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Units of Measure in Clinical
Information Systems
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A b s t r a c t The authors surveyed existing standard codes for units of measures, such as
ISO 2955, ANSI X3.50, and Health Level 7’s ISO1. Because these standards specify only the
character representation of units, the authors developed a semantic model for units based on
dimensional analysis. Through this model, conversion between units and calculations with
dimensioned quantities become as simple as calculating with numbers. All atomic symbols for
prefixes and units are defined in one small table. Huge permutated conversion tables are not
required. This method is also simple enough to be widely implementable in today’s information
systems. To promote the application of the method the authors provide an open-source
implementation of this method in JAVA. All existing code standards for units, however, are
incomplete for practical use and require substantial changes to correct their many ambiguities.
The authors therefore developed a code for units that is much more complete and free from
ambiguities.
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A report of a quantitative measurement is not mean-
ingful without its units. Saying an infant’s weight is
‘‘five’’ begs the question ‘‘5 pounds’’ or ‘‘5 kilograms.’’
We violate this precept in many medical contexts,
leaving out the units in chart notes about laboratory
tests and blood pressure and failing to standardize
them in computer systems.

Although some of us were early participants in de-
veloping standard units codes for Health Level 7
(HL7)1(pp7-36ff) and ASTM 1238,2 a review of the units
tables at our Wishard Hospital laboratory showed an
embarrassing lack of standardization. Indeed, we
found ‘‘G,’’ ‘‘GM,’’ and ‘‘GS’’ representing gram; ‘‘LI-
TERS’’ and ‘‘L’’ for liter; ‘‘ML’’ and ‘‘CC’’ for milliliter;
and ‘‘MOL,’’ ‘‘MOLE,’’ and ‘‘MOLES’’ for mole. Some of
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our unit names, such as ‘‘/VOL’’ or ‘‘1,’’ are not in-
terpretable as units at all.

Within a single institution where most measurements
tend to be reported consistently in the same units,
users correctly infer the units when they are omitted.
Nonetheless, such omissions could lead to mistakes
when patients move between care facilities. For in-
stance, creatine kinase can be reported in units of cat-
alytic concentration and as mass concentrations with
very different magnitudes that may be misinterpreted
without units. Correctly labeled units have even
greater importance in medication orders. Confusion
over body mass, measurable in kilogram or pound,
could have disastrous consequences for body-mass–
based medication dosing. Confusing microgram with
milligram in a 100-mg dose of thyroxin could kill.

We often have to convert units from one form to an-
other, especially in the pharmacy where prescribing
units (e.g., 15 mL) and patient instruction units (e.g.,
1 tablespoon) may be different. We often have to cal-
culate a derived quantity based on quite complex for-
mulas, such as the cardiac output from oxygen intake,
oxygen saturations, and hemoglobin concentration
(Fick’s principle). Automatic conversion and com-
puter-assisted calculations become easier with the
proper use of units since we do not need to memorize
conversion factors. In addition, we can better trust the
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correctness of our calculations when the result comes
up with the expected unit.

Why is this everyday need to convert units and to use
units in complex calculations so weakly supported by
existing computer systems? Computers require an un-
ambiguous coding standard for units, of course. But
computers also require a semantic model of units that
lets them understand and calculate with the meaning
of units. A useful semantic model of units is not com-
monly deployed, although the theory is available.
Such a useful semantic model should represent the
most important information within units and yet be
simple enough to allow implementation in every com-
puter system.

Unfortunately, most introductions to the matter of
measurements, units, and dimensional analysis sug-
gest an algebraic approach and symbolic processing.
If deployment of the theory required symbolic algebra
processors, as implied by the ‘‘ontologic’’ approach of
Gruber and Olsen3,4 the necessary software develop-
ment work would inhibit widespread implementa-
tion.

This article provides a representation of units express-
ible as vectors of numbers. Numbers are much easier
for computers to process than symbols. With the the-
ory provided here and with the sample implementa-
tions that we have made freely available, support for
units can be easily incorporated into current clinical
information systems. Users will be able to easily con-
vert between units and do calculations with dimen-
sioned quantities, and system administrators will no
longer have to maintain huge unit conversion tables.

Syntax of the Units of Measure

Four standards exist for the notation of units: ISO
29555; ANSI X3.506; their extension by HL71 and
ASTM 1238,2 called ‘‘ISO1’’; and the European stan-
dard ENV 12435.7

ISO 29555 is a standard notation for units designed
for the limited character set available on many
computers. It focuses on the international system of
units (called ‘‘SI,’’ from French Système Interna-
tional)8 – 11; however, the general construction rules of
ISO 2955 could, in principle, be applied to other sys-
tems of units as well. It gives both a case-sensitive and
a case-insensitive notation that does not require Greek
letters or superscripts. It is therefore useful for com-
munication among computers and is still easily read-
able.

ANSI X3.506 refers to ISO 2955 and adds to it a table
of customary units (such as foot and pound) that are

not covered by ISO but are used widely in the United
States. Since a code for data communication should
accommodate the real world, any code used for units
should accommodate SI units as well as U.S. custom-
ary and other non-ISO units, such as Torricelli’s unit
of pressure (1 mm Hg). However, ANSI X3.50 has
many ambiguities and is incomplete. For instance, it
does not define a symbol for Fahrenheit degrees and
does not distinguish between the avoirdupois and
apothecaries’ pound (the former weighing 21 percent
more than the latter).

The HL7 ISO1 extensions add most of the units re-
quired in health care, including 1 mm Hg, 1 cm H2O,
and 17F missing from ISO. Unfortunately ISO1 inher-
its many of the ambiguities of ISO 2955 and ANSI
X3.50, although we expect these deficiencies to be cor-
rected in one of the next minor releases of HL7.

The European standard ENV 12435,7 which was re-
leased last year, declares ISO 2955 obsolete for the dis-
play and printing of units of measure. It claims that
today’s computer systems are capable of presenting
all special characters properly. While this may be true
for modern information systems with graphical user
interfaces, many existing systems do not meet these
requirements, especially laboratory automata that still
come with simple dot-matrix printers. Furthermore,
ENV 12435 applies mainly to printed reports and is
silent on which codes to use for units in messages,
which is our major concern.

Ambiguous Unit Symbols

In the metric system a simple unit consists of an op-
tional prefix symbol and a terminal unit symbol,
which we call the unit atom. Prefix and unit atom are
written side by side, e.g., thousand gram is written as
‘‘1 kg.’’ The ENV 12435, ISO 2955, and ANSI X3.50
standards all follow this common practice. Because
the prefix is not delimited from the unit atom, the
computer must analyze a simple unit lexically, i.e., by
finding a match among all possible combinations of
prefixes and atoms. This approach is prone to ambi-
guities.

A given symbol, such as ‘‘PEV’’ in ISO, ANSI, and
HL7, is lexically ambiguous because it can be gener-
ated with the prefix ‘‘PE’’ (peta) and the unit atom
‘‘V’’ (volt) and with the prefix ‘‘P’’ (pico) and the unit
atom ‘‘EV’’ (electron volt).

The most important source of ambiguities is the ab-
sence, in existing standards, of distinction between
metric units—those that are normally scaled in pow-
ers of ten—from nonmetric units. Customary units
are nonmetric, but ISO units are not necessarily met-
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ric. Examples of nonmetric ISO units are day, hour,
minute (of time and angle), and the various degrees.
A new code system for units should classify the units
as metric or nonmetric and forbid prefixes for non-
metric units.

We examined all three standards in order to find all
their ambiguities and to derive a new, unambiguous
code system. Because the set of prefixes and unit at-
oms is small, we can find the conflicts simply by ex-
amining all combinations exhaustively. We further
classified all conflicts into categories that differ in se-
verity and helped us address the more severe conflicts
first.

n Type I (simple atom clash). The same unit atom has
two meanings, such as ‘‘a’’ for the year (from Latin
annum) and for the are (=100 m2) in the case-sensi-
tive ISO 2955. Such direct name conflicts are the
most severe errors.

n Type II (metric–metric). Two different valid prefix–
unit combinations generate the same symbol, such
as the ‘‘PEV’’ of ISO and ANSI described above.
ANSI has re-introduced ‘‘PA’’ for pascal (1 Pa) and
picoampere (1 pA), which ISO eliminated by ren-
aming the pascal ‘‘PAL’’. Type II conflicts are severe
errors in those code systems.

n Type III (nonmetric–nonmetric). Two nonmetric
units, such as ANSI’s nautic mile (‘‘NMI’’) and na-
nomile (‘‘N-MI’’), collide with each other because of
the combination of a nonmetric unit with a prefix.
These conflicts must be resolved by forbidding pre-
fixes with nonmetric units.

n Type IVa (metric–nonmetric). A metric unit and a
nonmetric unit collide because of a prefix at the
nonmetric unit. For instance, all existing standards,
including ENV 12435, contain ‘‘cd’’ for candela and
‘‘c-d’’ for centi-day. Again, this conflict can be re-
solved if we forbid prefixes with the nonmetric unit
day.

n Type IVb (nonmetric–metric). A nonmetric unit
atom (e.g., ‘‘FT’’ for foot in ANSI) collides with a
metric prefix–atom combination (e.g., ‘‘F-T’’ for
fempto-Tesla). There is no way to resolve these con-
flicts without changing the code.

n Type V (nonmetric, other). A combination of a non-
metric atom with a prefix collides with a metric
prefix–atom combination. Forbidding prefixes with
nonmetric units can prevent those potential con-
flicts, too.

Algebraic Combinations of Units

More complex units can be derived from simple units
through operators for multiplication (‘‘.’’) and divi-
sion (‘‘/’’). In human writing and print, the multipli-
cation operator is often left out. ISO 2955 uses the
period (‘‘.’’) as the multiplication operator rather than
the asterisk (‘‘*’’) used in most computer program-
ming languages. So one must be aware that the mul-
tiplication operator can collide with the decimal point
when unit terms are to contain numerals. ISO 2955
does not allow the multiplication operator to be omit-
ted, for this would result in an even more complex
lexical analysis and more ambiguities, as ‘‘PAL’’ for
the pascal in case-insensitive ISO 2955 would now be
indistinguishable from picoampere liter (1 pAL).

ISO 2955 and ANSI X3.50 do not allow numeric fac-
tors in unit terms. They do allow the raising of units
to positive and negative powers, signified by an in-
teger number written directly after the unit symbol.
Thus, a square meter (1 m2) is written as ‘‘M2’’ and
the Newton (SI unit of force) is written as ‘‘N,’’ ‘‘KG/
M/S2,’’ or ‘‘KG.M-1.S-2.’’ Fractional exponents, such
as 1 m1/2, are very rare and of doubtful meaning.
Roots of units should be eliminated through appro-
priate exponentiation.

The operators of multiplication and division have
equal precedence. In human practice, however, there
is a tendency to confuse the division operator with
the fraction bar and assign to it a lower precedence.*
However, in ISO 2955 the expression

a

b?c

must be transcribed as either ‘‘a/b/c’’ or ‘‘a.c-1.b-
1’’ but not as ‘‘a/b.c.’’ Parentheses to group and nest
terms are not required or defined by ISO 2955.

HL7 and ASTM 1238, however, use parentheses in five
different ways. Parentheses can be used to write ‘‘a/
(b.c)’’ circumventing the normal operator prece-
dence; to include numeric factors within unit terms,
e.g., ‘‘ML/(8.H)’’ for ‘‘milliliter per 8 hours’’; to write
fractional exponents, such as ‘‘M(1/2)’’ for 1 m1/2; to
modify the meaning of a unit, e.g., ‘‘MM(HG)’’ for 1
mm Hg†; and to prevent nonstandard medical units
and pseudo-units (e.g., ‘‘(PH)’’ for the pH value)

*For instance, Abernathy’s Surgical Secrets12(p30) gives the formula

SvO2 = SaO2 2 (VO2)/(1.34)(CO)(Hb)

for the calculation of mixed venous oxygen saturation. Of
course, it is assumed here that the cardiac output (CO) and the
hemoglobin concentration (Hb) belong in the denominator as
well.

†Although the ‘‘venous’’ counterpart of ‘‘MM(HG)’’ is inconsis-
tently written as ‘‘CMoH2O.’’



154 SCHADOW ET AL., Units of Measure

F i g u r e 1 The grammar of unit expressions in the
Backus-Naur-Form.

from conflicting with standard units (e.g., ‘‘PH’’ for
picohenry).

Computers could interpret the many different mean-
ings of parentheses and digits differently by context;
however, an extremely complex lexical analysis would
be required. To avoid those complexities, our pro-
posed code system allows parentheses only to over-
ride normal operator precedence. It uses square brack-
ets ‘‘[ ]’’ for meaningful suffixes (e.g., ‘‘cm[H2O]’’
for 1 cm H2O) and to disambiguate special units (e.g.,
‘‘[pH]’’). Everything within a pair of square brackets
is considered a verbatim part of the unit atom; digits
or operators are not interpreted inside square brack-
ets.

Given our proposed simplifications, the parsing of the
algebraic unit terms is simple. The full Backus-Naur-
Form grammar is shown in Figure 1. Calculating a
result from a combination of numbers and operators
can be done by a freshman in computer science: A
simple result variable is updated for every number
and operator read from the input string. We need a
concise semantic representation of units that fits even
the most complex term of units into one uniform var-
iable, so that we can calculate with units as we usually
calculate with numbers.

Semantics of the Units of Measure

The syntax of units described above allows us to build
arbitrary unit expressions. These expressions are,
however, mere strings of characters. A semantic ap-
proach to the units of measures must do more than
verify that a given string of characters is a legal unit
term. It should allow us to find equivalence between
apparently different expressions, such as 1 N, 1 kg?

m/s2, and 1 Pa ?m2. In this section we derive concise
implementable semantics of units from a theory of
measurement and units. This semantic representation
will allow us to find equivalences, convert between
units, and calculate with units. We present the theory
in steps going from simple to more complex cases.

We do not pretend to provide a brand new theory. It
is based on prior work,13 – 18 although most of this prior
work aims at mathematical correctness and generality
rather than practical implementation. Only Thun13

suggests storing dimensional information on punched
cards, but he does not deal with conversions between
units or with the problems of units in biomedical sci-
ences. Our purpose is to recast existing theory into a
form that can be deployed easily by current medical
information systems.

Measurement, Quantity, Unit

A measurement is a comparison of an unknown quan-
tity with a standard object (e.g., a meter stick) or stan-
dard process (e.g., a clock), which is the unit u. The
comparison is done according to a precept of mea-
surement (e.g., compare with the meter stick or count-
ing the ticks of the clock). The measurement is further
based on a set of postulates about the nature of the
observed objects or processes18 (e.g., the stick does not
change its length and the clock always ticks at the
same rate). We can express the comparison between
object and unit through the simple equation

Q
m = (1)

u

where m is the rational number that tells us ‘‘how
many units’’ the quantity Q represents.‡ Hence, any
measurement is the product of a measured number m
and its unit u: Q = m?u (e.g., distance D = 3.6?m.)

Commensurability, Conversion, and the
Arbitrariness of Units

The same quantity Q can be expressed in different
units u and u9 (e.g., meter and yard), where

Q = m?u = m9?u9 (2)

(e.g., D = 3.6 m = 3.937 yd). The units u and u9 that
both measure the same kind of quantity are called
commensurable. With two commensurable units one
unit can be used to measure the magnitude of another

‡Conventional notation uses [Q] for the unit and {Q} for the
measurement value of the quantity Q. Those brackets and curly
braces are distracting, however, and do not contribute any es-
sential information.
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unit (e.g., the meter stick can be used to measure the
length of the yardstick). Thus, the following equation
holds:

u9 = n ?u (3)

where n is the magnitude of the unit u9 as a quantity
measured by the unit u (e.g., yd = 3600/3937 ?m). It
follows that any fixed quantity can be used as a unit
to measure all other quantities of the same kind;
hence, the selection of one particular quantity for a
unit is completely arbitrary.

From equations 2 and 3 we can derive a formula for
unit conversion:

u 1
m9 = m? = m? (4)

u9 n

Thus, the measurement value m9 that expresses a
quantity in unit u9 (e.g., yard) can be calculated from
the value m expressing the same quantity in unit u
(e.g., meter) with the ‘‘conversion factor’’ 1/n (e.g.,
3937/3600).

Derived Measurements

A precept of measurement Q can demand that two or
more other quantities Q1, Q2, . . . , Qn be measured at
one object or process in order to combine these mea-
surements to yield the derived quantity Q = f(Q1, Q2,
. . . , Qn). For example, velocity V is measured through
measuring the displacement D of a moving body in a
certain period of time T and dividing the displace-
ment by the time: V = D/T.

Any two quantities can be multiplied and divided
with each other or with a scalar number, and any
quantity can be raised to a power. In contrast, addi-
tion and subtraction are defined only for commensu-
rable quantities. Given the quantities Q1, Q2, . . . , Qn

any quantity Q can be derived as

q q q q q q1 2 n 1 2 nQ = Q ?Q ? ? ? ? ?Q = m?(u ?u ? ? ? ? ?u ) (5)1 2 n 1 2 n

(e.g., V = D1 ?T21). Thus, the new derived unit u of Q
is

q q q1 2 nu = u ?u ? ? ? ? ?u (6)1 2 n

(e.g., v = m1 ?s21). For the vast majority of quantities
the exponents q1, q2, . . . , qn turn out to be integers
between 24 and 14.13,19§

§Although, in the unit 1 dyn ?s ?cm25 for vascular resistance we
encounter an exponent 25.

Systems of Units and Base Units

Because quantities can be derived from other quanti-
ties we can organize units into a system B consisting
of a limited number of base units b1, b2, . . . , bn, from
which all other units u are derived through

u u u1 2 nu = b ?b ? ? ? ? ?b (7)1 2 n

Such a system, where no proportionality factors (of
the form are used, is said to be coherent.20 In auib b )i i

coherent system only one unit exists for each kind of
quantity. Hence, every unit u of the system B can be
mapped to a vector B = (u1, u2, . . . , un). Every com-Wu
ponent of the vector B represents one base kind ofWu
quantity and gives the exponent of the respective base
unit in the term. The simple vectors

1 0 0
0 1 0W W Wb = , b = , . . . , b =1 2 n? ? ?S?D S?D S?D? ? ?
0 0 1

represent the base units themselves (see Tables 1 and
2 for examples). The set of base units can now be in-
terpreted as the basis of an n-dimensional vector
space, where every unit is represented by a linear
combination of the base units.

Our theory thus matches the term ‘‘dimension’’ as
used in metrology with the dimensions of a space in
a mathematical sense. The space of dimensions can be
analyzed with the well-known concepts and methods
of linear algebra. For instance, we know that the
members of any basis must be linearly independent.\
We also know how to use matrices to carry out linear
transformations between different base systems, and
we can find systems to be isomorphic if there is a one-
to-one transformation between two base systems of
units.

Liberation from Coherence

The SI defines units according to equation 7. Thus, SI
is a coherent system of units. Although SI units may
be scaled through a prefix (milli-, centi-, kilo-, etc.),
derived SI units are always based on units without
prefixes. Requiring coherence is a burdensome con-
straint, however, because it generates units that do not
fit the usual size of measured values. For example, the
SI-coherent unit katal (1 kat = 1 mol/s) is seven orders
of magnitude greater than biologic enzymatic rates.

\For linear independence, 1 may be zeroW W Wa b a b 1 ??? 1 a b1 1 2 2 n n

only if a1, a2, . . . , an are all zero.
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Table 1 n

Proposed Base System, Tuned Toward
Communication of Units and Computation
with Units
Kind of Quantity Variable Unit Vector ¢bi

Length s 1 m (1, 0, 0, 0, 0, 0, 0)

Time t 1 s (0, 1, 0, 0, 0, 0, 0)

Mass m 1 g (0, 0, 1, 0, 0, 0, 0)

Charge Q 17C (0, 0, 0, 1, 0, 0, 0)

Temperature T 1 K (0, 0, 0, 0, 1, 0, 0)

Luminous intensity Iv 1 cd (0, 0, 0, 0, 0, 1, 0)

Angle § 1 rad (0, 0, 0, 0, 0, 0, 1)

NOTE: This sytem is compatible but not isomorphic with the SI.

Consequently, most laboratories still use 1 U = 1
mmol/min instead. For the same reason, the Comité
International des Poids et Mesures permits the liter
besides the cubic meter as the volume for expressing
concentrations.9

We shall now extend the theory explained so far, to
overcome the limitation to coherent systems. Given
the solid notion of units defined in a coherent system
(equation 7) and the notion of commensurability
(equation 3), we can define a unit u9 as an ordered
pair,

u9 = ^n, Wu& (8)

where n is the magnitude of u9 measured in the B-
coherent unit u. Thus, we can permit the combination
of arbitrarily scaled units to derived units, including
all kinds of non-SI units, such as foot, pound, minute,
even tablespoon (2 tbs = 1 oz fl) or drops (12 drp = 1
mL). For example, ‘‘drops per minute’’ or ‘‘tablespoon
per day’’ can be employed instead of the correspond-
ing SI-coherent unit ‘‘cubic meter per second.’’

We consider two units u1 and u2 as commensurable if
the equation

Wu = Wu (9)1 2

holds. Multiplication, division, and exponentiation
are defined as follows:

u ?u = ^n ?n , Wu 1 Wu & (10)1 2 1 2 1 2

u /u = ^n /n , Wu 2 Wu & (11)1 2 1 2 1 2

x xu = ^n , x ? Wu& (12)

Addition (and subtraction) of commensurable quan-
tities can be defined as

m ?u 1 m ?u = (m ?n 1 m ?n )?^1, Wu& (13)1 1 2 2 1 1 2 2

for .}Wu = Wu = Wu1 2

A measurement value m in unit u, finally, is converted
into a m9 in a commensurable unit u9 through equa-
tions 4 and 11 reducing to

n
m9 = m?^n/n9, Wu 2 Wu9& = m? (14)

n9

because must be true for conversions.Wu = Wu

Transformation Between Unit Systems

The ordered pair of a scalar and a vector ^n, (u1, u2,
. . . , un)& can be rewritten as the simple vector (log10n,
u1, u2, . . . , un). By regarding the number 10 as a base
unit, our model allows transformations between dif-
ferent mutually incoherent base systems. For instance,
we could define the transformation between the MKS
system, using meter, kilogram, second, and ampere as
its base units, and another system that uses centime-
ter, gram, second (CGS), and coulomb as:

1 2 3 0 0 u u910 10

0 1 0 0 0 u u9m cm

0 0 1 0 0 ? u = u9 (15)kg gS D S D S D0 0 0 1 21 u u9s s

0 0 0 0 1 u u9A C

Because this transformation is one-to-one, we know
that both systems are dimensionally isomorphic, i.e.,
that they can both describe the same physical phe-
nomena with no fundamental difference. Likewise,
there is an isomorphism between SI units and a sys-
tem that uses the customary units foot for length and
ounce for mass.#

}It must be noted that the sum of two quantities is meaningful
by itself only in so called ‘‘extensive’’ measures. The sum of
conjoint derived measures, such as two densities (r = m/V ), is
by itself meaningless. However, mathematically it is useful to
define the sum in general; otherwise one would lose the dis-
tributive property of physical quantities that allows one to write
m = V ?r1 1 V ?r2 = V ? (r1 1 r2).

#In our model nothing favors one particular base system over
another set of isomorphic systems. Thus, SI should be used not
because it is inherently better in the sense of this theory, but be-
cause it is an international standard. However, our method ap-
plies as well to any other system of units.
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Table 2 n

Some Derived Units and Their Internal Representation Within Our Base System
Kind of Quantity Definition* Unit u Factor n Vector ¢u

1 1 The unity 1 1 (0, 0, 0, 0, 0, 0, 0)
Area A = s1 ? s2 1 m2 1 (2, 0, 0, 0, 0, 0, 0)
Volume V = A ? s liter 1 L 1023 (3, 0, 0, 0, 0, 0, 0)
Velocity v = s/t 1 m/s 1 (1, 21, 0, 0, 0, 0, 0)
Angular velocity v = §/t 1 rad/s 1 (0, 21, 0, 0, 0, 0, 1)
Volume current V̇ = V/t 1 L/min 6 3 1022 (3, 21, 0, 0, 0, 0, 0)
Acceleration a = v/t 1 m/s2 1 (1, 22, 0, 0, 0, 0, 0)
Force F = m ?a newton 1 N 103 (1, 22, 1, 0, 0, 0, 0)
Work W = F ?s joule 1 J 103 (2, 22, 1, 0, 0, 0, 0)
Moment of force M = F ?s 1 Nm 103 (2, 22, 1, 0, 0, 0, 0)
Power P = W/t watt 1 W 103 (2, 23, 1, 0, 0, 0, 0)
Electric current I = Q/t ampere 1 A 1 (0, 21, 0, 1, 0, 0, 0)
Electric potential U = WQ volt 1 V 1 (2, 22, 1, 21, 0, 0, 0)

*We give only ‘‘naive’’ definitions, i.e., we pay no attention to the fact that many quantities are vectors and that many are properly
defined using differential quotients or integrals.

A Base System for Practical Use

Like the SI system of units, our unit system is based
on seven dimensions, with the units shown in Table
1. However, some of our base units differ from the SI
base units, because we focus on the everyday need to
communicate units and to calculate with units. Con-
versely, the SI system is concerned with metrology,
i.e., with specifying devices to reliably reproduce
units with high accuracy.

We chose the gram as the base unit for mass instead
of the SI kilogram in order to avoid prefixes in base
units. We need a meaningful unit of mass before we
can modify it by any prefix.

We use charge rather than electric current as a base/
kind of quantity for electromagnetic phenomena sim-
ply because electrons, and their elementary charge,
are the first cause for electric phenomena including
current. As explained above, with this change our sys-
tem is still isomorphic with the SI.

Although SI adopted the substance amount in 1971 as
a base kind of quantity,9 the mole is in fact only an
arbitrary large number of particles.21(p39-10) The base
unit 1 mol defined in SI can be simply expressed in
terms of Avogadro’s number, NA = 6.022137 3 1023.
Because the mole is dimensionless in our unit system,
our system is no longer isomorphic with SI. However,
the only information that the mole conveys over Avo-
gadro’s number is that some substance was measured,
but it does not tell what kind. Thus, our change does
not result in important information loss.

The ISO 1000 standard9 defines the units radian and
steradian of plain and solid angle as ‘‘supplementary

units’’ that can be used both as base or derived units.
However, in 1995 the 20th Conference Générale des
Poids et Mesures eliminated the class of supplemen-
tary units entirely and regards radian and steradian
as dimensionless derived units. In the latter sense, the
‘‘radian’’ (1 rad) is defined on a circle as the angle
that encloses an arc of length equal to the radius. Be-
cause angles measured this way are ratios of two
lengths, the units cancel out. Consequently, the SI
loses important information. For example, SI cannot
distinguish angular velocity from rotational fre-
quency, or the radian from the steradian by means of
dimensional analysis. We therefore include the radian
in our system as a distinct base unit. Hence, the ste-
radian is now also a proper derived unit defined as 1
sr = 1 rad2.

We retained the luminous intensity only for reasons
of compatibility with the SI. The SI now defines the
candela as wavelength-dependent radiant intensities,
according to the human eye’s response to light of the
respective wavelength.9,22 This is similar to the audi-
ometric correction according to the A scale. However,
it is unclear why photometry has its own place among
SI base units, while other psychophysical measures,
such as the intensity of perception for sound, heat,
pressure, and vibration do not. Adopting any measure
of human perception into base systems causes the
base unit vectors to become dependent (e.g., luminous
on radiant intensities) and thus disqualifies them as a
basis of a vector space.

Examples of derived units in this proposed base sys-
tem are shown in Table 2.

Units of Nonratio Scales

The temperature scales Fahrenheit, Celsius, and Kel-
vin provide examples of units that are clearly com-
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Table 3 n

Definition of Special Units on Nonratio Scales
u9 u n f(x) f 21(x)

17C 1 K 1 x 2 273.15 x 1 273.15
17F 1 K 5/9 x 2 459.67 x 1 459.67
pH 1 mol/L 1 2log10x 102x

1 Np 1 1 ln x e x

1 bel 1 1 log10x 10x

1 db(SPL) 1 Pa 2 3 1025 20 ? log10x 10x/20

1 db(mV) 1 mV 1 20 ? log10x 10x/20

1 db(W) 1 W 1 10 ? log10x 10x/10

parable and convertible, but not in the narrow sense
of equations 9 and 14. The values for temperature ex-
pressed in two of those units are not directly propor-
tional, particularly 0 7C ≠ 0 K ≠ 0 7F.

Celsius and Fahrenheit are interval scales,23 on which
measurement values can be converted using a simple
linear equation m9 = m?n/n9 1 o with the intercept o
adjusting the zero points of the scales. However, this
simple equation is not suitable for logarithmic or ex-
ponential scales.

We now extend our theory to deal with nonratio
scales very generally: We define each special unit,
with a proper unit and a pair of real functions, f and
f21, used to convert measurement values between the
proper unit and the special unit. Based on equation
14, we define the conversion from the proper unit u
to the special unit u9 as

u n
m9 = f m? = f m? (16)S D S Du9 n9

The reverse conversion from u9 to u uses the inverse
function f 21:

u9 n921 21m = f (m9)? = f (m9)? (17)
u n

Table 3 exemplifies how we define special units. This
shows that interval scales are but a special case of this
general nonproportional conversion. In medicine, log-
arithmic scales are especially important, such as the
H1 ion concentration measured as ‘‘the pH value.’’ In
our theory, pH can safely be regarded as a normal unit
and conversions to, say, 1 nmol/L can be carried out
easily.**

Discussion

The semantics of units we present in this article re-
solves the symbolic expressions of units completely
into numbers. It compresses such complex units as 1
dyn?s/cm5 into one real number and a vector of seven
integers: ^10.0, (25, 21, 1, 0, 0, 0, 0)&. This represen-
tation of units remains simple, regardless of how com-
plex a unit expression looks externally. Operations to

**At the same time this illustrates the virtue of defining the
amount of substance as a dimensionless kind of quantity, rep-
resenting a number of particles: After conversion of, say, pH 9
to an H1 ion concentration of 1 nmol/L we can directly proceed
to the number of H1 ions per volume: 602.204/pL. Indeed, pH,
nmol/L, and 1/pL all measure the same kind of quantity, which
is obscured by the conventional notion of a dimensionless pH
and of the mole as a unit on its own dimension.

calculate with units are well defined on these repre-
sentations. Computer implementation is therefore
easy. By this internal representation, the computer can
easily tell that 1 dyn?s/cm5 is just the same as 0.75
mm Hg/(L/s) or 105 Pa ?s?m23.

Previously we have implemented this method in
C11 as part of an HL7 communications project.24 To
better demonstrate the propositions of this article, we
prepared another implementation in JAVA. We de-
scribe the design of the JAVA software in an appendix
to this article. We made all source code of the software
freely available,†† because we hope that our method
and its practical implementation will be picked up by
medical information system designers, to make the se-
mantics of measurements and units an integral part
of their software.

Any method that reduces complexity into simple and
uniform representations risks losing important infor-
mation through this reduction. Our method is rooted
in a general theory of measurement, which ensures
that the concepts of physics are preserved. To fully
account for the physics of units, we have to discuss
the role of precepts and postulates that were part of
our definition of a measurement. Units are, however,
not just abstract concepts of physics but part of hu-
man language. Thus, in the remainder of this section,
we look not only at what units are but also how they
are used.

Precepts of Measurements

Work W and the moment of force M both have the
unit 1 Nm. Thus, M = (2, 22, 1, 0, 0, 0, 0). BothWu = WuW

kinds of quantities differ only in the precept of mea-
surement and the set of postulates. Force is a vectorWF
kind of quantity and the moment of force is the vector
product = 3 of a radius vector with the forceW WM F Ws Ws

††Available at: http://aurora.rg.iupui.edu/units. There is also
a JAVA applet that demonstrates the conversion facility.
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acting orthogonal to the radius. Conversely, the work
W is defined as the scalar product of the displacement
vector of a moving body and the force acting onWWs Fs

the body parallel to its displacement.

These distinctions are not covered in the semantics of
units given here. Although the problem is well
known,13 it is usually not given much attention in di-
mensional analysis.‡‡ Extending the method to cover
these distinctions would introduce overwhelming
complexity, and we would lose the ability to reduce
the semantics to simple vectors.

Dimensionless Quantities

Sometimes all units may cancel out in quantities de-
rived through equation 5. For example, in a body-
mass–dependent dosage for medications such as 2.5
mg/kg, the mass units cancel out, resulting in 2.5 3
1026 or 2.5 3 1024 percent. We frequently see notations
such as ‘‘1 mg/kg (body weight)’’ to keep the ‘‘his-
tory’’ of the measurement from being canceled.

The most important of such cases are concentrations
reported as ‘‘percentages.’’ Traditionally, we measure
concentrations of fluids and gases as a fraction of vol-
umes VB/V1 reported as 1 %vol. Concentrations of
dissolved substances are traditionally measured as
fractions of masses mB/m1 reported as 1 g% or just as
1%. Because water is the predominant dissolvent in
biology, and 1 mL of water has the mass 1 g, 1 g% is
regarded as equal to 1022 g/mL or 1 g/dL. On this
basis, the unit 1 mg% emerged, which was set equal
to 1022 mg/g [ 1 mg/dL.

The ISO, IUPAC, and CEN standards assert that those
annotations on the percent sign (e.g., %vol and g%)
are meaningless in principle and therefore deprecated.
Thus, we will not extend our theory to give meaning
to those annotations. Instead, concentrations in chem-
istry and biology should best be reported in 1 mol/
L.7,8,25 Correct interpretation of percentages requires
the knowledge of what has been measured. Failure to
supply this information, such as on drug labels for
lidocaine or adrenaline, leads to severe misinterpre-
tations and causes over- or under-dosage. In a survey
by Scrimshire,26 only 45 of 100 doctors knew how
much 5 mL of 1% lidocaine is. This suggests that the
traditional percentages may not be the most user-
friendly measures for concentrations.

‡‡Krantz et. al19(p474ff ) give a solution for the vector problem by
splitting length into three base dimensions, one for each axis of
the Euclidean space. This solves the vector problem completely,
since length is the only vector base kind of quantity. However,
because there is no fixed coordinate system of space, mapping
conventional units onto such a system is not one-to-one.

The EUCLIDES project27 – 29 assumes that any unit con-
sists of a numerator and a denominator that are not
reduced. Indeed, many clinically relevant units do
have the form of such simple ratios. The EUCLIDES

method, however, is challenged by units such as 1
mL/kg/h. The problem is how to canonically distrib-
ute the parts of such complex terms into just one
numerator–denominator pair.

Dependence on the Analyte

One of the most frequent conversions in medicine is
between units of substance concentration and mass
concentration. These are incommensurable units in
our theory, although they are clearly convertible. In
medicine we would like those measurements to be
convertible with little effort.

In practice these conversions can be done at a sys-
tem’s interface by checking for each observation the
reported unit ur and the standard unit of the receiving
system us for commensurability according to equation
9. If = holds, the conversion is straightforwardWu Wur s

(equation 14). Otherwise, a material constant c = mc ?
uc, such as the molar mass, is looked up for the an-
alyte. With this constant, either 1 = or 2Wu Wu Wu Wur c s r

= must be true, and the conversion is done byWu Wuc s

multiplication and division, respectively, of the re-
ported quantity with the constant.

For example, hemoglobin is usually reported in mass
concentrations such as cm = 15 g/dL. With the molar
mass of hemoglobin MHb = 64.5 kg/mol the computer
can calculate the equivalent substance concentration
cn as

c 15 g/dLmc = = = 2.3 mol/L.n M 64.5 kg/molHb

If the computer had multiplied the mass concentra-
tion with the molar mass, the result would have had
the wrong unit: 9.6 kg2L21mol21. Thus, through our
semantics based on dimensional analysis the com-
puter can find the correct conversion rule without any
further knowledge of biochemistry.

Conclusion

Our method shares with dimensional analysis the
ease with which calculations can be done with units.
But it also shares the weaknesses of dimensional anal-
ysis in that the commensurability criterion (equation
9) is too wide and too narrow at the same time. The
criterion is too wide because it neglects the various
differences of precepts of measurements and thus
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falsely finds work and moment of force to be com-
mensurable. The criterion is too narrow because it
finds substance concentration and mass concentra-
tions to be incommensurable, although by and large
we can regard them as equivalent. Dimensional anal-
ysis is particularly weak regarding the many dimen-
sionless quantities that are clearly incommensurable
but dimensionally indistinguishable.

An essential part of a report of a measurement is the
measurement name, which says what has been mea-
sured before giving a value and its unit.7,25 The mea-
surement name and its connotations should reflect
those distinctions, which dimensional analysis can not
cover. The problem of naming measurements has been
discussed elsewhere. The Logical Observation Names
and Codes (LOINC) terminology is a useful code for
naming measurements in medicine.30,31

Through the measurement name we can distinguish
measurements with different kinds of quantities but
the same dimension. LOINC, for instance, explicitly
names the kind of quantity for every measurement
name and thus distinguishes among mass concentra-
tion ratio (MCRTO), mass fraction (MFR), volume frac-
tion, ratio (VFR and VRTO, respectively), and number
fraction, all of which would be reported as percentages.

Because the measurement name mentions at least the
analyte, we can look up properly dimensioned con-
stants in order to find a conversion between incom-
mensurable but otherwise equivalent kinds of quan-
tities, such as mass concentration and substance
concentration. The LOINC data base already contains
a field for the molar mass, although this field is not
yet fully populated.

In this article, however, units have been our main con-
cern. Our theory of units is powerful yet easily im-
plemented in computer systems. Only one compact
table defines all symbols for prefixes and simple units
without prefix (unit atoms). Because each unit atom
occurs only once at the left side of the definitions, the
table is small and requires little maintenance. Custom-
ary units and special biomedical units, even those with
interval scales or logarithmic scales, can be handled as
well as SI units. The existing standards ISO 2955, ANSI
X3.50, and HL7’s ISO1 are not adequate for encoding
units because of their many lexical ambiguities and
their incompleteness for practical purposes.

One sound standard code for units is needed in order
to support automated communication, seamless con-
version, and intelligent processing of dimensioned
quantities. Because we found all lexical ambiguities
through exhaustive search, we could use exhaustive
search to remove all existing ambiguities from current

unit codes and ensure that our more complete code
did not introduce new lexical ambiguities. We will
soon suggest our revised code system for units to be
used with HL7.§§
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APPENDIX

Implementation

F i g u r e A Class diagram for an implementation of
units: A Measurement has one Unit and a Unit has
one Dimension. A UnitAtom is a special Unit that is
defined in a table. The database of UnitAtoms and Pre-
fixes are used by the static method Unit:parse to cre-
ate a new Unit-object from a String representation of
the unit. A Unit may have a FunctionPair that is
used to convert the nonratio unit to and from its proper
unit.

The class diagram in Figure A outlines the data structures
and their methods. Each major concept of our theory is
embodied in one class. In C11, operator overloading al-
lows us to integrate the algebraic operations naturally into
the programming language. Since JAVA lacks operator
overloading we have to use regular methods named
‘‘add,’’ ‘‘sub,’’ ‘‘mul,’’ and ‘‘div’’ instead. The following
classes are defined:

class Dimension: implements the vector of expo-Wu
nents and its operators for addition ‘‘1,’’ subtraction
‘‘2,’’ and multiplication with a scalar ‘‘*’’.

class Unit: embodies the unit u = ^n, . It has a parserWu&
that generates the internal representation from the char-
acter string expression of a unit. It also provides all the
operators to calculate with units, multiplication ‘‘*,’’ di-
vision ‘‘/,’’ and raising to a power ‘‘pow(int)’’.

class Measurement: implements a quantity Q = ^m, u&.
It provides the full set of operators including addition
‘‘1’’ and subtraction ‘‘2’’ of equally dimensioned quan-
tities. It also has a method ‘‘convertoto(Unit
uoprime)’’ to convert a measurement value m for an-
other commensurable unit u9.

class UnitAtom: is a specialization of class Unit.
Every instance of this class is stored in a static table or
database. Definition and retrieval of unit atoms are per-
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formed by static member functions. This class is rarely
used directly by the programmer but is essential for the
unit parser.

class Prefix: implements the table of multiplier pre-
fixes. This class is normally used only by the unit parser
to resolve prefix names to their values.

class FunctionPair: is used only for special nonratio
units, to convert measurement values to and from the
corresponding proper unit.

After the defined prefixes and unit atoms are read from
a table at the startup of a program that uses the units
API, the parser can then read the strings of characters
formatted according to the grammer and translate them
into the internal format in which both simple and com-
plex units are represented as pairs u = ^n, &. Thus it needWu
not build an abstract syntax tree but simply scans

through the string, linearly reading unit atoms and ac-
cumulating them into one result unit variable according
to the operators found.

We have not implemented a general builder that con-
structs a unit string from the internal representation. A
simple builder would just print out a product of powers
of base units. This may result in terms that are dimen-
sionally correct but hard for humans to understand. For
example, ‘‘kPa/s’’ (kilo-pascal per second, to measure
the pressure increment in the left ventricle) would come
up as ‘‘kg.m-1.s-3’’. We would rather keep the exter-
nal representations as strings in all objects of class
Unit. In calculations, we update this string accordingly
(e.g., ‘‘kPa’’ divided by ‘‘s’’ is ‘‘kPa/s’’.) Because the
string is never reduced, after heavy calculations it may
become long and even less readable for humans (e.g.,
‘‘kPa/s’’ times ‘‘L’’ times ‘‘min’’ is ‘‘kPa/s.L.min,’’
where it could have been reduced to 60 ‘‘J’’.)


