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Abstract

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer 

(CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation 

(MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We 

used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol 

(TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) as 

instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using 

SNP-CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC 

was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% 

confidence interval [CI]: 1.20-1.79, P=1.68x10-4). The pooled ORs for LDL, HDL, and TG were 

1.05 (95% CI: 0.92-1.18, P=0.49), 0.94 (95% CI: 0.84-1.05, P= 0.27), and 0.98 (95% CI: 

0.85-1.12, P=0.75) respectively. A genetic risk score for 3-hydoxy-3-methylglutaryl-coenzyme A 

reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk 

(OR=0.69, 95% CI: 0.49-0.99, P=0.046). This study supports a causal relationship between higher 

levels of TC with CRC risk, and a further rationale for implementing public health strategies to 

reduce the prevalence of hyperlipidaemia.
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Introduction

Colorectal cancer (CRC) is the third most common cancer diagnosed in economically 

developed countries1. The mortality rate from CRC has been declining over the last twenty 

years as a consequence of improved medical care and probably through the introduction of 

population screening programs for the early detection of tumours2–4. Despite this 

improvement in patient outcome, it is still important to understand the risk factors for CRC 

in order to inform public health policy.

A number of factors influenced by lifestyle have been reported to be associated with the 

development of CRC in epidemiological observational studies, including a positive 
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correlation with circulating levels of plasma cholesterol and other components of the lipid 

profile5, 6. It is, however, unclear from these studies if findings reflect a causal relationship 

or are simply a consequence of confounding by factors common to the aetiology of both 

CRC and hyperlipidaemia (e.g. common dietary factors) or reverse causality. Because lipid 

levels can be modified by lifestyle and treatment with statins, deciphering the basis for the 

association should be informative in formulating and optimizing prevention programs for 

CRC.

Evidence that statin use will effect a reduction in CRC is highly controversial7, 8. Although 

an analysis of The Health Improvement Network (THIN) database found that statin usage 

was associated with reduced CRC (long term usage: odds ratio [OR] = 0.95, 95% confidence 

interval [CI]: 0.91-0.99; short term usage: OR= 0.92, 95% CI: 0.85-0.99); no difference was 

shown between continued versus discontinued therapy, suggesting indication bias8. 

Moreover a recent meta-analysis of data from eight randomized controlled trials (RCTs) 

failed to demonstrate a beneficial effect which was statistically significant (relative risk = 

0.89, 95% CI: 0.74-1.07)9. Each of these RCTs, however have the same limitations of short 

follow-up time, few CRC cases, and ascertainment of CRC as a secondary outcome.

Mendelian randomisation (MR) provides a useful complement to the traditional 

epidemiological study10. This strategy makes use of genetic variants that are robustly 

associated with traits of interest, in this case lipid traits - total cholesterol (TC), low-density 

lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) - as instrumental 

variables (IV) to infer whether associations between exposure and disease are causal. The 

use of genetic variants as IV to proxy modifiable exposure therefore avoids confounding by 

environmental factors, can be reflective of life-long exposure (propensity), and is not be 

subject to reverse causality. The strength of the IV in MR is important for power, but weak 

instruments can also lead to inconsistent instrumental variables estimators. Hence using a 

genetic score derived from a combination of single nucleotide polymorphisms (SNPs), 

which collectively explains more of the variance in the risk factor, mitigates against weak 

instrument bias thereby increasing study power.

Genetics scores derived from multiple SNPs for lipid traits have been used in MR studies to 

investigate associations between blood lipids and coronary heart disease11, and most 

recently prostate cancer12. Here we have employed MR to examine the impact of lipid traits 

on the risk of developing CRC.

Methods

Colorectal cancer datasets

We investigated the relationship between genetic risk scores for lipid traits and CRC risk 

using data from seven previously reported genome-wide association studies (GWAS) of 

CRC13 (Table 1). Briefly, these GWAS were all based on individuals with European 

ancestry and comprise: CCFR1, CCFR2, COIN, FINLAND, UK1, Scotland1 and VQ58. All 

studies were approved by their respective institutional review boards and conducted with 

appropriate ethical criteria in each country and in accordance with the Declaration of 
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Helsinki. Comprehensive details on the cases and controls are available in previously 

published work13–16.

Genotyping data

Details of the genotyping and quality control of the seven CRC GWAS have been previously 

published13. Briefly, we excluded SNPs with a minor allele frequency of <1%, low call rate 

<95%, SNPs violating Hardy-Weinberg equilibrium, and individuals with non-European 

ancestry as assessed using HapMap v2 reference data17. Imputation of untyped SNP 

genotypes was performed using IMPUTEv2 software18 using a merged reference panel 

consisting of Sequencing Initiative Suomi (for the FINLAND data) or UK10K (for the 

remaining data) in addition to 1000 Genomes Project data. Poorly imputed SNPs (i.e. INFO 

score of <0.8) were excluded. Summary statistics from the seven GWAS were used to 

calculate the ORs for lipid-related SNPs.

Gene variants used to construct genetic risk scores

Genetic risk scores as IVs for circulating lipid fractions were developed from SNPs 

previously identified by the Global Lipids Genetics Consortium (GLGC)19. Median and 

range of standard deviations of lipid trait measurements in European cohorts of the Global 

Lipids Genetics Consortium are shown in Supplementary Table 1. We considered only SNPs 

associated at genome-wide significance (i.e. P ≤ 5.0x10-8) and restricted to individuals with 

European Ancestry. To avoid co-linearity between SNPs, we excluded SNPs that were 

correlated (i.e. r2 value ≥ 0.01), only considering the SNP with the strongest effect on the 

lipid trait for inclusion in genetic risk scores. Pairwise r2 values were calculated using 

PLINK v1.90 utilising samples of European ancestry from the 1000 Genomes and UK10K 

sequencing projects (Supplementary Data). This resulted in 58 SNPs for HDL, 29 SNPs for 

LDL, 26 SNPs for TG, and 38 SNPs for TC (Supplementary Table 2). Because lipid traits 

share common genetic variants, in addition to calculating an ‘unrestricted allele score’ that 

included all SNPs associated with the lipid trait, we also calculated a ‘restricted allele score’ 

as per Holmes et al 11 based on SNPs exclusively associated with HDL (n=43), LDL (n=9), 

or TG (n=14) to make them as specific as possible (Supplementary Table 3). Risk alleles 

were those that were positively associated with TC, LDL and TG or negatively associated 

with HDL levels. For all identified SNPs, we recovered the chromosome positions, the risk 

alleles, association estimates and standard errors.

Statistical analysis

We performed MR analysis to assess the association between TC, LDL, HDL, TG and CRC 

using summary statistics as described Burgess et al. (2015) 20. The combined ratio estimate 

(β) of all SNPs associated with each lipid trait on CRC was calculated under a fixed-effects 

model:

β =
∑k XkYkσYk

−2

∑k Xk
2σYk

−2 .
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Xk corresponds to the association between SNP k with the lipid trait and Yk is the 

association between SNP k and CRC risk with standard error σYk. The standard error of the 

combined ratio estimate is given by:

se( β ) = 1
∑k Xk

2σYk
−2 .

With the statistics generated by following these calculations on the seven different cohorts in 

the CRC data, we performed a meta-analysis under a fixed-effects model to derive the final 

ORs and confidence intervals.

A key assumption for this MR analysis is there is no pleiotropism (i.e. a gene influencing 

multiple traits) between the genes influencing CRC and the lipid traits under study. 

Therefore, before performing the MR analysis, we performed LD regression to test for 

global evidence of pleiotropy as per Bulik-Sullivan et al. (2015) 21, 22, and subsequently 

implemented an MR-Egger regression to examine for violation of the standard IV 

assumptions in our analysis 23.

For each statistical test we considered a global significance level of P≤0.05 as being 

satisfactory to derive conclusions. To assess the robustness of our conclusions, we imposed a 

conservative Bonferroni-corrected significance threshold of 0.0125 (i.e. 0.05/4 lipid traits). 

We deemed a P-value > 0.05 as non-significant (i.e. no association), a P-value ≤0.05 as 

evidence for a potential causal association, and a P-value ≤0.0125 as significant evidence for 

a causal association. All statistical analyses were undertaken using R software (Version 

2.14.1).

The power of a MR investigation depends greatly on the proportion of variance in the risk 

factor that is explained by the IV. We estimated study power using the methodology of 

Burgess (2014) 24, utilizing published estimates of the heritability of lipid trait associated 

IV SNPs 19 and the reported effect of each trait on CRC risk in epidemiological studies 8.

In a subsidiary analysis we constructed a genetic risk score for 3-hydroxy-3-methylglutaryl-

CoA reductase (HMGCR) using rs12916, rs17238484, rs5909, rs2303152, rs10066707 and 

rs2006760. These specific SNPs have previously been used to mimic statin intervention to 

estimate a causal association of statin use and coronary heart disease and diabetes 25.

Results

Using LD regression, we found no evidence for global pleiotropism (i.e. shared genetic 

components) between CRC and any of the lipid traits under investigation (Table 2). 

Following on from these observations we performed MR-Egger regression tests to explicitly 

examine for infringement of the standard instrumental variable assumptions in our MR 

analysis. We did not find evidence of any violation in respect to TC, LDL, HDL or TG 

(Table 2, Supplementary Figure 1). In view of the totality of these findings we were 

reassured of the validity of our MR-based analysis to infer whether the relation between 

exposures and CRC were likely to be causal.
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The associations of each unrestricted allele score for respective target lipid traits are shown 

in Figure 1. A positive correlation between variants associated with higher risk levels of TC 

and CRC was observed. The pooled OR meta-analysis for CRC by TC, estimated in IV 

analysis using the allele score was 1.46 per genetically instrumented SD increase in TC 

(95% CI: 1.20-1.79, P = 1.68 x 10-4, test for heterogeneity between studies I2 = 6%, Phet = 

0.38).

The strongest reported SNP association for TC levels was provided by rs10401969 (CILP2) 

and rs12916 (HMGCR)19. To examine if the correlation between TC and CRC risk was 

primarily driven by these variants, we performed a sensitivity analysis excluding rs10401969 

and rs12916. Omission of these two SNPs from the MR analysis did not appreciably affect 

our MR findings with results remaining significant (OR = 1.69, 95% CI: 1.25-2.28, P = 6.76 

x 10-4). Albeit not significant, there was some support for a positive association with LDL 

(OR = 1.05, 95% CI: 0.92-1.18, P = 0.49) and CRC risk, and a negative association between 

HDL (OR = 0.94, 95% CI: 0.84-1.05, P = 0.27) and CRC risk.

Following on from these analyses, we performed a MR based analysis of LDL, HDL and TG 

using genetic scores derived from restricted sets of SNPs. As with the unrestricted analysis, 

no significant causal effect for each of these lipid traits was observed (Supplementary Figure 

2).

Finally, genetically predicted lowered TC using the HMGCR genetic risk score was 

associated with 43% reduction in CRC (OR=0.69, 95% CI: 0.49-0.99, P=0.046, Phet= 

I2=56%).

Discussion

The present study strengthens a causal inference between circulating levels of TC and risk of 

developing CRC that is independent of known confounding effects. The positive correlation 

between the IV for TC and CRC risk, remained significant even after imposing a 

Bonferroni-correction to account for multiple testing. It is noteworthy that none of the IV 

SNPs for TC also represent IVs for obesity26, supporting an independent relationship 

between TC and CRC. As illustrated here and in previously studies of obesity and CRC 27, 

28, insulin levels and uterine cancer 29, and lipid levels and coronary heart disease 30 MR 

provides an attractive means of establishing causal associations. In addition to demonstrating 

an association between TC and CRC risk we found that genetic variants that mimic the 

effect of HMGCR inhibition were associated with a reduced CRC risk, supporting findings 

from observational epidemiological studies that statins have beneficial effect on the 

population burden of CRC.

Studies in mice have shown that knocking out the cell surface cholesterol-sensing receptor 

gene NPC1L1, which plays a critical role in the absorption of intestinal cholesterol, reduces 

CRC risk31. However, the biological mechanism by which cholesterol may affect CRC risk 

remains to be established. Cholesterol is thought to have multiple carcinogenic/cancer 

promoting effects at the cellular level and several mechanisms have been variously 

suggested, including the cholesterol-mediated activation of the NLRP3 inflammasome32. 
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Since statins are largely retained by hepatocytes, their effect on CRC will be indirect, via 

HMGCR inhibition. Intriguingly, recent data suggests that any impact of statin therapy on 

CRC is by prevention of progression of adenomas to frank cancers rather than their 

development per se 33. Further research on the biological relationship between cholesterol 

and CRC is needed to address such a proposition.

A major strength of our MR analysis is that it does not suffer from the influence of recall 

bias and confounding that affects traditional observational studies. Nevertheless, a primary 

assumption in MR is that the variants used to generate genetic scores are indeed associated 

with the exposure being examined. To ensure this was the case, we only made use of variants 

associated with each lipid trait at genome-wide significance from hypothesis-free GWAS. A 

second assumption is that variants are associated with CRC only through the exposure and 

are not confounded by shared genetic (i.e. pleiotropy). This would be revealed as an 

increasing linear relationship between SNPs and their effect size for any lipid trait and CRC 

risk; we did not observe such a relationship. Although it is not possible to exclude 

confounding by unknown confounders, the use of multiple independent variants acting 

through different pathways reduces the likelihood of confounded IV-associations. Moreover 

by using LD regression, we have been able to exclude pleiotropism on a global basis21. 

Finally, we only made use of data from individuals of European descent in the GWAS SNPs 

to limit potential bias from population stratification influencing study findings.

As with any MR analysis, there are potential limitations to our findings, including the 

limited trait variance explained by genetic variants, restricting statistical power. This is 

especially relevant for null findings, since wide confidence intervals leave uncertainty over 

the presence of a causal effect. It is estimated that the SNPs from the Global Lipids Genetics 

Consortium GWAS explain approximately 8-11% of the total variation in each lipid trait19. 

Recent analyses of observational studies found higher impact on CRC for TC than LDL or 

TG; respective ORs and 95% CIs – 1.49 (1.32-1.69), 1.37 (1.11-1.69), and 1.16 (1.06-1.27) 

8. Based on these data our MR study was well-powered to demonstrate a causal relation for 

TC (≈80%, stipulating a P-value of 0.05), but we had limited power to identify associations 

for other lipid traits, particularly TG and HDL (respective power estimates for TG, LDL and 

HDL being 13%, 68% and 31%). Hence while the ORs for CRC with LDL and TG are 

congruous with observational studies 34 larger studies are required to formally establish a 

relationship using MR.

There are differences in the genomic landscapes of colonic and rectal cancers which 

presumably may reflect differences in aetiology. Unfortunately, these data were not 

uniformly collected across datasets, and we therefore did not investigate the possibility of 

differential effects of cholesterol on risk by anatomical location within the colorectum35.

In conclusion, this study provides evidence for a causal role of higher TC levels in the 

aetiology of CRC. Hence our findings encouragingly support the overall findings of past 

observational studies. Our limited power to further refine the relationship between lipid 

profile and CRC provides a motivational for larger MR studies, which will benefit from 

enhanced statistical power to demonstrate relationships for the spectrum of colorectal 

neoplasia. Irrespective of the exact functional basis of the association between TC and CRC 
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risk, reducing hyperlipidaemia is an important target for primary prevention of CRC in the 

population. Our analysis therefore supports the hypothesis that the increasing use of statins 

in the population for prevention of cardiovascular disease will have the added bonus of 

reducing the burden of CRC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and Impact

While observational studies have suggested an association between blood cholesterol 

levels and colorectal cancer (CRC), they do not establish causality and may be influenced 

by confounding factors. Here we use Mendelian randomisation using genetic 

instrumental variables to provide evidence for a causal link between blood cholesterol 

levels and colorectal cancer. Thus, reducing hyperlipidaemia is an important target for 

primary prevention of CRC in the population.
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Figure 1. Meta-analysis odds ratios (OR) for colorectal cancer per unit increase in genetic risk 
score (SD trait) for each lipid trait.
TC: Total cholesterol, TG: Triglyceride, LDL: low density lipoprotein, HDL: high density 

lipoprotein; Horizontal lines: 95% Confidence Intervals (95% CI). Phet: P-value for 

heterogeneity; I2: proportion of the total variation due to heterogeneity. Box: OR point 

estimate; its area is proportional to the weight of the study. Diamond: overall summary 

estimate, with confidence interval given by its width. Vertical line: null value (OR = 1.0).
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Table 2
Testing for global and instrumental-specific pleiotropism.

Point estimates, confidence intervals, and P-values from linkage disequilibrium (LD) regression analysis, and 

MR-Egger methods. For MR-Egger, the intercept represents the average pleiotropic effect; an intercept 

significantly different from zero implies directional pleiotropy.

LD regression results

Trait Heritability estimate Genetic correlation Standard error P-value

TC 0.2408 0.049 0.0635 0.4402

TG 0.2939 0.0322 0.0639 0.6143

LDL 0.2122 0.0729 0.066 0.2696

HDL 0.2499 -0.0603 0.563 0.2834

MR-Egger regression results

Trait Estimate Corrected standard error CI lower CI upper P-value

TC intercept 1.11x10-2 1.25x10-2 -1.42x10-2 3.64x10-2 0.38

slope 0.16 0.33 -0.51 0.83 0.64

TG intercept -1.13x10-2 1.10x10-2 -3.38x10-2 1.12x10-2 0.31

slope 5.65x10-2 0.17 -0.30 0.42 0.75

LDL intercept -3.41x10-3 7.67x10-3 -1.91x10-2 1.23x10-2 0.66

slope 0.10 0.11 -0.11 0.32 0.34

HDL intercept 2.23x10-3 5.58x10-3 -8.94x10-3 1.34x10-2 0.69

slope -0.11 0.11 -0.32 0.11 0.31
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