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I shall try not to use statistics as a drunken man uses lamp-posts, 
for support rather than for illumination.

—Andrew Lang (1844–1912), Scottish poet,  
novelist, and literary critic

To use a diagnostic test effectively and consistently in 
their practice, clinicians need to know how well the 
test distinguishes between those patients who have 

the suspected acute or chronic disease and those patients 
who do not.1 Clinicians are equally interested and usually 
more concerned whether based on the results of a screening 
test, a given patient actually (1) does or does not have the 
suspected disease; or (2) will or will not subsequently expe-
rience the adverse event or outcome.2,3

Medical tests performed to screen for a risk factor, 
diagnose a disease, or estimate a patient’s prognosis are 
frequently a key component of a clinical research study—
including in anesthesiology, perioperative medicine, critical 
care, and pain medicine.4,5 Like therapeutic interventions, 
medical tests require proper analysis and demonstrated effi-
cacy before being incorporated into routine clinical practice.6

However, studies of diagnostic tests are frequently meth-
odologically flawed, and their results are often not well 
understood or applied in clinical practice.5 For example, 
if investigators select clinically inappropriate populations 
for their study of a diagnostic test, they introduce so-called 
“spectrum bias,” and their study results can be invalid and 
misinform practicing clinicians.1,3,7,8 Therefore, rigor must 
be applied in studying whether and in whom a particular 
medical test should be performed.4

As part of the ongoing series in Anesthesia & Analgesia, 
this basic statistical tutorial, thus, discusses the fundamen-
tal concepts and techniques related to diagnostic testing and 
medical decision-making. This tutorial includes the follow-
ing concepts and techniques:

•	 Sensitivity and specificity;
•	 Positive predictive value and negative predictive value;
•	 Likelihood ratio;
•	 Receiver operating characteristic (ROC) curve;
•	 Diagnostic accuracy;
•	 Choosing and reporting the cut-point for a continuous 

variable biomarker;
•	 Comparing methods on diagnostic accuracy; and
•	 Design of a diagnostic accuracy study.

SENSITIVITY AND SPECIFICITY
The simplest screening or diagnostic test is one where the 
results of a clinical investigation (eg, electrocardiogram or 
cardiac stress test) are used to classify patients into 2 dichot-
omous groups, according to the presence or absence of a 
sign or symptom.9 When the results of such a dichotomous 
(positive or negative) test are compared with a dichotomous 
“gold standard” test (eg, cardiac catheterization) that is 
often costlier and/or more invasive, the results can be sum-
marized in a simple 2 × 2 table (Figure 1).4

The validity of such a screening or diagnostic test is its 
ability to distinguish between patients who have and those 
who do not have a disease.2 This validity of a medical test 
has 2 primary components: sensitivity and specificity. The 

To use a diagnostic test effectively and consistently in their practice, clinicians need to know 
how well the test distinguishes between those patients who have the suspected acute or 
chronic disease and those patients who do not. Clinicians are equally interested and usually 
more concerned whether, based on the results of a screening test, a given patient actually: (1) 
does or does not have the suspected disease; or (2) will or will not subsequently experience the 
adverse event or outcome. Medical tests that are performed to screen for a risk factor, diagnose 
a disease, or to estimate a patient’s prognosis are frequently a key component of a clinical 
research study. Like therapeutic interventions, medical tests require proper analysis and dem-
onstrated efficacy before being incorporated into routine clinical practice. This basic statistical 
tutorial, thus, discusses the fundamental concepts and techniques related to diagnostic testing 
and medical decision-making, including sensitivity and specificity, positive predictive value and 
negative predictive value, positive and negative likelihood ratio, receiver operating characteris-
tic curve, diagnostic accuracy, choosing a best cut-point for a continuous variable biomarker, 
comparing methods on diagnostic accuracy, and design of a diagnostic accuracy study.   (Anesth 
Analg 2018;127:1085–91)

Diagnostic Testing and Decision-Making: Beauty Is 
Not Just in the Eye of the Beholder
Thomas R. Vetter, MD, MPH,* Patrick Schober, MD, PhD, MMedStat,† and Edward J. Mascha, PhD‡§

From the *Department of Surgery and Perioperative Care, Dell Medical 
School at the University of Texas at Austin, Austin, Texas; †Department of 
Anesthesiology, VU University Medical Center, Amsterdam, the Netherlands; 
and Departments of ‡Quantitative Health Sciences and §Outcomes Research, 
Cleveland Clinic, Cleveland, Ohio.

Accepted for publication July 3, 2018.

Funding: None.

The authors declare no conflicts of interest.

Reprints will not be available from the authors.

Address correspondence to Thomas R. Vetter, MD, MPH, Department of Sur-
gery and Perioperative Care, Dell Medical School at the University of Texas 
at Austin, Health Discovery Bldg, Room 6.812, 1701 Trinity St, Austin, TX 
78712. Address e-mail to thomas.vetter@austin.utexas.edu.

Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. 
on behalf of the International Anesthesia Research Society. This is an open-
access article distributed under the terms of the Creative Commons Attribu-
tion-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it 
is permissible to download and share the work provided it is properly cited. 
The work cannot be changed in any way or used commercially without per-
mission from the journal.

E SPECIAL ARTICLE

mailto:thomas.vetter@austin.utexas.edu


1086     www.anesthesia-analgesia.org� ANESTHESIA & ANALGESIA

E E Special Article

sensitivity of the test is its ability to identify correctly those 
patients who have the disease, whereas the specificity of the 
test is its ability to identify correctly those patients who do 
not have the disease.2

Sensitivity is thus defined as the proportion of truly dis-
eased patients who have a positive result on the screening 
or diagnostic test (Figure 1).3,10

Specificity is thus defined as the proportion of truly non-
diseased patients who have a negative result on the screen-
ing or diagnostic test (Figure 1).3,10

Diagnostic Cut-off Point
Ideally, a diagnostic test would display both high sensitivity 
and high specificity. However, this is often not the case, either 
for binary or continuous biomarkers.3 When the clinical 
data generated by a medical test are not binary (eg, positive 
or negative) but instead have a range of values (eg, fasting 
serum glucose for diabetes or B-type natriuretic peptide 
[BNP] for congestive heart failure), a so-called cutoff point (or 
cut-point) value is often sought as a means to separate nor-
mal (or nondiseased) from abnormal (or diseased) patients.

As discussed in more detail below, the choice of this cut-
point value is innately a balance between the sensitivity and 
the specificity for a diagnostic test.2,3

There is typically an inverse relationship between sensi-
tivity and specificity. This is exemplified in a classic study 
of BNP for diagnosing congestive heart failure in patients 
presenting with acute dyspnea (Figure 2).3,11 These authors 
concluded an acceptable compromise to be a BNP cut-point 
value (plasma level) of 100 pg/mL, with a corresponding 
sensitivity of 90% and a specificity of 76%.11

POSITIVE PREDICTIVE VALUE AND NEGATIVE 
PREDICTIVE VALUE
Sensitivity and specificity are the most accepted ways to 
quantify the diagnostic accuracy and validity of a medi-
cal test. However, in clinical practice, even if the sensitivity 
and specificity of a test are known, all that is reported, and 
thus known for a particular patient, is the test result. Yet, as 
noted above, the clinician really wants to know how good 
the test is at predicting abnormality (ie, what proportion of 
patients with an abnormal test result is truly abnormal).9

Figure 1. A 2 × 2 table presenting the results 
(namely, the sensitivity, specificity, positive pre-
dictive value, and negative predictive value) from 
a study comparing a dichotomous diagnostic or 
screening test with a gold standard test or clinical 
outcome.2–4,12

Figure 2. Relationship among the chosen cutoff 
point (cut-point), sensitivity, and specificity, in this 
example, using BNP for diagnosing congestive 
heart failure in patients presenting with acute dys-
pnea.3,11 BNP indicates B-type natriuretic peptide.
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In other words, if the test result is positive, what is the 
probability that this given patient has the disease? Likewise, 
if the test result is negative, what is the probability that this 
given patient does not have the disease?2 Alternatively, 
what is the probability that a patient with an abnormal test 
result will subsequently experience the adverse event or 
outcome of concern (eg, postoperative myocardial infrac-
tion)? Or, vice versa, what is the probability that a patient 
with a normal test result will not subsequently experience 
the adverse event or outcome of concern?

The positive predictive value is the proportion of patients 
with a positive test result who truly have the disease, or the 
probability that a positive test accurately predicts presence of 
disease or the occurrence of the adverse outcome (Figure 1).2–4,12

The negative predictive value is the proportion of 
patients with negative test results who truly do not have 
the disease, or the probability that a negative test accurately 
predicts absence of disease or nonoccurrence of the adverse 
outcome (Figure 1).2–4,12

Effect of Disease Prevalence on Predictive 
Values
The underlying prevalence of the disease being screened 
for or diagnosed does not affect the sensitivity or specific-
ity of a medical test, which is why sensitivity or specificity 
is usually referred to as measures of the intrinsic accuracy 
of a test. The performance characteristics of the test itself 
in identifying patients with and without the disease remain 
the same despite changes in disease prevalence.1

However, as the underlying prevalence of the disease 
of interest increases, the positive predictive value of the 
test increases and the negative predictive value decreases. 
The more common the disease in the target population, the 
stronger the positive predictive value of the test. Similarly, 
as the underlying prevalence of the disease of interest 
decreases, the positive predictive value of the test decreases 
and the negative predictive value increases. The less com-
mon the disease in the target population, the stronger the 
negative predictive value of the test.1–3

Due to this relationship between prevalence and predic-
tive values, it is very important to understand that predictive 
values reported in a study cannot simply be generalized to 
other settings with different disease prevalence. Particularly, 
in studies in which the prevalence does not reflect the natu-
ral population prevalence, but in which the observed prev-
alence is determined by the study design (such as in a 1:1 
case-control study which artificially sets the prevalence at 
50%), any reported diagnostic predictive values are of mini-
mal practical use and must be interpreted carefully.

LIKELIHOOD RATIO
The positive likelihood ratio (LR+) compares the probability 
of a positive test result in patients with the disease or condi-
tion of interest (sensitivity) with the probability of a positive 
test result in patients without the disease (1 – specificity).10,13 
The LR+ describes how many times more likely a positive 
test result is to be a “true positive” result compared to “false 
positive.”

Hence, an LR+ >1 indicates that the presence of the dis-
ease is more likely than the absence of the disease when 

the test result is positive; the greater the LR+, the stronger 
the ability of a positive test result to predict the presence 
of disease. Positive diagnostic test results with a high LR+ 
(>10) are considered to provide strong evidence to rule in 
the diagnosis.14

Similarly, the negative likelihood ratio (LR−) compares 
the probability of a negative test result in patients with the 
disease or condition of interest (1 – sensitivity) with the prob-
ability of a negative test result in patients without the disease 
(specificity).10,15 An LR− close to 0 (<0.1) indicates that a neg-
ative test result is most likely a true negative result, provid-
ing strong evidence to rule out the disease or condition.14

Of note, using a nomogram or a simple formula, likeli-
hood ratios can also be used to estimate the probability (or 
odds) that a positive or negative test result reflects presence 
or absence of the disease, respectively, for a given pretest 
probability (or odds) of disease presence.16 This pretest 
probability is the assumed probability that a given tested 
individual actually has the condition, based on the informa-
tion available before the test is performed.

Unless a particular individual is known or suspected to 
have a higher or lower risk of having the condition than 
other patients in the same population undergoing the diag-
nostic test, the pretest probability can be assumed to be the 
prevalence of the condition in this population.13 The posttest 
probability of presence or absence of the disease can then 
be estimated by the positive predictive value and negative 
predictive value of the test, respectively.13 The positive and 
negative predictive values, which once again depend on the 
disease prevalence, can readily be calculated for any given 
prevalence using the likelihood ratios.

Kruisselbrink et al17 assessed the diagnostic accuracy of 
point-of-care gastric ultrasound to detect a “full stomach” 
(defined as either solid particulate content or >1.5 mL/kg of 
fluid) in 40 healthy volunteers. The authors reported an LR+ 
of 40.0 (95% confidence interval [CI], 10.3–∞) and an LR− of 0 
(95% CI, 0–0.07), indicating that gastric ultrasound is highly 
accurate to rule in and to rule out a full stomach. Assuming 
a pretest probability of 50% for having a full stomach (the 
prevalence in their study sample), the authors used a nomo-
gram to show that a positive test result increases the prob-
ability of having a full stomach to 97%, whereas a negative 
test result decreases the probability to <.1%.17

ROC CURVE
The previous paragraphs focused on diagnostic tests with 
a dichotomous outcome, in which the test result is either 
positive or negative. In situations in which a test result is 
reported on a continuous or ordinal scale, the sensitivity, 
specificity, and predictive values vary depending on the 
cut-point value or threshold that is used to classify the test 
result as positive or negative. Before defining an optimal 
threshold (as described in a subsequent section), it is use-
ful to first assess the global diagnostic accuracy of the test 
across various cut-point values.

A ROC curve is a very common way to display the rela-
tionship between the sensitivity and specificity of a continu-
ous-scaled or ordinal-scaled diagnostic test across the range 
of observed test values.3,18 A ROC curve plots the true-posi-
tive rate (sensitivity) on the y-axis against the false-positive 
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rate (1 – specificity) on the x-axis for a range of different 
cutoff values (Figure 3).18,19 The ROC curve essentially dem-
onstrates the tradeoff between sensitivity and specificity.

Simple visual inspection of the ROC curve provides use-
ful information on the global diagnostic accuracy. A curve 
close to the left upper corner of the graph suggests good 
ability to discriminate patients with and without the condi-
tion, whereas a curve close to the diagonal from the bottom 
left to the upper right corner suggests that the test is only 
approximately as good as a random guess (Figure 3).15

More formally, the area under the curve (AUC) for a 
ROC curve can be calculated. The closer this AUC is to 1, the 
stronger the discriminative ability of the test. An AUC of 0.5 
suggests that the test is unable to discriminate healthy from 
nonhealthy subjects, while an AUC <0.5 (not commonly 
observed in practice) suggests that a positive test result is 
somewhat predictive of absence of the disease.

Estimates of the AUC should be accompanied by a CI to 
provide an estimate of plausible values of the AUC in the 
population of interest.20 As described below, statistics are 
available to test the null hypothesis that the AUC is equal 
to 0.5, and to compare AUC values of different diagnostic 
tests.

Gastaminza et al21 studied whether tryptase levels dur-
ing the reaction (TDR), as well as the ratio of TDR to baseline 
tryptase levels (TDR/BT), would be useful in discriminating 
immunoglobulin E (IgE)-dependent from IgE-independent 
hypersensitivity reactions. ROC analysis was performed 

to assess the overall diagnostic ability across different cut-
points and to compare the AUC of the 2 approaches. The 
authors observed that the TDR/BT ratio had an overall bet-
ter diagnostic ability to discriminate IgE-dependent from 
IgE-independent hypersensitivity reactions than TDR, with 
the TDR/BT AUC of 0.79 (95% CI, 0.70–0.88), and the TDR 
AUC of 0.66 (95% CI, 0.56–0.76), respectively, with the dif-
ference in AUC of 0.13 (95% CI, 0.05–0.20).21

DIAGNOSTIC ACCURACY
Diagnostic accuracy refers to the discriminative ability of 
a medical test to distinguish healthy from nonhealthy sub-
jects. The metrics of sensitivity, specificity, and predictive 
values are often considered measures of accuracy because 
they provide information on how well a dichotomous test—
or a test with a continuous value that is dichotomized at 
a given cut-point threshold—can distinguish between dis-
eased and nondiseased patients. However, as noted above, 
some metrics depend on the disease prevalence and are thus 
actually not measures of the intrinsic accuracy of the test 
itself. In contrast, sensitivity and specificity do not depend 
on prevalence and are thus considered measures of intrinsic 
diagnostic accuracy.22

The proportion of correctly classified, true-positive and 
true-negative patients, sometimes termed “overall diagnos-
tic accuracy” is often reported as a global marker of accu-
racy.15 However, overall diagnostic accuracy depends on the 
prevalence of the condition.23 Therefore, the overall accuracy 
obtained from a study sample is not a measure of intrinsic 
accuracy of the test, and it usually cannot be generalized.

In contrast, the likelihood ratio is particularly useful as a 
global marker of accuracy because it: (1) combines informa-
tion from sensitivity and specificity; (2) does not depend on 
disease prevalence; and (3) allows estimation of the posttest 
probability of having a particular disease for any assumed 
pretest probability.14

The AUC of the ROC curve is also independent of the 
prevalence. It is also not influenced by arbitrarily chosen 
cut-point thresholds. The AUC of the ROC curve is thus 
often considered the most useful global marker of the diag-
nostic accuracy of a medical test with continuous values. 
However, as a summary across all cut-point thresholds 
(including those that are clinically nonsensical), the AUC of 
the ROC curve provides very limited information on how 
well the test performs at a specific threshold as commonly 
used in clinical practice.19

CHOOSING AND REPORTING THE CUT-POINT FOR 
A CONTINUOUS VARIABLE BIOMARKER
In addition to assessing the overall discriminative ability of 
a biomarker, it is often of interest to identify the best cut-
point for that continuous or ordinal biomarker to be used 
in practice to classify individual patients as either having or 
not having the disease or outcome of interest.

First, it is not always prudent or feasible to make a rec-
ommendation of a cut-point because there might not exists 
a cut-point that gives adequate sensitivity and specificity. 
In their study design phase, researchers should specify 
the minimal criteria for reporting a cut-point at all—for 
example, requiring a certain minimum value for each of 

Figure 3. ROC curves are plots of the true-positive rate (sensitiv-
ity) against the false-positive rate (1 − specificity) for a range of 
different cutoff values. Shown are 3 smoothed curves, visually rep-
resenting high (red curve close to the left top corner), intermediate 
(blue curve), and low (green curve close to the dashed diagonal 
line) discriminative ability to distinguish patients with a condition 
from patients without the condition. More formally, the AUC can be 
calculated, where an AUC close to 1 indicates high discriminative 
ability and an AUC close to 0.5 (representing the area under the 
diagonal line) indicates that the test is no better in predicting the 
condition than tossing a coin. AUC indicates area under the curve; 
ROC, receiver operating characteristic.
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sensitivity and specificity, such as 70% or 75%, or an AUC 
of ≥0.75. It is not helpful or prudent to introduce a new cut-
point into practice if it does not have sufficient accuracy.

A common method for estimating an optimal cut-point 
is to choose a threshold that maximizes both sensitivity and 
specificity (not their sum). One simply calculates sensitiv-
ity and specificity for each observed value of the biomarker 
and identifies the cut-point (or cut-points) that generate 
the best combination of sensitivity and specificity. This is 
appropriate when sensitivity and specificity are thought to 
be equally important for the study at hand, implying that 
a false-positive or false-negative mistake would be equally 
costly.

Alternatively, researchers might require a minimum 
specificity (or sensitivity), which would influence the choice 
of optimal cut-point. For example, it may be that the cut-
point that maximizes sensitivity and specificity yields a 
sensitivity of 80% and a specificity of 78%. But if ≥90% spec-
ificity were required, the optimal cut-point for this study 
might have a sensitivity of only 60%. The desired balance 
between sensitivity and specificity should be determined 
and justified a priori.

Finally, the cut-point that maximizes the sum of sensitiv-
ity and specificity could be chosen, as with Youden index.24 
However, this method has the notable disadvantage of not 
monitoring whether sensitivity and specificity are very dif-
ferent from each other, and it can often identify a cut-point 
at which they differ markedly. This tends to occur most 
often when the AUC of the ROC curve is low. When the 
AUC is very high, Youden index tends to identify cut-points 
closer to those achieved when maximizing both sensitivity 
and specificity—the first method described above.25

Gomez Builes et al26 sought to find a cut-point for val-
ues of maximum lysis in trauma patients, below which a 
patient would be less likely to survive 48 hours. Applying 
Youden index, their chosen cut-point had sensitivity of 42% 
(95% CI, 27–57) and specificity of 76% (95% CI, 51–88). They 
note that the discrepancy between specificity and sensitivity 
was acceptable in their clinical setting because it was impor-
tant to reduce false positives. However, since sensitivity 
could just as well have been much higher than specificity, 
researchers in similar situations might choose the cut-point 
with the highest sensitivity at a predetermined specificity, 
or simply maximize both.25

Because a chosen cut-point is an estimate, it should be 
accompanied by a CI. CIs for a cut-point can be estimated 
using bootstrap resampling.27 The CI for the estimated cut-
point can be interpreted as the estimated range of plausible 
values of the true optimal cut-point.

The underlying variability in determining a best cut-
point to distinguish truly diseased from the truly nondis-
eased patients can be seen from a different angle using the 
so-called “grey zone” approach.28 In this approach, instead 
of a single cut-point to attempt to discriminate diseased 
from nondiseased into 2 regions, 2 cut-points are identified 
to form 3 regions: patients who are believed to be diseased, 
nondiseased, and indeterminate (ie, not sure, the gray 
zone). The gray zone is estimated using specified values of 
LR+ and LR− that indicate the allowable false-positive and 
false-negative errors. While the details are beyond the scope 

of this article, in practice, the estimated gray zone often cor-
responds closely to the region specified by the confidence 
limits for a best cut-point when maximizing sensitivity and 
specificity.

COMPARING METHODS ON DIAGNOSTIC 
ACCURACY
Frequently, researchers undertake a study to assess whether 
1 biomarker or laboratory value has better diagnostic accu-
racy than another. Such situations require formally com-
paring the biomarkers on AUC, or if there is a specified 
cut-point, on sensitivity and specificity.

Choice of the appropriate test statistic depends on 
whether the diagnostic accuracy results for the biomarkers 
being compared are correlated or not. Results would be cor-
related if comparing 2 biomarkers measured on all included 
subjects. They would be independent if different patient 
groups were being compared (eg, when assessing diagnos-
tic accuracy between males and females).

Comparing independent AUCs is typically done using 
the method of Hanley and McNeil29 for independent data. 
The method of Delong et al30 or the paired (same case) 
method of Hanley and McNeil31 can be used to compare 
dependent AUCs.

When comparing biomarkers on sensitivity or specificity, 
the denominator is all the diseased patients or nondiseased 
patients, respectively. When 2 independent groups such 
as males versus females are being compared on sensitivity 
or specificity, a simple Pearson χ2 test can be used to com-
pare the proportion who tested positive (for sensitivity) or 
negative (for specificity). For dependent comparisons, the 
McNemar test for correlated proportions is appropriate.32 
Analogous tests could be conducted for overall accuracy. 
Mainstream statistical packages include options for most if 
not all of these methods.33

DESIGN OF A DIAGNOSTIC ACCURACY STUDY
Rigorous study design is essential for a diagnostic accu-
racy study. First, the study objective must be clearly stated. 
Because the chosen population greatly influences the 
diagnostic accuracy results, as well as their meaning and 
applicability, researchers must describe the exact patient 
population about which they want to make inference.

Questions to consider include the following: Which 
patients are targeted? Those who already have had a posi-
tive result on a certain prescreening test? Those with a cer-
tain background predisposing them to have or not have the 
disease or outcome of interest? Is the goal one of estimation 
of diagnostic accuracy, comparison between biomarkers, 
or comparison between populations? Is the biomarker or 
modality of interest new or well-established?34

Choice of the gold standard method used to define dis-
eased versus nondiseased patients should be carefully con-
sidered. Many times there is no perfect gold standard—a 
clear study limitation. An imperfect gold standard raises 
important questions of how the data will be analyzed and 
how the results can be interpreted. Nevertheless, statistical 
methods can attempt to account for an imperfect gold stan-
dard.35 Reliability of the biomarker or medical test being 
evaluated should also be assessed and reported.
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Calculation of the appropriate sample size depends on 
the goal of the study being either estimation of diagnos-
tic accuracy or comparing biomarkers or groups on diag-
nostic accuracy. When estimating diagnostic accuracy, the 
goal is typically to estimate the parameter of interest with 
a desired precision, measured by the expected width of the 
CI.36,37 When comparing biomarkers or groups on diagnos-
tic accuracy, the difference to detect between the biomarkers 
or populations needs to be specified, and the sample size 
determined accordingly.

Of note, if the prevalence of the disease is expected to 
be low in the study sample (<50%), then estimation of or 
detecting differences in sensitivity would drive the sample 
size because the truly diseased would have a smaller over-
all sample size compared to the nondiseased, and sufficient 
power or precision for the smaller sample (the diseased) 
would guarantee it for the larger sample (the nondiseased). 
Likewise, specificity would drive the calculations if preva-
lence was expected to be >50%.

CONCLUSIONS
Knowing the diagnostic accuracy of a medical test used in 
clinical decision-making is of paramount importance for cli-
nicians, given that false-positive and false-negative results, 
and subsequent therapeutic decisions, can have major con-
sequences for patient physical and emotional well-being. 
The sensitivity, specificity, positive predictive value, nega-
tive predictive value, and likelihood ratios of a screening 
or diagnostic test each have unique merits yet limitations.

For continuous or ordinal-scaled tests, the AUC of the 
ROC curve provides insight into overall diagnostic accu-
racy. Choice of cut-point value or threshold should be 
informed by the relative importance of sensitivity versus 
specificity of the particular diagnostic test.

Last, a diagnostic accuracy study needs to be carefully 
designed to obtain valid and useful estimates of diagnostic 
accuracy. When interpreting results of a diagnostic accu-
racy study, clinicians should understand that metrics that 
depend on the disease prevalence—namely, predictive val-
ues and the so-called overall diagnostic accuracy—cannot 
be readily generalized beyond the study population in 
which they were estimated. E
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