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Abstract
There is extensive evidence demonstrating that there is a clear 
inverse correlation between plasma high density lipoprotein 
cholesterol (HDL-C) concentration and cardiovascular 
disease (CVD). On the other hand, there is also extensive 
evidence that HDL functionality plays a very important role 
in atheroprotection. Thus, genetic disorders altering certain 
enzymes, lipid transfer proteins, or specific receptors crucial for 
the metabolism and adequate function of HDL, may positively 
or negatively affect the HDL-C levels and/or HDL functionality 
and subsequently either provide protection or predispose to 

atherosclerotic disease. This review aims to describe certain 
genetic disorders associated with either low or high plasma 
HDL-C and discuss their clinical features, associated risk for 
cardiovascular events, and treatment options.
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Introduction
There is extensive evidence demonstrating that there is a clear 
inverse correlation between plasma high density lipoprotein 
cholesterol (HDL-C) concentration and cardiovascular disease 
(CVD). HDL-C levels are considered a strong predictor for CVD 
independently to low density lipoprotein cholesterol (LDL-C) 
levels.1 Furthermore, studies have indicated that there is a 2–3% 
decrease in the risk for CVD for each 1 mg/dL increase in HDL-C 
levels.2 There is also extensive evidence that HDL functionality 
plays a very important role in atheroprotection.3

The antiatherogenic effects of HDL are mainly attributed to 
its role in reverse cholesterol transport (RCT) pathway by 
promoting the efflux of cholesterol from macrophages in 
the arterial wall, thus preventing foam cell formation, and 
therefore, the initial stages of atherogenesis.4

Hence, genetic disorders altering certain enzymes, lipid transfer 
proteins, or specific receptors crucial for the metabolism and 
adequate function of HDL, may positively or negatively affect the 
HDL-C levels and/or HDL functionality and subsequently either 
provide protection or predispose to atherosclerotic disease.

In this review, after providing a brief summary of HDL 
metabolism and its cardioprotective properties, we will 

describe certain genetic disorders associated with either low 
or high plasma HDL-C concentration and we will discuss their 
clinical features, associated risk for cardiovascular events, and 
treatment options.

HDL metabolism
HDL is synthesized in the liver and small intestine and is the 
lipoprotein with the highest protein content (approximately 
50% of total weight of the particle). When secreted, HDL 
contains only a small amount of cholesterol and no cholesteryl 
esters. HDL is formed by different apolipoproteins, the most 
important of which are the apolipoprotein A-I (ApoA-I), which 
is secreted predominantly by the liver and intestine as lipid-free 
ApoA-I and constitutes approximately 70% of HDL protein, and 
the apolipoprotein A-II (ApoA-II), which is only synthesized by 
the liver and constitutes around 20% of the HDL protein. Both 
apolipoproteins are required for the normal HDL biosynthesis.

The newly secreted ApoA-I must acquire lipids in the form of 
cholesterol or phospholipids (found in the peripheral cells) in 
order to generate the pre-β-HDL. This pathway is mediated by 
the action of the ATP binding cassette transporter A1 (ABCA1), 
which promotes the transfer of lipids to ApoA-I, resulting in 
lipid-poor ApoA-I.5,6
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Once pre-β-HDL is in the circulation, lecithin:cholesterol 
acyltransferase (LCAT), using ApoA-I as cofactor, promotes 
the conversion of lecithin into lysolecithin and cholesterol 
into cholesteryl esters (CE). CE is a more hydrophobic form of 
cholesterol, which is then sequestered into the core of the HDL 
particle, resulting in the formation of the mature, spherical, 
α-migrating HDL (α-HDL).7

Finally, scavenger receptor class B type I (SR-BI) promotes the 
cholesterol uptake from mature HDL by the liver for secretion 
into the bile, or by the adrenal cells for the synthesis of steroid 
hormones, in a process that does not involve degradation of 
HDL apolipoproteins and is known as selective uptake.8,9

HDL-C can be alternatively metabolized and eventually 
transported by the liver, via the action of the cholesteryl ester 
transfer protein (CETP). This protein transfers triglycerides (TGs) 

from apolipoprotein B (ApoB)-containing lipoproteins, such as 
the very low density lipoprotein (VLDL) and LDL, in exchange 
for cholesteryl esters from HDL, thus leading to cholesteryl 
ester depletion and TG enrichment of HDL. Because TGs are not 
stable in HDL-C, it is degraded by lipoprotein lipase, leading to 
an overall net reduction in the size of the HDL particles.10

A schematic of HDL metabolism and the genes involved is 
shown in Figure 1.

Clinical significance of HDL
While the main cardioprotective property of HDL relates to 
its ability to promote efflux of cholesterol from macrophages 
in the artery wall, a process known as reverse cholesterol 
transport (RCT), HDL may also prevent and/or inhibit 

Figure 1.  Metabolism of HDL.
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ABCA1, ATP-binding cassette transporter A1; ApoA-I, apolipoprotein A-I; CE, cholesteryl ester;  
CETP, cholesteryl ester transfer protein; HDL, high-density lipoprotein; LCAT, lecithin:cholesterol  
acyl-transferase; LDL, low-density lipoprotein; SR-BI, scavenger receptor class B type I; TG, triglyceride; 
VLDL, very-low-density lipoprotein.
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The selective upregulation of ApoA-I results in ApoA-I 
overproduction. It is characterized by elevated HDL-C and 
ApoA-I levels and has been linked to a reduced risk of CVD.21

ApoC-III variants
ApoC-III is a small apolipoprotein, which is synthesized mainly 
in the liver, is carried in the circulation by VLDL and HDL, 
and regulates plasma TG homeostasis. This apolipoprotein 
impairs the hydrolysis of triglyceride-rich lipoproteins (TRL) 
by inhibiting the activity of the lipoprotein lipase (LPL) and 
delaying the hepatic uptake of TRL by remnant receptors,  
thus resulting in elevated plasma TG levels.22,23

Beyond its role on TG metabolism, ApoC-III has been also 
associated with increased risk of CVD. It promotes HDL 
dysfunction, facilitates the interaction of monocytes and 
endothelial cells, stimulates smooth muscle cell proliferation, 
and alters platelet activity, thus promoting atherosclerosis.24

Furthermore, plasma ApoC-III concentration is directly related 
with the plasma TG concentration. Therefore, mutations that 
interrupt ApoC-III function or loss-of-function ApoC-III mutations 
are associated with very low plasma TG levels and elevated 
HDL-C levels, resulting in a reduction of the risk for CVD.25

Studies have described that carriers of ApoC-III loss-of-function 
mutations have up to 39% lower plasma TG levels, 22% higher 
plasma HDL-C levels, and 16% lower plasma LDL-C levels. Of 
note, carriers of ApoC-III loss-of-function mutations enjoy a 
40% lower risk of coronary heart disease (CHD), as compared  
to non-carriers.26

CETP deficiency
CETP mediates the exchange of CE for TG between HDL and 
VLDL/LDL and regulates the lipid composition and particle size 
of lipoproteins.10 CETP activity correlates directly with LDL-C 
concentration and inversely with HDL-C concentration.27

CETP deficiency is an autosomal recessive inherited metabolic 
disorder, which was first studied in Japan in the 1980s. It is 
considered one of the most important and frequent causes of 
HALP in the Japanese population.28,29

Two common mutations in the CETP gene have been described 
particularly in the Japanese population: intron 14 splicing 
defect (In14), a null mutation with strong effects on plasma 
CETP activity and levels and HDL-C levels, and a missense 
mutation in exon 15 (Ex15) with less pronounced effects on 
plasma HDL-C levels compared to In14. Other less common 
mutations described are the intron 10 splicing defect (In10) and 
the exon 6 nonsense mutation (Ex6).30

The loss-of-function CETP enzyme results in elevated levels of 
ApoA-I and ApoA-II due to decreased turnover, significantly 
elevated HDL-C levels in homozygotes (usually >100 mg/dL), 
and moderately elevated HDL-C levels in heterozygotes due 
to lack of HDL remodeling. Thus, the HDL particles in this 

the development of atherosclerosis via several other 
cardioprotective mechanisms.

HDL has anti-inflammatory effects11 and there is extensive 
evidence that inflammation plays an important role in the 
initiation and progression of CVD.12 Furthermore, HDL has 
antioxidant, anticoagulant, and antiaggregating effects; it 
promotes angiogenesis and enhances endothelial function  
and repair.4

In addition, HDL may also have beneficial effects on glucose 
metabolism, as there is evidence that both HDL and ApoA-I 
increase glucose uptake in human skeletal muscle cells, leading 
to reduced plasma glucose levels in diabetic patients.13

Conditions that cause high  
HDL-C levels
Genetic conditions associated with elevated HDL-C 
levels, are also described as primary familial or secondary 
hyperalphalipoproteinemia (HALP) due to the elevated Apo-AI 
and Apo-AII levels observed in these conditions.

Patients with HALP tend to be asymptomatic, aside from some 
rare reported cases of juvenile or premature corneal opacities14 
or multiple symmetric lipomatosis,15 and are characterized by 
high levels of HDL-C and low incidence of CVD.16

Due to its lack of clinical symptoms, patients are usually 
identified through the routine assessment of a lipid profile or 
may have history of a relative found with elevated HDL-C levels. 
No treatment is generally required.

In this review we will only describe the primary familial causes 
of HALP.

Primary familial HALP
Primary familial HALP is defined as HDL-C levels greater than 
the 90th percentile for age and gender, a history of relatives 
with high HDL-C, and the absence of secondary causes of 
increased HDL-C levels, such as medications, malignancies, 
or liver disease. This condition is thought to coexist with 
longevity and to provide some type of protection from 
atherosclerotic disease.17 Primary familial HALP is an autosomal-
dominant condition and may result from genetic mutations 
of ApoA-I, causing overproduction, or from certain variants of 
apolipoprotein C-III (ApoC-III). It is diagnosed incidentally with 
plasma HDL-C levels above 80 mg/dL.18

Selective upregulation of ApoA-I
ApoA-I is the major protein of HDL. It acts as a structural 
protein, mediates RCT, and activates LCAT.19

In addition to its function in the HDL-C metabolism, this 
apolipoprotein also has anti-inflammatory properties, which 
may contribute to its cardioprotective role.20
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condition are enriched with CE and apolipoprotein E (ApoE) 
and have a low TG content. Moreover, there is increased 
hydrolysis of LDL leading to decreased LDL-C levels.21,31,32

Even though CETP deficiency is associated with elevated 
HDL-C and decreased LDL-C, its antiatherogenic potential 
remains very controversial with some studies suggesting a 
decreased risk for CVD in such patients10 and others indicating 
that, despite their high HDL-C content, these particles have 
a decreased capacity for cholesterol efflux and may not have 
antiatherogenic properties.31,33,34

Several studies were conducted with CETP inhibitors, but their 
effects on CVD risk were detrimental, neutral, or at most slightly 
positive, despite a substantial increase in HDL-C levels.3 Only 
anacetrapib produced a small decrease in the risk for CVD when 
added to statin therapy; however, this was achieved mainly by 
decreasing the non-HDL-C, rather than by increasing the HDL-C.35 
However, more studies are needed to definitely determine the 
therapeutic potential of CETP inhibitors in the treatment of CVD.36

Scavenger receptor class B type I  
(SR-BI) mutations
SR-BI, encoded by the SCARB1 gene, is a main component of 
the RCT pathway with high affinity for HDL-C. It mediates the 
selective uptake of CE from HDL-C in liver and steroidogenic 
tissues and facilitates the secretion of cholesterol into bile. SR-BI 
is expressed in the liver and in macrophages in atherosclerotic 
plaques.9,37 Furthermore, SR-BI are multi-ligand receptors 
binding other lipoproteins, such as LDL and VLDL.38

Certain mutations in the SR-BI gene have been described and 
among them is exon 8 rs5888 single nucleotide polymorphism 
(SNP), associated with a decreased SR-BI protein expression and 
function, resulting in altered lipid levels in humans.39 Another 
mutation described in the SR-BI gene is a missense mutation, 
in which leucine replaces proline at position 376 (P376L). This 
mutation impairs posttranslational processing of SR-BI and 
results in almost complete loss of its function and dysregulation 
of the selective HDL-C uptake in transfected cells.40

The decreased activity or loss of SR-BI function results in 
decreased HDL-C bile secretion, leading to elevated HDL-C 
levels. However, despite the high plasma HDL-C concentration 
observed in this condition, carriers exhibit increased risk of CVD 
due to impaired RCT pathway caused by the reduced hepatic 
SR-BI function.9,40,41 More specifically, carriers of the P376L 
mutation (described above) have been shown to have a 79% 
higher risk of CHD, as compared to non-carriers.40

SR-BI mutations may also be associated with an increased risk 
for adrenal glucocorticoid insufficiency and impaired platelet 
function.37,42

Endothelial lipase mutations
Endothelial lipase (EL) is a member of the triacylglycerol 
(TAG) lipase gene family, along with LPL, hepatic lipase, and 

pancreatic lipase. Interestingly, it is the only identified lipase 
that is synthesized and expressed by endothelial cells.43

It promotes HDL particle binding and uptake, in addition to the 
selective uptake of HDL-CE due to its phospholipase activity.44 
EL also cleaves HDL-phospholipids resulting in the release of 
fatty acids and lysophospholipids, which are then taken up by 
the cells expressing this enzyme.45

By decreasing the triglyceride and phospholipid content 
of HDL, EL is a strong negative regulator of plasma HDL-C 
levels46,47 and thus EL loss-of-function mutations lead to 
increased HDL-C levels. Notwithstanding, the cardiovascular 
connotations of EL loss-of-function mutations are still 
unclear with some studies describing some cardioprotective 
properties,48 whereas others do not show any associated 
reduction in the risk of CHD.49

Disorders that cause low  
HDL-C levels
Although rare in the overall population, primary extremely 
low HDL-C levels result from monogenic disorders, such as 
ApoA-I deficiency, several ApoA-I missense mutations (such as 
ApoA-I Milano, ApoA-I Paris and others), Tangier disease, LCAT 
deficiency, or ABCA1 deficiency. Aside from certain ApoA-I 
missense mutations (including ApoA-I Milano and ApoA-I Paris), 
these conditions are associated with premature CVD due to 
abnormal accumulation of cholesterol.

The early evaluation to assess the risk for atherosclerotic 
disease, as well as to rule out any secondary causes, plays a 
major role in the care for these patients. The high risk for CVD 
warrants comprehensive secondary prevention measures. 
These include achieving an LDL-C <70 mg/dL with high-dose 
statin therapy, alone or in combination with other lipid-
lowering agents, and by optimizing the identification and 
management of traditional risk factors, such as cigarette 
smoking, diabetes mellitus, obesity, and physical inactivity. 
Furthermore, early screening is recommended in those patients 
to evaluate subclinical atherosclerosis with coronary artery 
calcium scanning and/or carotid intima-media thickness 
assessment.50

ApoA-I deficiency
ApoA-I deficiency is an autosomal recessive inherited metabolic 
disorder, which can result from the deletion of ApoA-I gene51 or 
nonsense mutations early in the coding portion of the gene in 
both ApoA-I alleles.52

It is characterized by undetectable plasma ApoA-I levels, 
markedly decreased HDL-C levels (<5 mg/dL), normal TG levels, 
normal LDL-C levels, and premature CVD.51,53,54

Affected individuals may present with corneal opacification, 
cutaneous xanthomas, and a tendency for extensive 
atherosclerosis due to impairment of RCT pathway, which 
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results in accumulation of cholesterol owing to the defective 
peripheral cellular efflux.55

ApoA-I Milano
This ApoA-I variant was first described in 1980 in a family 
originating from Limone sul Garda, a small town outside 
Milan in northern Italy.56 The ApoA-I Milano results from the 
substitution of a single amino acid, arginine 173 to cysteine, 
leading to the formation of homodimers or heterodimers with 
ApoA-II. Carriers are heterozygous for the mutation and are 
characterized by having very low plasma ApoA-I and HDL-C 
levels along with moderately elevated TG levels.57,58

Despite a lipid profile that is conventionally associated with a 
high risk of premature atherosclerosis, carriers of the ApoA-I 
Milano variant have a reduced incidence of CVD.57 Studies have 
described ApoA-I Milano as a gain-of-function mutation with 
cardioprotective properties.59

Furthermore, experimental studies with repetitive intravenous 
infusions of recombinant ApoA-I Milano have demonstrated a 
rapid regression of existing atheromas by promoting the RCT 
and improving the endothelial function.60,61

ApoA-I Paris
ApoA-I Paris is another ApoA-I variant, which results from 
the substitution of an arginine at position 151 to cysteine, 
leading to the formation of homodimers or heterodimers 
with ApoA-II. Similar to ApoA-I Milano, ApoA-I Paris does not 
cause any deleterious health effects and may even improve 
cardioprotection despite abnormally low levels of plasma 
ApoA-I and HDL-C and high levels of HDL triacylglycerides in 
mutation carriers, which are all heterozygotes.62 Whereas in the 
ApoA-I Milano subjects the low levels of ApoA-I appear to be 
due to a rapid catabolism with a normal synthetic rate, on the 
other hand, the low levels of ApoA-I in the ApoA-I Paris subjects 
are caused by a low production rate of ApoA-I.63 Similar to 
ApoA-I Milano, ApoA-I Paris also exhibits a potent antioxidant 
activity distinct from that of wild-type ApoA-I.64

Other ApoA-I missense mutations
There are over 50 reported ApoA-I missense or in-frame 
deletion mutations. Some of these variants are associated with 
low HDL-C levels, whereas others are associated with low HDL-C 
levels and amyloidosis.65

LCAT deficiency familial/partial
As we mentioned earlier, LCAT is the enzyme responsible for 
the esterification of free cholesterol and plays a crucial role in 
the maturation of HDL.7

Mutations associated with a decreased production or absence 
of LCAT result in the accumulation of free cholesterol in plasma 

and peripheral cells (due to the inability to be converted to CE) 
and in the impaired formation of mature HDL particles, on top 
of an accelerated ApoA-I catabolism.17

There are two types of mutations in the LCAT gene in the 
homozygote state, both inherited in an autosomal recessive 
pattern, and result in either a complete deficiency, known 
as familial LCAT deficiency (FLD), or a partial deficiency, also 
known as fish-eye disease (FED). The molecular basis of the two 
types of LCAT deficiency lies on the fact that the inheritance 
of a mutated LCAT genotype causes a gene–dose-dependent 
alteration in the plasma lipid/lipoprotein profile, which is 
remarkably similar between subjects classified as FLD or FED.66

Both mutations are characterized by decreased HDL-C and 
ApoA-I levels (70–80% reduction), as well as low LDL-C 
levels, elevated TG levels, and early-onset corneal opacities. 
Heterozygous carriers are asymptomatic and may present only 
with low HDL-C levels.17,67,68

Apart from the characteristic lipid profile, affected individuals 
with the complete form of LCAT deficiency present 
with hepatosplenomegaly, hemolysis with subsequent 
normochromic normocytic anemia due to abnormal deposition 
of lipid in the red blood cells, proteinuria and kidney injury that 
can progress to end-stage renal disease. Kidney failure is the 
major cause of morbidity and mortality in these patients, and it 
is thought to be due to the accumulation in the renal glomeruli 
of an abnormal free cholesterol and phospholipid-rich particle 
described as apoprotein X (ApoX), which has been linked to 
the pathogenesis of the disease. The kidney disease caused by 
this condition may be treated with organ transplantation and, 
although recurrence of lesions after kidney transplantation 
can occur early, the function of the transplanted organ often 
persists long-term despite the presence of deposits.69

With regard to the cardiovascular impact of these mutations, 
it remains a very controversial subject despite the abnormal 
lipid pattern.70,71 Notwithstanding, in a very recent study, 
it was shown that complete and partial LCAT deficiency are 
differentially associated with atherosclerosis. More specifically, 
mutations leading to complete LCAT deficiency were shown 
to be associated with decreased atherosclerosis, whereas 
mutations leading to partial LCAT deficiency were shown to 
be associated with increased atherosclerosis. The authors 
proposed that this discrepancy may be related to the fact that 
the capacity of LCAT to generate cholesteryl esters on ApoB-
containing lipoproteins is lost in complete LCAT deficiency, 
while it remains unaffected in partial LCAT deficiency.72

ATP binding cassette transporter A1  
(ABCA1) deficiency
Also known as Tangier disease, it was first described in 
a family from Tangier Island in Virginia in 1961.73 Tangier 
disease is an autosomal recessive inherited metabolic 
disorder, which results from a loss-of-function mutation 
in the ABCA1 gene.74
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The loss of enzyme activity leads to an impaired efflux of 
cholesterol and phospholipids to apolipoproteins, resulting  
in the inappropriate lipidation of ApoA-I, which is rapidly  
cleared, and in the deposition of cholesterol in tissues. This  
disorder is characterized by extremely low ApoA-I (~4 mg/dL) 
and HDL-C levels (<5 mg/dL), decreased LDL-C (about 50% of 
normal), and mildly elevated TG levels (>200 mg/dL). Affected 
individuals present with enlarged yellow-orange tonsils, 
thrombocytopenia, peripheral neuropathy (approximately 
50% are affected), and hepatosplenomegaly due to ectopic 
deposition of cholesterol-laden macrophages in these 
tissues.54,67,75

Homozygous and compound heterozygous carriers of the 
disease who are more than 30 years of age have a six-fold 
higher risk of CVD,76 whereas heterozygotes exhibit a greater 
than three-fold increase in the frequency of coronary artery 
disease (CAD).77

To date, aside from the symptomatic management, no 
treatment has been found to prevent the progression of this 
disease, as drugs commonly used to increase the HDL-C have 
proven to be ineffective in these individuals. Patients should 
be encouraged to avoid any lifestyle habit that can promote 
further progression of atherogenesis.

Therapeutic strategies favorably 
affecting HDL-C levels and/or HDL 
function and metabolism
Several therapeutic strategies have been tried to increase levels 
of HDL-C and/or to improve HDL function and favorably alter 
HDL metabolism.

As it was mentioned earlier, several clinical studies have been 
conducted with CETP inhibitors, but their effects on CVD risk 
were detrimental, neutral, or at most slightly positive despite a 
substantial increase in HDL-C levels.3

Several trials have been conducted to test the therapeutic 
efficacy of ApoA-I infusions. As it was mentioned earlier in 
this review, infusions of recombinant ApoA-I Milano have 
been shown to cause a significant regression of coronary 
atherosclerosis in patients with acute coronary syndrome 
(ACS),60 but manufacturing difficulties and contamination 
from host-derived proteins delayed subsequent clinical 
development of the product.78 Notwithstanding, in a pilot 
trial, MDCO-216 (a recently manufactured recombinant ApoA-I 
Milano without contamination by host-derived proteins) 
did not produce plaque regression in statin-treated patients 
following an ACS,79 and the sponsor company abandoned its 
further development.

The infusion of plasma-derived, wild-type, human ApoA-I 
into humans has been also tested in several trials since the 
1990s. In an earlier small trial, lipid-free ApoA-I infusion 
into men with low HDL-C level led to an increase in 

plasma total ApoA-I concentration without any significant 
adverse effects, and this increase was confined to the 
pre-beta region in the plasma.78,80 In another trial, short-
term infusions of purified wild-type ApoA-I from human 
plasma linked to soybean phosphatidylcholine (CSL-111) 
resulted in no significant reductions in percentage change 
in atheroma volume or nominal change in plaque volume 
compared with placebo, but did result in statistically significant 
improvement in the plaque characterization index and 
coronary score on quantitative coronary angiography.78,81 
Infusions of CSL-112 (a successor of CSL-111 with an enhanced 
ability to accept cholesterol from ABCA1) have been proven 
to be safe, well tolerated, and produced increases in ApoA-I 
concentration in a dose-dependent manner.78 CSL-112 has 
also been shown to increase HDL-C level and preferentially 
ABCA1-dependent cholesterol efflux capacity.78,82 In a 
randomized, double-blind, placebo-controlled, dose-ranging 
phase 2b trial, which was designed to assess the safety and 
tolerability of CSL-112 after acute myocardial infarction (AEGIS-I 
trial), it was shown that 4 weekly infusions of CSL-112 were 
feasible, well tolerated, and not associated with any significant 
impairment in liver or kidney function or other safety 
concerns.3,83 A phase 3 trial to assess the potential benefit of 
CSL-112 to reduce major adverse cardiovascular events has 
already been initiated and began recruiting patients in early 
2018 (AEGIS-II trial – ClinicalTrials.gov Identifier: NCT03473223).3

Finally, in a prospective, double-blinded, randomized trial, 
infusions of CER-001, an engineered pre-β-HDL mimic 
consisting of recombinant human ApoA-I and ApoA-II 
different phospholipid carriers, did not reduce coronary 
atherosclerosis on intravascular ultrasonography (IVUS) 
and quantitative coronary angiography (QCA) when 
compared with placebo.78,84 However, CER-001 was able 
to stimulate cholesterol mobilization and reduced artery 
wall dimension and inflammation in patients with familial 
hypoalphalipoproteinemia (FHA), thus supporting further 
evaluation of CER-001 in patients with FHA.85

Although infusions of recombinant ApoA-I may be 
safe and potentially clinically effective, the high cost of 
large-scale production of ApoA-I and the need for repeated 
intravenous administration limits the potential of this 
therapy for broad clinical application. Gene therapy may 
represent an alternative approach due to its possible long-
term effect and some preclinical studies have provided 
some evidence of benefit. However, further studies are 
required for more definitive clinical validation of this 
approach.3,78 Recent progress in recombinant adeno- 
associated virus (AAV) technology appears promising in  
this regard.3,78,86

ABCA1 upregulation may represent another future 
therapeutic direction. As it was mentioned earlier, ABCA1 is 
a key transporter which mediates cellular cholesterol and 
phospholipid efflux to lipid-poor ApoA-I in HDL synthesis and 
plays a crucial role in RCT. Thus, ABCA1 may be considered 
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as a promising therapeutic target for the prevention of 
atherosclerosis. In a recent experimental study, allicin, a novel 
antiatherosclerotic molecule, induced upregulation of ABCA1, 
promoted cholesterol efflux, and reduced lipid accumulation 
via peroxisome proliferator-activated receptor γ (PPARγ)/
liver X receptor α (LXRα) in THP-1 macrophage-derived foam 
cells. Thus, treatment with allicin may represent a novel future 
therapeutic strategy for the prevention and/or treatment of 
atherosclerosis.87

Infusion of recombinant LCAT has been tried as a means to 
increase plasma LCAT concentration, which would potentially 
be beneficial for patients with CHD or FLD. In an earlier animal 
study, infusion of recombinant LCAT rapidly restored the 
normal lipoprotein phenotype in LCAT-knockout mice and 
increased cholesterol efflux, thus suggesting the possibility of 
using recombinant LCAT as an enzyme-replacement therapy 
agent for LCAT deficiency.88 Later on, in a phase 1b, open-label, 
single-dose escalation study, infusion of recombinant LCAT, 
administered in subjects with stable CHD and low HDL-C levels, 
was proven to have an acceptable safety profile and it favorably 
altered HDL metabolism. These data again provide support for 
the use of recombinant human LCAT in future clinical trials in 
CHD and FLD patients.89 Finally, in a first-in-human treatment 
with enzyme replacement in FLD, recombinant LCAT infusions 
led to an improvement of anemia and most parameters related 
to renal function in spite of advanced disease. In addition, plasma 
lipids transiently normalized, and there was rapid sequential 
conversion of small pre-β-HDL particles to mature spherical 
α-HDL particles.90 Notwithstanding, as it was mentioned earlier, 
further larger long-term clinical trials will be required to definitely 
establish the clinical efficacy of human recombinant LCAT 
administration in patients with CHD and FLD.

Conclusions
From the above review of the scientific epidemiological and 
clinical data, it becomes apparent that there are several primary 
genetic disorders affecting the concentration and/or functionality 
of HDL. It is to be noted that, in certain cases, disorders associated 
with high HDL-C levels, such as certain SR-BI mutations, 
‘paradoxically’ lead to an increased risk for CVD, whereas, in other 
cases, disorders associated with low HDL-C levels, such as ApoA-I 
Milano and ApoA-I Paris, ‘paradoxically’ lead to a reduced risk 
for CVD. This observation provides again clear and unequivocal 
evidence that the functionality of HDL plays a crucial role for 
its cardioprotective effect. Obviously, no treatment is required 
when the specific primary HDL disorder leads to a reduction of 
cardiovascular risk. On the other hand, when the specific primary 
HDL disorder leads to an increase of cardiovascular risk, in most 
cases no treatment has been found to prevent the progression 
of the disease, as drugs commonly used to increase the HDL-C 
have proven to be ineffective in these individuals. Some new 
promising therapeutic strategies that may favorably affect HDL-C 
levels and/or HDL function and metabolism, such as ApoA-I 
infusion, ABCA1 upregulation and LCAT infusion, have emerged 
but have not yet been incorporated into the everyday clinical 
practice. However, as it was mentioned earlier, the high risk for 
CVD warrants comprehensive secondary prevention measures. 
These include achieving an LDL-C <70 mg/dL with high-dose 
statin therapy, alone or in combination with other lipid-lowering 
agents, and by optimizing the identification and management 
of traditional risk factors, such as cigarette smoking, diabetes 
mellitus, obesity, and physical inactivity. Furthermore, early 
screening is recommended in those patients to evaluate 
subclinical atherosclerosis with coronary artery calcium  
scanning and/or carotid intima-media thickness assessment.
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