of a followup Cefic LRI project in 2013 to handle substance4 

IDs, including structures, composition of mono- and multi-constituent substances, and, 

special cases of UVCBs (unknown or variable compositions, complex reaction products and 

biological materials), addressing constituents, impurities and additives in the same way as 

4.IUCLID stands for International Uniform Chemical Information Database. IUCLID is a software program for the administration of 
data on chemical substances first developed to fulfill EU information requirements under REACH
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IUCLID is structured. In addition to search queries, a category assessment workflow was 

developed to enable a user to create a read-across prediction and its associated report. The 

workflow consists of the following steps: assessment identifier (this helps to document and 

track the assessment being developed), collect structures (this includes identifying the target 

chemicals and associated source analogues), endpoint data used (selecting what endpoint 

data to be queried, depending on the scope of the read-across intended), assessment details 

(creation and revision of the data matrix), and report. The workflow begins with populating 

specific fields in an assessment identifier form with user information and name of the 

assessment being created. This information is used later to prepopulate an assessment report. 

The next step is to select a target substance using the “collect structures’ tab. A target 

substance can be searched on the basis of various identifiers including exact structure, CAS, 

EINECS, InChI, SMILES or name. Structurally similar analogues to that target can then be 

identified using Tanimoto as a similarity index or on the basis of substructure searching. 

Analogues identified can be limited to only those with some associated data. At this point 

the target and associated analogues are tagged as target and source substances and a 

rationale for their inclusion can be added. The next step is to collect the resulting list of 

substances and select endpoint data of interest. The available endpoint data will only be 

visible if the specific substances which are associated with a data record are checked. This is 

done by opening the structures in turn within the “endpoint data used” tab and inspecting to 

see what information is available within the IUCLID database e.g. if the structure is 

associated with information on particular impurities or other constituents, this will be 

reflected here. The constituent substances selected which update the “selection of endpoints” 

tab with the number of data records for all the available endpoints. A user can select all 

endpoints of interest or select a handful of endpoints of interest depending on the scope of 

the intended read-across. Clicking on the next tab – assessment details presents the 

analogues and data in an initial data matrix. This enables an assessment of data gaps for the 

target which are to be filled through read-across from the remaining source analogues. 

Outlier data can also be readily identified. Predictions from Toxtree5 modules are also made 

automatically where feasible to supplement any data gaps. The read-across prediction and 

justification are user derived based on subjective expert judgement. The read-across 

predictions are recorded by launching the working matrix and adding new records within the 

relevant endpoint cells. Information on the read-across approach, the rationale, the source 

analogue used for the prediction, the toxicity value being used as the read-across value can 

be annotated by the end user as a record. Any outlier data can be deleted within the working 

matrix or missing records not reflected in the database can be added in the relevant endpoint 

cell (see Figure 4).

The last step is to finalise the matrix by saving any edits made. This will enable creation of 

an assessment report which mimics the category and analogue reporting formats that are 

described in the ECHA and OECD grouping guidance documents (ECHA, 2008; OECD, 

2014). The report can be exported as a word document and the associated data matrix files 

5.The term substance is used here deliberatively to acknowledge that a ‘chemical’ registered under REACH is characterised at a 
detailed level to account for its composition.
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will be able for download. An audit trail of data records that were deleted are also tracked in 

the report.

Data sources—The AMBIT database stores more than 450,000 chemical structures and 

their identifiers such as CAS, EINECS. ECHA also provided access to the entire non-

confidential REACH dataset, amounting to information on 14,570 substances for a range of 

physicochemical, environmental fate, ecotoxicity and toxicological information.

Output—The main outputs that AMBIT provides are exports in various formats of the data 

matrices created and the assessment report.

OECD QSAR Toolbox

Software development—The OECD QSAR Toolbox6 is a software application intended 

for use by government agencies, chemical industry and other stakeholders in filling gaps in 

ecotoxicity, environmental fate and toxicity data needed for assessing the hazards of 

chemicals. The Toolbox was developed through a series of phases, starting with a proof of 

concept which was released in 2008. The version of the OECD Toolbox described herein is 

v3.4 (see Figure 5), this third generation contains many advanced features and was released 

in July 2016. The Toolbox is developed by the Laboratory of Mathematical Chemistry 

(LMC), University As Zlatorov, and its development is managed by OECD with funding 

from ECHA. A new version on a different software platform was released 4th April 2017, 

version 4. Training and documentation is still in development though the principles and main 

functionalities described here will be also applicable to version 4.

Description of tool—The OECD Toolbox incorporates information and tools from 

various sources into a workflow. The workflow mimics that described in the OECD 

grouping guidance (OECD, 2014). Dimitrov et al (2015) have described the workflow and 

the major functionalities in more detail. Here we describe the main features and use. A target 

chemical is introduced into the Toolbox using a chemical identifier such as a name, a CAS 

registry number or by drawing a chemical structure using the inbuilt drawing tool. The target 

can then be “profiled”. There are several types of ‘profilers’ in the Toolbox namely: 

predefined, general mechanistic, endpoint specific, empiric and toxicological. Each type is 

described to help clarify what is meant by the term ‘profiler’, though they might also be 

considered as structural matching or indexing rulebases. Figure 5 shows a screenshot of the 

interface.

Predefined profilers capture affiliations to the databases or inventories contained within the 

Toolbox. There are also a handful of profilers within this set that flag whether a chemical is 

a member or a potential member7 of the EPA New Chemical Categories (EPA, 2010) or the 

OECD High Production Volume (HPV) categories (see http://webnet.oecd.org/hpv/ui/

Default.aspx) as well as define its substance type (discrete organic, salt, inorganic, mixture 

6.Toxtree was developed by Ideaconsult Ltd under the terms of a JRC contract to develop a software tool of decision tree approaches 
including the Cramer structural classes, structural alerts for different endpoints. It can be downloaded as a standalone tool from the 
JRC website (https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/toxtree). The algorithms have 
also been implemented into AMBIT.
7.OECD QSAR Toolbox will be referenced as the OECD Toolbox or Toolbox throughout this article
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etc). In the Toolbox, the general mechanistic profilers are in many cases collections of 

structural alerts that may or may not be substantiated by experimental data. For example, 

there are DNA binding profilers that are pertinent to genotoxicity endpoints, but a subset of 

these alerts may be more theoretical in nature in that the alerts are based on chemical 

reasoning and not necessarily supported by experimental genotoxicity data. These general 

mechanistic profilers also include the Cramer structural classes that are used in the 

application of the Toxicological Threshold of Concern (TTC) (Cramer et al, 1978). Endpoint 

specific profilers are tailored for specific endpoints and are underpinned by experimental 

data. For example, the DNA binding profiler will be the same profiler as is reflected in the 

general mechanistic profiler but certain alerts that have a lower confidence due to the lack of 

supporting data will not be copied across i.e. the endpoint specific DNA binding profiler is a 

subset of the general mechanistic profiler for DNA binding. Other profilers in the Toolbox 

such as the ‘aquatic toxicity classification by ECOSAR’ rely on the SAR classes within the 

EPA’s ecotoxicity prediction tool, ECOSAR (https://www.epa.gov/tsca-screening-tools/

ecological-structure-activity-relationships-ecosar-predictive-model). Empiric profilers 

comprise unsupervised approaches to help in the identification of analogues – these profilers 

include identifying what chemical elements or functional groups are present in the target 

chemical. An example of the functional group profiler is the Organic functional groups (US 

EPA) which consists of the 645 structural fragments and correction factors taken from the 

LogKow model KOWWIN that is part of EPISuite. The toxicological profiler contains only 

one toxicity rulebase for repeated dose toxicity (HESS). This profiler was developed by the 

National Institute of Technology and Evaluation (NITE) in Japan. The profiler contains 

categories that are expected to induce similar toxicological effects in repeated dose oral 

toxicity studies. These categories were developed using repeated dose toxicity test data 

collected as part of Hazard Evaluation Support System (HESS) (see http://

www.nite.go.jp/en/chem/qsar/hess-e.html).

The next step of the workflow involves gathering available endpoint data from multiple 

sources that have been provided to the Toolbox. Some datasets are focused on a specific 

endpoint whereas other sources are more encompassing. Examples include the COLIPA 

Dendritic cell collection – data from the h-CLAT and MUSST assays which are both in vitro 

sensitisation tests donated by the Cosmetics Industry’s trade association, whereas the ECHA 

CHEM presents the data that were submitted under REACH that have been since 

disseminated publicly through the ECHA website and via the OECD Chemportal (http://

www.echemportal.org/). There are underlying templates – the OECD harmonised templates 

that structure the available data into specific fields based on standardised ontologies. These 

are essential to enable any subsequent data gap filling to be performed using data generated 

through the same protocol, species etc. The endpoint experimental gathering step is critical 

to focus how the category should be defined for the subsequent data gap filling. The Toolbox 

is really intended to facilitate the endpoint specific data gap filling rather than developing a 

category of analogues to address more than one endpoint at the same time. After data are 

collected for the target, the user selects the endpoint of interest to focus the subsequent 

evaluation. This is a data gap analysis step to identify and prioritise efforts to fill them. A 

cell is selected, which denotes the specific endpoint of interest at the appropriate level of 

detail, to start the next step in the workflow – the category definition step. This category 
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definition step directs a user to select one or more of the profilers to identify source 

analogues and subcategorise the analogues retrieved so that the set of final analogues 

identified are similar with respect to all the profiling outcomes chosen. The profiling to 

identify these analogues can factor in potential metabolites although the decision to select 

this will depend on what the initial profiling outcomes are for the target chemical and 

whether activation is considered to be an important factor for the endpoint of interest. After 

subcategorising the source analogues, the next step is to perform the data gap filling for the 

endpoint of interest, using one or more of the data gap filling approaches. Both the number 

of analogues with data and the type of data will determine which data gap filling technique 

is most appropriate. A number of QSARs and their predictions are implemented into the 

OECD Toolbox – including the Danish EPA QSAR models and the EPA EPISuite models. If 

a user has a licence for the OECD Toolbox developer’s commercial tools such as TIMES 

(discussed earlier), these will be integrated and docked automatically into the Toolbox to 

enable predictions to be made and surfaced in the Toolbox data matrix interface. Trend 

analysis will only be invoked if the property data are quantitative in nature and a minimum 

of 3 data points are available for the source analogues. The trend analysis permits a 

regression model to be derived on the basis of a single parameter. A quadratic or averaging 

approximation can be selected as alternative trend analysis options. The default correlating 

parameter is LogKow but other chemical descriptors and endpoint tree descriptors are 

encoded to facilitate other correlations to be explored and trends to be derived. Endpoint tree 

descriptors represent any other experimental information to be used as a descriptor – e.g. a 

correlation between a specific ToxCast assay and the endpoint of interest can be evaluated. 

A level of significance can be set with the prediction made which by default is a confidence 

level of 95%. Read-across can be performed quantitatively or qualitatively, and various 

approaches are included in the prediction calculation to enable a prediction to be an average, 

minimum value, maximum, mode or median value on the basis of 5 neighbours. The number 

of neighbours can also be changed by the end-user. The prediction is still reliant on a single 

descriptor as a means of scaling the prediction made and this is by default LogKow.

The last step in the workflow is documenting the prediction made. Prediction templates that 

follow a similar structure to the QSAR Prediction reporting format (QPRF) as reported in 

the ECHA guidance (ECHA, 2008) can be created which document the logic and steps a 

user has made in deriving the prediction. Export files in IUCLID can also be generated 

which is particularly pertinent for Industry users submitting registration dossiers to ECHA.

Data Sources—The OECD Toolbox contains many data sources covering many different 

endpoints of regulatory interest. The data sources cover physical chemical properties, 

environmental fate and transport, ecotoxicological information, and human health hazards. 

Physical chemical property data comprise the phys-chem data that exist within the EPA 

EPISuite tool as well as data collected as part of REACH submissions. Other data include 

chemical reactivity data and pKa information. The e-fate and ecotox data comprise datasets 

from Cefic LRI, LMC, REACH data and EPISUITE data. The human health dataset is by far 

the largest set including datasets for specific endpoints or the REACH compilation. Users 

can also import their own datasets or databases into the Toolbox.
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Outputs—There are many outputs that can be exported and extracted from the Toolbox 

depending on the step of the workflow. Profiling outcomes can be exported as text files 

together with their structural identifiers such as SMILES strings. Endpoint data can be 

exported to an extent: the REACH data and certain other datasets are not permitted to be 

exported. Within the data gap filling, scatter plots generated of the predictions made are 

exportable. Reports summarising the category derived and the predictions derived can be 

exported as reporting formats consistent with ECHA and OECD guidance. IUCLID file 

exports are also possible, which is useful for users submitting REACH dossiers.

CBRA

Software development—Chemical Biological Read-Across (CBRA) was a term coined 

by Low et al (2013) in research aimed to extend the chemical similarity principle to predict 

toxicity by incorporating biological activity data in an effort to account for biological 

similarity. This hybrid approach of using both chemical and biological activity data was 

expected to be more predictive of in vivo toxicity. The actual toxicity prediction was a 

similarity weighted average of the activities of nearest neighbours visualised as a radial plot. 

A software implementation of the approach was developed and is freely available from 

http://www.fourches-laboratory.com/software.

Description of tool—Users need to introduce three different input files: 1) a file of 

chemical structural descriptors, 2) biological activity information which are structured as 

descriptors; and 3) a file of toxicity information – namely the activity to be predicted. In the 

software download, sample files of these input files are provided to illustrate the format of 

the files and the way in which the software functions. Once files have been imported, 

information is provided to summarise the number of chemicals included in the input file, as 

well as the number of chemical and biological descriptors. Options are available to modify 

the number of neighbours or the Tanimoto similarity threshold. The default values are 5 and 

0.4 respectively. To run a prediction, the “Compute CBRA” button is clicked and a radial 

plot is automatically generated. CBRA radial plots and the associated predictions for each of 

the chemicals in the input file can be viewed in turn by clicking on the arrows to move from 

one chemical to the next. In the details window of the tool, information is provided to 

indicate what the nearest neighbours are for a specific target chemical and their associated 

similarity thresholds. The radial plot is structured to reflect 2 sets of neighbours – those on 

the basis of biological similarity and those on the basis of chemical similarity. The 

neighbours identified are not necessarily the same but may overlap. Chemical neighbours are 

reflected on the right hand side of the plot whereas biological neighbours are shown on the 

left hand side of the plot. The toxicity activity and the prediction is reflected by colour – red 

for active and green for inactive. The target chemical is represented as the centroid in the 

radial plot and its colour will indicate its read-across prediction outcome. In the screenshot 

(Figure 6), the centroid is red, indicating that the prediction of the target chemical is active.

Data sources—There are no data sources available within the tool. End users provide their 

own datasets and upload them in the tool itself.
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Outputs—The main output is the radial plot summarising the prediction (the centroid 

colour represents the overall prediction for the target chemical) and the neighbours. There 

are no export options in the current version of the software.

ToxRead

Software development—ToxRead was developed by Gini et al (2014) as a standalone 

Java tool to help in the assessment of Ames mutagenicity. The research was funded by two 

EU projects CALIEDOS (http://www.caleidos-life.eu/) and PROSIL (http://www.life-

prosil.eu/). The current version of the tool is v0.11 (http://www.toxread.eu/) and includes 

modules to make read-across predictions of both Ames mutagenicity and Bioconcentration 

factor (BCF).

Description of tool—An end-user inputs a structural identifier in the form of a SMILES 

string and chooses the number of nearest neighbours (source analogues) and endpoint in 

order to run a read-across prediction (Figure 7). By default, three analogues are typically 

presented. The application relies on the VEGA core library (http://www.vega-qsar.eu/

index.php) that implements a similarity index. The VEGA library also provides other 

features, such as parsing of the SMILES string, SMARTS matching and molecule depiction. 

The read-across prediction approach relies on accessing a local internal database within the 

ToxRead application (see later), and extracting the source analogues with such information 

in order to construct a read-across plot.

The output from ToxRead produced takes the form of a plot where the centre represents the 

target chemical with various outgoing links to the identified source analogues. The target 

and source analogues are represented in different colours and by different shapes. Source 

analogues that are identified by the VEGA similarity algorithm rely on a similarity value 

that is calculated as the weighted combination of a fingerprint, three structural keys based on 

molecular descriptors and a series of other descriptors (constitutional, hetero-atoms and 

specific functional groups) all of which are described in more detail in Gini et al (2014). 

Figure 8 presents the chart for the read-across prediction for chemical (2E)-2,3-

dichloroprop-2-enal [SMILES string ClC(=CCl)C=O]. The chart for this chemical is 

discussed in more detail later.

The target chemical of interest is represented as the centroid. Surrounded by it are 3 red 

circles labelled by CAS numbers. These are source analogues identified on the basis of the 

VEGA similarity algorithm. The size of the circles of these source analogue is proportional 

to their similarity index. The smaller the circle, the less similar the analogue. Double 

clicking on each of the 3 analogues will reveal the Tanimoto similarity index of the source 

analogue relative to the target, its identity by CAS and SMILES string, as well and its 

experimental mutagenicity outcome and any other experimental information that might be 

available e.g. LogKow, BCF. The source analogues identified in this manner rely on the 

same algorithm that exist in the other VEGA QSAR tools where QSAR predictions are 

made for an endpoint and the “similar” analogues to the chemical of interest are extracted to 

enable an end-user to evaluate the validity of the prediction made (Manganelli and 

Benfenati, 2016). The other links (arising from the triangles as shown in Figure 8) identify 
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source analogues that share a mechanistic similarity – in this case analogues that share one 

or more common structural alerts for mutagenicity. ToxRead includes 4 main libraries for 

mutagenicity comprising some 759 rules in total. The structural alerts are taken from the 

SARpy rulebase developed within the VEGA program developers (Ferrari et al, 2013), the 

Benigni-Bossa rulebase that is implemented in both the OECD Toolbox and Toxtree 

platforms (Benigni et al 2008) as well as 281 alerts that were manually extracted by experts 

and rules empirically extracted as part of the LIFE PROSIL project (www.life-prosil.eu). 

Some of the alerts are negative alerts for mutagenicity – i.e. flagging the absence of a 

mutagenicity outcome rather than its presence. The structural alerts are represented by 

triangles and their interpretation differs depending on their colour and orientation upwards 

or downwards. Those pointing indicate downwards are coloured red and reflect a mutagenic 

outcome whereas those pointing upwards are green and reflect a non-mutagenic outcome. 

The confidence of the alert is reflected in the colour shading of the triangle – a darker colour 

represents an alert where there is a greater proportion of actives to inactives for the alert. 

Clicking on a triangle reveals more information about the alert – its structural definition and 

source, the accuracy of the alert (expressed from 0–1), and the confidence associated with it, 

expressed as a Fisher test p-value. It is also possible to view and export a list of up to 100 

similar chemicals presenting that alert, together with their similarity indices and 

mutagenicity outcomes. The three most similar analogues that present the alert in common 

with the target are reflected in the chart (as illustrated in Figure 8). The read-across 

prediction is readily summarised for the target chemical by the colour – red for mutagenic 

and green for non-mutagenic. Double clicking on the target chemical reveals the summary 

prediction information. A numeric score between 1 and 0 is reflected together with a text 

assessment for the read-across. QSAR model predictions from ISS, Caesar, SARPy and 

KNN models are also provided with reliability scores and a consensus score of all 4 models. 

An overall assessment for the target chemical is also provided that integrates both the QSAR 

and read-across predictions. An example of how this assessment output is represented for the 

same target chemical is shown in Figure 9.

In the example shown in Figure 8 – there are 3 similar analogues on the basis of “structural” 

similarity that are all mutagenic experimentally. Four structural alerts are identified as 

relevant for the target chemical – three of these have lower validity as reflected by the lesser 

density of their red shading, but the similar analogues that fire these alerts are all mutagenic 

experimentally. The analogues identified may appear more than once and be linked to 

different rules. These are reflected as circles with dashed lines. This is true for this example 

as at least 3 analogues are identified more than once. The overall evaluation is 

straightforward if there is no conflicting information from the different sources, in cases 

where this is not the case, an objective overall assessment is still derived but this can be 

potentially overruled by the end-user based on their own knowledge and expertise. More 

detailed examples are presented in Manganelli and Benfenati (2016) who demonstrate the 

value of an integrated approach of combining both QSAR and read-across predictions to 

derive an overall assessment.

Data sources—The underlying database of ToxRead contains 6065 chemicals with 

experimental data for mutagenicity. The mutagenicity data are taken from several well-
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known sources included CCRIS, Helma et al (2004), Kazius et al (2005), Feng et al (2003), 

VITIC (2005) and GeneTox databases (Matthews et al, 2006). Other experimental data also 

include BCF data in fish for 857 chemicals, carcinogenicity outcomes for 784 chemicals and 

LogKow values for 9959 chemicals.

Output—The main output is a read-across plot which can be copied or saved as an image 

file. Analogues that present specific structural alerts can also be viewed and exported, up to 

100 chemicals.

CIIPro

Software development—CIIPro is a cheminformatics web portal freely available at 

http://ciipro.rutgers.edu/. It is intended to facilitate read-across predictions of a target on the 

basis of chemical and/or biological similarity. The prediction result can be visualised by a 

similarity chart along with associated similarity and confidence values. The novelty of the 

approach lies in taking advantage of the wide array of bioassay data publicly available from 

PubChem (https://pubchem.ncbi.nlm.nih.gov/). Updates to the underlying bioassay database 

are made on a monthly basis by the CIIPro developers.

Description of tool—The starting point in using the portal is to upload a training and test 

set of chemicals on the basis of their chemical identifiers (PubChem compound identifier, 

CID). The training set of chemicals is used to create a biological profile using the CIIProfiler 

tab. This is created by extracting relevant bioassay data from Pubchem. As stated by the 

website’s tutorial, the biological profile can be optimised by requiring a minimum number of 

active responses per assay, the default is otherwise set to 6. The biological profile derived is 

represented as a heatmap (not shown). The density of the colour will dictate whether a 

response is active (dark blue = 1), inconclusive (grey = 0) or inactive (light blue = −1). CIIP 

Predictor is then used to calculate a Weighted Estimated Biological Similarity (WEBS) 

between the chemicals in the test set and the chemicals in the training set. The WEBS tool 

calculates 2 values for each chemical pair, the biological similarity (from 0–1) and its 

confidence score. The confidence score is an estimate of the reliability of the calculated 

biological similarity, the higher the score, the more reliable the biological similarity value. 

The confidence score represents the number of assays that have results for both chemicals in 

a given pair but gives less weight to the assays that only have inactive results for both 

chemicals (discussed in more detail in Russo et al., 2017). Biological nearest neighbors are 

then calculated by the WEBS tool by setting suitable parameter cutoffs for both the 

biological similarity and the confidence scores. The biological similarity cutoff is the 

minimum biological similarity score for a chemical to be considered as a nearest neighbor to 

the target chemical. The confidence score cutoff is the percentage of assays in the biological 

profile that both chemicals need to have responses in for a biological similarity calculation 

to be meaningful. The number of biological nearest neighbors (from 1 to 5) to be used for 

predictions is also selected by the end-user. The activities of each test chemical’s biological 

nearest neighbours’ are averaged together to predict the target chemical’s activity. Chemicals 

that do not have enough biological nearest neighbors to make a prediction are labelled as 

‘N/A’. Results are presented in a table listing the chemicals in the test set, the chemicals’ in 

vivo activity, and the activity for each chemical predicted by CIIP Predictor. The biological 
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nearest neighbours and the chemical nearest neighbors (i.e. chemicals in the training set 

structurally similar to the target chemical in the test set on the basis of MACCS keys) of the 

predicted chemicals can be visualised in a similarity plot (Figure 10 reflects an example). 

Biological nearest neighbours are presented on the right hand side of the plot whereas 

chemical nearest neighbours are on the left of the target chemicals’ predicted activity (Russo 

et al, 2017).

Data sources—The main data source is the PubChem data that is accessed from within 

the portal. The remaining data inputs are all user provided.

Output—The main outputs are the read-across predictions in a tabular form and the 

similarity plot.

3. Putting the tools into the context of the category/analogue workflow

Figure 11 outlines the main steps in the category/analogue workflow and highlights where 

the different tools overlap with respect to these steps.

Notes: Decision context is not reflected in the figure. Data gap analysis appears twice in the 

figure – in the first instance to do a data gap analysis of the target chemical and a second 

time to help evaluate the data coverage for the source analogues. The red lines are aimed to 

indicate what parts of the workflow are captured explicitly or implicitly in each of the tools.

AIM

The AIM tool performs the analogue identification step of the workflow. It identifies 

analogues using its database of atoms, groups, and super fragments and matches the target 

chemical to its in built inventory. It is not designed to address any of the remaining steps in 

the workflow.

Toxmatch

Toxmatch does not have a proposed workflow in its design. Instead, the tool divides its 

functionality into different windows that all occupy the same screen. Users are instructed to 

upload their own data or use one of the predefined data sets. Similarity can then be 

calculated on the basis of fingerprints or descriptors, which can themselves be calculated by 

the tool. Toxmatch also includes robust charting and similarity matrix querying for exploring 

the results of a similarity assessment. The data matrix is not visible to gauge data gaps. 

Indirectly Toxmatch addresses the data gap filling, analogue identification and evaluation 

steps of the workflow but this is incumbent on the end-user to supply the data sources from 

which analogue identification is performed and to make a determination of what endpoint to 

focus the subsequent assessment on.

AMBIT

AMBIT performs several of the steps in the workflow – identifying analogues (on the basis 

of structural similarity), constructing and displaying a data matrix of available data for target 

and source analogues to documenting the read-across prediction as part of an assessment 
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report. Any read-across predictions themselves as well as the justification of the validity of 

those predictions are determined by the end-user. The main advantage of AMBIT is the 

ability to browse in some level of detail the available data from its sources and present these 

data in a matrix view for browsing and exporting. The ability to search for analogues is 

currently restricted to a structural similarity search using a Tanimoto index as a threshold. 

This makes AMBIT a good starting point to identify preliminary source analogues which 

can be evaluated on the basis of their reported empirical data but offers limited ability to 

evaluate their validity by reference to reactivity, metabolic, mechanistic profiles. Toxtree 

modules are implemented in the AMBIT workflow so that certain profiling capabilities exist 

to evaluate these contexts of similarity to a limited extent. There is no particular objective 

means of data gap filling. The data currently captured in AMBIT are focused on regulatory 

endpoint data collected as part of REACH. Approaches to exploit other data that are not 

necessarily anchored to an apical endpoint have not yet been addressed within the tool.

QSAR Toolbox

The QSAR Toolbox is probably the most comprehensive read-across tool currently available 

in terms of the aspects of the workflow that it addresses. The Toolbox compartmentalises its 

workflow into six modules: input, profiling, endpoint, category definition, and data gap 

filling. The category definition is particularly unique among read-across tools as a way of 

ensuring the most valid source analogues relative to the target. Categories can be defined on 

general mechanistic properties, empiric properties, or specific endpoints. The Toolbox 

comes prepackaged with a number of databases, as well as allowing the user to import their 

own data. Notably, the Toolbox is not just limited to read-across as a data gap filling 

technique, but it can also perform trend analysis and fit QSAR models for filling quantitative 

data gaps. The data gap analysis step is explicit and a data matrix is visible throughout the 

workflow to allow the end-user to evaluate the consistency and concordance of different 

endpoints at the same time, not just the endpoint being predicted. The Toolbox mimics the 

regulatory workflow most closely. However, the Toolbox limits read-across and other data 

gap filling approaches to be performed on the basis of one correlating descriptor at a time 

(e.g. LogKow by default is the correlating descriptor used to scale any prediction made). 

Hence the ability of deriving predictions on the basis of more than one correlating factor is 

not afforded. The Toolbox has begun implementing AOPs into its infrastructure, the current 

example is that of skin sensitisation for which a linear workflow is outlined and where one 

or more assay characterises a key event in the AOP. The Toolbox possesses the most 

comprehensive of read-across functionality within a tool but its workflow means that all 

analysis is restricted to within the Toolbox environment. There is limited ability to integrate 

any functionality of the Toolbox with other tools. Docking of third party tools is possible but 

this must be requested formally as part of the ongoing development of the Toolbox and 

addressed by the Toolbox developers through the OECD work programme.

CBRA

CBRA evaluates the (in vivo) activity of chemicals using the chemical-biological read across 

approach. ‘Compute CBRA’ is the only step in CBRA’s workflow, and the tool is otherwise 

completely automated. The output is expressed as a radial plot visualisation of the target 

chemical surrounded by its nearest neighbours. Indirectly it addresses the analogue 
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identification and data gap filling steps but the source of those analogues are dependent on 

user input. The tool does not make explicit the algorithm used to derive the prediction. The 

data matrix is not explicit and there is no reporting mechanism to readily export the 

predictions derived. Having said that, it is novel in the manner that an integration of different 

sources of information (both biological and chemical) can be made and summarised in an 

objective manner to derive a reproducible prediction.

ToxRead

ToxRead is capable of deriving read-across predictions for two endpoints: mutagenicity 

Ames test and BCF. While this makes it not as all-encompassing as other tools, it does allow 

for endpoint-specific rule sets and structural alerts to be applied to the target chemical in an 

automated fashion, leaving little room for user error. When the read-across is run, the tool 

returns an interactive chart where it is possible to examine the resulting rules applied and 

similar molecules found. However, the identification of analogues, their evaluation and 

prediction is all performed automatically by the tool. Although the chart allows for an end-

user to inspect the analogues and interrogate the validity of their selection, it offers no 

explicit explanation of how the overall assessment is computed. The data matrix is also 

latent from the end-user. The underlying data are not accessible within the tool, only the 

summary call as taken from one of the datasets sourced. There is no flexibility in the 

operation of the tool, the only input an end-user can make is to alter the number of 

neighbours used in the prediction.

CIIPro

CIIPro uses PubChem data to construct a biological profile and then perform a read-across 

using those biological descriptors. The workflow is divided into two parts: the CIIProfiler 

and the CIIP Predictor. The user need only enter a list of chemical identifiers as a training set 

for the CIIProfiler to create a biological profile. This is used in the CIIP Predictor for 

similarity calculation with regard to the test set. The similarity calculation also includes a 

confidence score, which is a measure that can be used to assess the validity of the 

comparison. While structural information is not used in the read-across prediction, structural 

neighbours are presented in the tool’s activity plot based on the same training set data used 

in the construction of the biological profile. Indirectly many of the steps in the category 

workflow are addressed with exception to a transparent data matrix.

4. Practical insights and scope for refinement

Each of the tools have been designed for different uses, hence each has its own advantages 

and limitations (as outlined in Table 2).

Making a determination of which tool or combination of tools to use however really depends 

on the decision context. For a preliminary ‘internal’ screening level assessment, AMBIT, the 

OECD Toolbox and AIM all provide a means of identifying potential analogues for which 

data can be searched within the tools themselves or using other databases or the literature. 

The data collected for the available analogues provide the starting point in inferring the 

likely toxicity profile of the target chemical and what effects require further consideration. If 
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the use case was to explore a set of chemicals and tease out pragmatic chemical groupings 

based on their similarities in chemical and biological data and make objective predictions – 

Toxmatch, CIIPro and CBRA would be fit for purpose as these all rely on user provided 

input data. ToxRead is unique since it has been developed to make objective predictions of 

Ames mutagenicity and bioconcentration factor only – hence it is best used to complement 

assessments of these endpoints.

For current regulatory purposes, none of the tools address the requirements necessary to 

construct a robust read-across justification such as is expected under REACH. AIM, AMBIT 

and the OECD Toolbox all provide a means of identifying preliminary analogues which is 

one of the first steps. AIM and AMBIT both require the end-user to make a determination of 

which analogues identified might be most relevant to carry forward into the assessment. 

Their unsupervised approach of identifying analogues makes them most useful in the 

scenario of category/analogue approaches where the same analogues are intended to address 

a number of different endpoints as appropriate. The OECD Toolbox’s strengths are really in 

terms of developing an endpoint specific category from which data gaps are filled. This 

means the profilers it contains are particularly useful to assess the validity of analogues 

identified. At the same time the structure of the Toolbox means that a comparison of 

analogue sets identified based on different endpoints cannot be readily performed. 

Analogues can be filtered not only on the basis of structural similarity but can be also 

subcategorised on the basis of their physicochemical characteristics, reactivity and 

metabolism/degradation similarity. None of the tools have any functionality to assess the 

similarity of bioavailability across source analogues relative to their targets.

AMBIT and the OECD Toolbox offer particular appeal with their explicit data matrix views 

which afford an inspection of the data availability as well as its consistency and concordance 

across the source analogues and target chemical at the same time. However, it should be 

noted for a regulatory submission, the end user would still need to explore gaining access to 

the data including the full study report information in order to evaluate the data quality more 

closely and to navigate any hurdles associated with data ownership and rights of use. These 

profilers and associated QSARs that the Toolbox contains play a useful role in augmenting a 

read-across justification by providing other information to substantiate the similarity 

rationale with respect to the endpoints being read across. For specific endpoints, such as 

Ames mutagenicity, skin irritation, aquatic toxicity, skin sensitisation; this information can 

take the form of actual predictions generated using one of the data gap filling approaches 

that can be helpful to complement the read-across justification narrative. Additionally, the 

mechanistic justification information underpinning the profilers e.g. the DART profiler 

within the Toolbox can be useful in strengthening the read-across justification. ToxRead 

exploits both chemical structural and mechanistic similarity together to provide objective 

read-across predictions. Its main shortcoming is that the tool is restricted to 2 endpoints and 

the underlying data sources, data matrix or the ability refine predictions made are all lacking. 

Whilst this thwarts its use in addressing a data gap on its own, the predictions it provides can 

be useful to augment the read-across justification made for these two endpoints.

Use of HT data, either user provided or automatic extraction from PubChem is best 

exploited using the CBRA and CIIPro tools which rely on weighted average nearest 
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neighbour approaches. These tools enable an objective prediction to be made using both 

chemical and biological descriptors and do so in an unsupervised manner. The Toolbox 

allows HT data to be added which is not tied to a specific apical endpoint within its 

hierarchy but the algorithms to compute a read-across prediction only allow for a single 

descriptor to be used which is a significant limitation. For HTS, a single assay is unlikely to 

be meaningful to be used in vacuo to predict an in vivo endpoint. Although Toxmatch was 

never designed to consider HT biological data as descriptors, it is sufficiently flexible to 

derive hybrid predictions. The advantage of these three tools is that they are able to exploit 

novel data to enhance predictions and perform them in a reproducible and objective manner. 

Within the context of a regulatory application, these predictions are probably best used to 

augment the read-across justification.

The ability of quantifying the performance in read-across and its associated uncertainties is a 

key challenge going forward. Some of the tools described have the potential to help address 

such needs. The exception is really AMBIT which lacks a read-across algorithm. This is a 

shortcoming in terms of ensuring consistency in prediction outcomes.

As indicated earlier, no single tool offers all capabilities, meaning that a combination of the 

different tools is merited to address a particular decision context depending on the data 

available. A significant limitation is the incompatibility of the different tools to be used 

seamlessly together. All tools employ different platforms and most are open sourced. 

However, some such as the OECD Toolbox whilst being freely available, do not make the 

source code available. Lack of source code inhibits collective use. Each tool is really 

intended to be used in vacuo from the rest.

Another challenge is how the predictions from these different read-across tools could be 

combined. Some efforts have been made to address the issue of interpretation and 

combination of predictions from multiple QSAR tools (Mansouri et al., 2016; Pradeep et al., 

2016; Hewitt et al, 2007). Such approaches could be in principle extended for read-across 

tools.

An ideal workflow requires a data gap analysis to be performed in order to identify priority 

endpoint(s) on which to focus the assessment. Currently such an analysis is best carried out 

using a tool such as the OECD Toolbox and/or AMBIT. If the data gaps are such that an 

endpoint specific approach was appropriate, the OECD Toolbox would probably be the most 

convenient in terms of evaluating analogue validity with respect to the specific profilers. In 

any case, even on the basis of an unsupervised search, the Toolbox profilers allow for an 

assessment of the similarity between sources analogues on the basis of common structural 

alerts as well as empirical data viewable in the data matrix format. These data could be 

exported and combined with other sources of data such as from HTS assays in order to 

investigate the feasibility of performing parallel endpoint specific and objective read-across 

within such platforms such as CBRA or Toxmatch.

The current landscape of read-across tools is quite rich in diversity with the OECD Toolbox 

most advanced in terms of its functionality to address some of the current regulatory needs. 

Many opportunities still remain in the tool landscape including efforts to integrate existing 
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tools together, extend the scope of tools to capture more of the category workflow steps 

explicitly or provide more user intervention to refine predictions made based on different 

threshold criteria such as toxicokinetic similarity, reactivity similarity or metabolic 

similarity. The utility of HT is only starting to be exploited, and integrating QSAR and read-

across predictions together to derive overall assessments are yet to be investigated in more 

detail. As read-across continues to evolve to incorporate more mechanistic data in a 

systematic manner, more targeted tool development may need to occur to meet such needs. 

In addition, efforts to compare and contrast the utility of these different tools to evaluate 

specific chemicals of interest (such as that performed by Benfenati et al., 2016) would be 

helpful to better understand the relative strengths and weakness of the different approaches 

used and the consistency and reproducibility of any predictions made.
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Highlights

• Category/analogue workflow outlined

• Read-across tools have been described in the context of this workflow

• Strengths and limitations of the tools have been described
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Figure 1: 
User interface of AIM
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Figure 2: 
Similarity matrix view from within Toxmatch
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Figure 3: 
User interface of AMBIT following structural similarity search
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Figure 4: 
Screenshot of the working matrix within the AMBIT assessment workflow
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Figure 5: 
Screenshot of the OECD Toolbox v3.4
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Figure 6: 
Read-across prediction with the CBRA tool

Grace et al. Page 34

Comput Toxicol. Author manuscript; available in PMC 2018 September 12.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 7: 
User interface of ToxRead
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Figure 8: 
Read-across prediction chart from ToxRead
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Figure 9: 
Overall target prediction outcome
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Figure 10: 
Example plot from CIIPro
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Figure 11: 
Selected read-across tools in the context of the category/analogue workflow
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8.Potential member means a chemical obeys the structural definitions of the category as opposed to be a member actually named in the 
categories assessed by EPA or OECD
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Table 2:

Advantages and limitations of selected publicly available read-across tools

 AIM ToxMatch Ambit OECD Toolbox CBRA ToxRead CIIPro

Pros Good for 
identifying 
analogues 
with potential 
data

• Provides 
sample 
datasets to 
make 
categorical 
and 
continuous 
reproducible 
read-across 
predictions 
for a 
selection of 
endpoints.
• Provides 
the ability to 
use a 
number of 
different 
similarity 
indices
• Provides 
the ability to 
calculate 
certain 
chemical 
descriptors
• Predictions 
are endpoint 
specific
• Flexibility 
to consider 
other data 
such as HT 
as 
descriptors
• Open 
source 
software

• Ability to 
search for 
specific 
chemicals or 
structurally 
similarity 
chemicals
• Access to 
a large body 
of data from 
ECHA as 
part of the 
REACH 
submissions
• Data 
matrix view 
to allow 
consistency 
and 
concordance 
of data 
across 
analogues to 
be viewed 
and 
evaluated
• Report 
produced 
that can be 
useful in 
regulatory 
submission
• Open 
source 
software

• Ability to 
search for 
specific 
chemicals, 
structurally 
similar, 
mechanistically 
similar etc
• Data matrix 
view to allow 
consistency and 
concordance of 
data across 
analogues to be 
viewed and 
evaluated
• Access to a 
large body of 
data from 
ECHA as part 
of the REACH 
submissions
• Report 
produced that 
can imported as 
part of REACH 
regulatory 
submission
• Developer 
tools if licenced 
provide greater 
functionality to 
evaluate 
analogues and 
provide 
supplementary 
predictions
• Ability to 
qualitatively 
evaluate 
analogues on 
the basis of their 
simulated 
metabolites
• Quantitative 
assessment of 
predictions 
feasible

• Objective, 
reproducible 
read-across 
predictions
• Ability to 
use multi 
descriptor 
sets to make 
predictions
• Open 
source 
software

• Objective, 
reproducible 
read-across 
predictions
• Open source 
software

• Objective, 
reproducible 
read-across 
predictions
• Ability to 
exploit 
PubChem 
assay 
information
• Open source 
software

Cons • User needs 
to 
independently 
extract any 
data for the 
target and 
associated 
source 
analogues
• Freeware 
software – no 
source code 
available

No data 
matrix view 
available

• No 
objective 
read-across 
prediction is 
made
• Limited in 
silico tools 
are 
integrated to 
help in the 
evaluation 
of analogues

• Objective 
read-across 
predictions can 
be made but 
analogue 
selection is 
subjective hence 
read-across 
predictions are 
not necessarily 
consistent and 
reproducible
• Comparing 
analogue sets to 
address more 
than 1 endpoint 
is not feasible
• Actual read-
across 
predictions are 

• Dependent 
on user to 
provide all 
data files 
from which 
any read-
across is 
made
• No clarity 
on the format 
of the files
• No user 
manual to 
provide 
further 
interpretation 
of 
predictions 
made

• Only 2 
endpoints 
covered
• Read-across 
chart is only 
exportable

Limited 
documentation 
and use case 
information 
available
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 AIM ToxMatch Ambit OECD Toolbox CBRA ToxRead CIIPro

anchored by 1 
descriptor

• No export 
functionality 
in current 
format
• No data 
matrix view

Decision context Addresses the 
initial step of 
identifying 
potential 
analogues 
only

• Screening 
level 
predictions 
for specific 
endpoints
• Useful as a 
means of 
identifying 
similar 
analogues 
from 
specific sets 
of chemicals

Useful for 
identifying 
potential 
source 
analogues 
within 
published 
REACH 
dossiers and 
exploring 
the breadth 
of data for 
those 
analogues 
relative to a 
specific 
target

• Useful for 
evaluating the 
analogue 
validity for 
specific 
endpoints
• Endpoint 
specific read-
across 
predictions that 
can be readily 
exported to 
IUCLID to 
support REACH 
regulatory 
submissions

Useful to 
consider 
biological 
and chemical 
similar 
neighbours at 
the same 
time and 
evaluate their 
impact of the 
overall 
prediction 
for screening 
level 
predictions

Useful as 
supporting 
information in a 
regulatory read-
across or use in 
screening level 
profiling of 
potential 
mutagenicity or 
bioconcentration 
predictions

Useful to 
consider 
biological and 
chemical 
similar 
neighbours at 
the same time 
and evaluate 
their impact of 
the overall 
prediction for 
screening 
level 
predictions

Comput Toxicol. Author manuscript; available in PMC 2018 September 12.


	Abstract
	Introduction
	Background context
	Terms of reference
	The Category/analogue workflow
	Decision context
	Data gap analysis
	Overarching similarity rationale for the category/analogue
approach
	Analogue identification (Analogue searching)
	Analogue evaluation
	Data gap filling
	Uncertainty assessment


	Available “read-across” tools
	Analog Identification Methodology (AIM)
	Software development
	Description of tool
	Data Sources
	Output
	Toxmatch
	Software development

	Description of tool
	Data sources
	Output
	AMBIT
	Software development

	Description of tool
	Data sources
	Output

	OECD QSAR Toolbox
	Software development
	Description of tool
	Data Sources
	Outputs

	CBRA
	Software development
	Description of tool
	Data sources
	Outputs

	ToxRead
	Software development
	Description of tool
	Data sources
	Output

	CIIPro
	Software development
	Description of tool
	Data sources
	Output


	Putting the tools into the context of the category/analogue workflow
	AIM
	Toxmatch
	AMBIT
	QSAR Toolbox
	CBRA
	ToxRead
	CIIPro

	Practical insights and scope for refinement
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Table 1:
	Table 2:

