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Abstract

A fundamental property of a quantum system driven by an external field is that when the field is 

turned off the positions of its response frequencies are independent of the time at which the field is 

turned off. We show that this leads to an exact condition for the exchange-correlation potential of 

time-dependent density functional theory. The Kohn-Sham potential typically continues to evolve 

after the field is turned off, which leads to time-dependence in the response frequencies of the 

Kohn-Sham response function. The exchange-correlation kernel must cancel out this time-

dependence. The condition is typically violated by approximations currently in use, as we 

demonstrate by several examples, which has severe consequences for their predictions of time-

resolved spectroscopy.

Time-resolved spectroscopies are increasingly being used to characterize and analyze 

processes in molecules and solids. Applying an ultrafast pump pulse to create a non-

stationary state, which is then monitored in time by a probe pulse is a central technique in 

the field of femtochemistry [1], and has revolutionized our understanding of chemical 

reactions and photo-induced processes in a wide range of systems including biological 

molecules and nanoscale devices. Until recently, experiments primarily probed ionic 

dynamics where time-resolved spectra reflect changes in the ionic configuration during a 

reaction [2]. The recent advent of at-to second pulses enables pump-probe experiments at the 

time-scale of electron dynamics [3], allowing investigations of processes on the electronic 

time-scale, and revealing a wealth of new phenomena and new possibilities for 

characterizing a system.

A scalable theoretical method to model electron dynamics, reliable beyond the perturbative 

regime, is crucial to simulate and interpret experimental results, and to suggest new 

experiments and materials to study. Time-dependent density functional theory (TDDFT), an 

exact reformulation of many-electron quantum mechanics, stands out with its balance 

between accuracy and computational cost [4–6]. Non-interacting electrons evolve in a one-

body potential such that the exact one-body density n(r, t) of the true system is reproduced. 

However in practice the exchange-correlation (xc) contribution to the potential must be 

approximated as a functional of the density and the initial interacting and Kohn-Sham (KS) 

states, Ψ0, Φ0 respectively: vXC[n; Ψ0, Φ0](t). Most TDDFT calculations nowadays use 

adiabatic functionals, which depend exclusively on the instantaneous density, input into a 

ground-state functional: vXC
A [n; Ψ0, Φ0](t) = vXC

g.s.[n(t)].
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TDDFT has been extensively and successfully applied to model the linear response of large 

systems and to elucidate experiments in the non-perturbative regime, e.g. Refs. [7–10], 

including coherent phonon generation, strong-field and thermal ionization, harmonic 

generation, and exploring photovoltaic materials, to name a few. At the same time, however, 

recent work on small systems where numerically-exact or high-level wave-function methods 

are applicable, has shown that the approximate TDDFT functionals can yield significant 

errors in their predictions of the dynamics [11–21], and sometimes they fail even 

qualitatively [15–21].

A critical aspect of non-equilibrium dynamics are the response frequencies of the system, 

since these play a crucial role in the response to an applied field, and in interferences in the 

dynamics. As pointed out recently, approximate functionals yield erroneous time-dependent 

electronic structure when subject to external fields [20–22]. This spurious “peak shifting” 

makes TDDFT simulations of resonant coherent control very challenging [20], and the 

interpretation of time-resolved spectroscopic simulations difficult.

Let a “pumped system” refer to a system which has been driven out of its ground-state by an 

external field for time , after which the field is turned off. In this paper we derive an exact 

condition that the xc functional must satisfy in order to respect a fundamental property of the 

response frequencies of the pumped system: For times  short enough that ionic motion can 

be neglected, its response frequencies are independent of . The oscillator strengths may 

change in strength and sign but the response frequencies remain constant. We define the 

response frequencies via poles in the density-density linear response function evaluated 

about an arbitrary state in the absence of any externally applied fields. Most TDDFT 

functionals currently in use violate this condition, with severe implications for the modeling 

of time-resolved spectroscopy. Several model examples are given to illustrate the impact of 

the violation on dynamics, including examples of an adiabatic functional that, despite 

inaccurate response frequencies, approximately satisfies this condition, and consequently 

yields accurate dynamics.

After the field is turned off at time , then, treating the nuclei as stationary, the Hamiltonian 

is static, H(0) = T + W + vext
(0), the sum of the kinetic energy, electron-interaction, and 

electron-nuclear interaction operators respectively. The electronic state can be expanded in 

terms of the eigenstates Ψn: Ψ(t ≥ ) = Σn cn( ) Ψne−iEn (t− ), with Ĥ(0) Ψn = EnΨn. We 

denote the density of this state as n𝒯
(0)(r, t), defined for times t ≥ . Throughout the paper, the 

superscript (0) indicates a quantity in the absence of external fields. We define a non-

equilibrium response function to describe the density response to a perturbation δvext(r, t) 
(probe) applied after time :

χ∼[n𝒯
(0); Ψ(𝒯)](r, r′, t, t′) = δn(r, t)

δvext(r′, t′)
n𝒯
(0), Ψ(𝒯)

. (1)

Here the functional dependences on the left-hand-side follow from the Runge-Gross theorem 

[4], considering the onset of the free-evolution (t = ) as the initial time. (Note that Eq.(1) 
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applies for the response of any arbitrary state Ψ( ), not just those reached by a pump field). 

Following derivations in standard linear response theory [23] but generalized to an arbitrary 

initial state, χ∼[n𝒯
(0); Ψ(𝒯)](r, r′, t, t′) = − iθ(t − t′)〈Ψ(𝒯) ∣ [n(r, t), n(r′, t′)] ∣ Ψ(𝒯)〉, with n̂(r, t) = 

eiĤ(0)tn̂(r)e−iĤ(0)t, which yields

χ∼[n𝒯
(0); Ψ(𝒯)](r, r′, t, t′) = − iθ(t − t′) ∑

n, m, k
Pnm(𝒯)

× f nk(r) f km(r′)e
i
(ωnk + ωmk)

2 (t − t′)
e

iωnm
(t + t′)

2 − (r r′, t t′)

(2)

where fjl(r) = 〈Ψj|n̂(r)|Ψl〉, ωjl = Ej − El, P jl(𝒯) = c j
∗(𝒯)cl(𝒯), and (r ↔ r′, t ↔ t′) simply 

means to exchange r with r′ and t with t′, and vice-versa, in the first term inside the 

parenthesis. A Fourier transform with respect to τ = t − t′ yields

χ∼ [n𝒯
(0), Ψ(𝒯)](r, r′, ω, T) = ∑

n
Pnn(𝒯)∑

k

f nk(r) f kn(r′)
ω − ωkn + i0+

+ ∑
k, n ≠ m

Pnm(𝒯)
e

iωnmT
f nk(r) f km(r′)

ω −
ωkn + ωkm

2 + i0+
+ c . c . (ω − ω)

(3)

where T = t + t′
2  and c.c.(ω → −ω) denotes the complex conjugate of all terms with ω 

replaced by −ω.

The poles of χ∼[n𝒯
(0), Ψ(𝒯)](r, r′, ω, T) have positions independent of  and are completely 

determined by the spectrum of the unperturbed Hamiltonian. They correspond to excitations 

and de-excitations from the states populated at time , cn( ) ≠ 0. Their residues, 

determining the amplitude and sign of the spectral peaks, depend on the state Ψ( ) and on 

transition densities between the eigenstates. The poles in the second term in Eq. (3) may 

look unusual, being the average of two energy differences, but these turn into simple energy 

differences once the response function Eq. (1) is integrated against the external potential, 

and the observable δn(r, t) resonates at frequencies of the unperturbed system. Note that 

when Ψ( ) is the ground-state of H(0), Eq. (3) reduces to the usual linear response function 

in Lehmann representation.

Turning now to the TDDFT description, we find a very different picture. Imagine solving the 

time-dependent KS equations while the field is on, and let Φ( ) denote the KS state reached 

at time t =  when the field is turned off. Unlike the interacting system, the KS system 
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evolves in a potential vS
(0)(r, t) = vS[n𝒯

(0), Φ(𝒯)](r, t) that typically continues to evolve in time 

even in the absence of external fields [24–26]. This is true for the exact KS potential, as well 

as for approximate ones, as a consequence of the xc potential being a functional of the time-

dependent density.

The time-dependence of vS
(0)(r, t) implies that the eigenvalues of the instantaneous KS 

Hamiltonian change in time for t > , when either the exact or approximate functionals are 

used [27]. But, except for special cases (see shortly), these eigenvalue differences are not the 

KS response frequencies, since HS
(0) = T + vS

(0)(r, t) is time-dependent. The non-equilibrium 

KS response function at time t = ,

χ∼S[n𝒯
(0), Φ(𝒯)](r, r′, t, t′) = δn(r, t)

δvS(r′, t′)
n𝒯
(0), Φ(𝒯)

, (4)

has poles in its (t − t′)-Fourier transform that define the KS response frequencies, and these 

are typically -dependent (for either exact or approximate functionals; see example 

shortly). Because the interaction picture here involves a time-dependent Hamiltonian, HS
(0)(t), 

the density-operators involve time-ordered exponentials and a simple interpretation of its 

Fourier transform with respect to (t − t′), χ̃
S(r, r′, ω, T), in terms of eigenvalue differences 

of some static KS Hamiltonian is generally not possible. Still, from the fact that the physical 

and KS systems yield the same density-response, we can derive a Dyson-like equation 

linking the two response functions:

χ∼−1(ω, T) = χ∼S
−1(ω, T) − f

∼
HXC(ω, T) (5)

dropping the spatial arguments and functional dependencies to avoid clutter. We defined the 

generalized Hartree-xc kernel as f̃HXC = 1/|r − r′| + f̃XC, where

f
∼

XC[n𝒯
(0); Ψ(𝒯), Φ(𝒯)](r, r′, t, t′) =

δvXC(r, t)
δn(r′, t′) n𝒯

(0), Ψ(𝒯), Φ(𝒯)
. (6)

The generalized kernel must shift the -dependent response frequencies of the KS system 

to the -independent ones of the interacting system. We can now state the exact condition: 

Let ωi be a pole of χ∼S
−1[n𝒯

(0), Φ(𝒯)] − f
∼

HXC[n𝒯
(0), Ψ(𝒯), Φ(𝒯)] −1

, then ωi should be invariant 

with respect to :
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dωi
d𝒯 = 0. (7)

This gives a strict condition that is particularly important in time-resolved spectroscopic 

studies [28] and in resonant dynamics: in some cases more important than accuracy in the 

actual values of the predicted response frequencies is their invariance with respect to . 

Approximate kernels may shift the poles of the KS response function towards the true 

response frequencies, but unless they cancel the -dependence of the KS poles, they will 

give erroneously -dependent spectra.

This has implications even in the cases where the nuclei cannot be considered as clamped. 

There, in the physical system, the electronic excitations couple to ionic motion, so that the 

potential vext
(0), which depends on the nuclear positions, depends on  and on the time delay 

between pump and probe. The time-resolved resonance spectrum can then be interpreted as 

“mapping out” the potential energy surfaces of the molecule. Time-dependence should arise 

purely from ionic motion: spurious time-dependence in approximate TDDFT simulations 

arising from violation of condition (7) in the limit of clamped ions will muddle the spectral 

analysis in the moving-ions case, and could be mistaken for changes in the nuclear 

configuration.

The exact satisfaction of condition (7) is generally difficult for approximate functionals, but 

reasonable results could be obtained if its violation is weak. Shortly, we will give examples 

where a functional approximately satisfies Eq. (7) and yields accurate resonant dynamics, 

despite an inaccurate value of the resonant frequency. On the other hand, we will find cases 

where the response frequency given by an approximate functional is quite accurate at time 

 but where violation of condition (7) leads to a drastic qualitative failure in the dynamics.

Before turning to examples, consider when the pumped (interacting) system is in a 

stationary excited state, so it has a static density: n𝒯
(0) = nk, the density of the excited state. 

Within the adiabatic approximation, the KS potential also becomes constant [25, 29], and we 

observe that the state Φ( ) = Φk solves the self-consistent field (SCF) equations for the 

static potential vS
(0)[nk; Φk]. An expression for χ̃

S[nk; Φk](ω, ) analogous to Eq. (3) can be 

found, with the poles given by the eigenvalue differences of the corresponding HS
(0). 

Denoting these KS frequencies as ωS, i
k  (the ith KS frequency as computed from the kth SCF 

state), then the exact condition (7) can be turned into a condition on a matrix equation 

directly for the interacting frequencies. Within a single-pole approximation (SPA), the 

condition is that

ωi = ωS, i
k + 2∫ drdr′ϕi

k(r)ϕa
k(B) f

∼
HXC
k (r, r′)ϕi

k(r′)ϕa
k(r′), (8)
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for spin-saturated systems, must be independent of k. For spin-polarized systems and non-

degenerate KS poles, replace f̃HXC with ( 1/ ∣ r − r′ ∣ + f
∼

XC
σ, σ). The violation of this condition 

is responsible for the spurious peak shifting between fluorescence and absorption recently 

observed in Refs. [20–22].

We illustrate the consequences of the exact conditions Eqs. (7) and (8), using the example of 

resonant charge-transfer (CT) dynamics. A simple model Hamiltonian of two soft-Coulomb 

interacting electrons in one dimension [11, 16, 30–34] allows us to compare with exact 

results. We take vext(x) = − 2/ (x + R/2)2 + 1 − 2.9/ cosh2 (x + R/2) − 1/ cosh2 (x − R/2) with R 

= 7au and zero boundary conditions at ±50au.

Resonant CT beginning in the ground-state provides an example of dramatically changing 

KS resonances, even for the exact KS potential. The ground-state has two electrons in the 

left well, and the exact initial KS potential vS
i  is shown on the left in the top panel in Fig. 1. 

The KS CT excitation frequency is ωS
i = 2.2348a.u which happens to equal the true 

(interacting) CT excitation, up to the 5th decimal place. If the exact KS system is driven by a 

weak-enough resonant field, it achieves the exact density of the true CT excited state via a 

doubly-occupied KS orbital after half a Rabi cycle. The exact KS potential at this final time, 

vS
f  (on the right of top panel of Fig. 1), looks very different: it displays a step, which, in the 

limit of large separation [16], results in “aligning” the lowest level of each well. Therefore 

the KS response frequencies are completely different than those at the initial time: 

ωS
f = 0.0007a.u. f̃HXC plays an increasingly crucial role in maintaining constant TDDFT 

response frequencies of Eq. (7), ωi = ωf = 2.2348au: at first its effect is small but as the 

charge transfers, its correction to the KS response frequency increases dramatically. The 

dipole dynamics for field E(t) = 0.05 sin(2.2348t) au is shown.

Now turning to approximations: the approximate KS resonances also change in time 

significantly, but the approximate kernel corrections are typically small, resulting in grave 

violations of condition (7) and (8). For example, in exact-exchange (EXX) ωS
i = 2.2340 while 

again ωS
f  tends to zero, with the fHX correction in the fifth decimal place in both the initial 

and final states. As a consequence, the EXX dipole dynamics driven at its resonance 

completely fails to charge transfer, as seen in the top panel of Fig 1.

Other recent works have noted the failure of adiabatic functionals in TDDFT (including the 

adiabatically-exact) to transfer charge across a long-range molecule [16, 18, 35–38], even 

when their predictions of the CT energies are very accurate [36, 37], as computed from the 

ground-state response. Here we attribute their failure to the violation of condition (8), as for 

the case of EXX above. The resonant frequencies predicted by the functional in the initial 

state and in the target CT state are significantly different from each other. This is due to 

having one delocalized KS orbital describing the final CT state, resulting in static correlation 

in the targeted final KS system, and a grossly underestimated CT frequency when computed 
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via the response of the target CT state. The CT frequency computed in the initial ground-

state, on the other hand, can be quite reasonable, as seen above.

We next consider CT from a singly-excited state where the KS system involves more than 

one orbital, and the transferring electron is not tied to the same orbital that the non-

transferring electron is in. Simulations on real systems indeed often start in a photoexcited 

state[8]. We consider a “photoexcitation” in our model molecule that takes the interacting 

system to its 4th singlet excited state, localized on the left well. We then apply a weak 

driving field, E(t) = 0.0067 sin(ωt)a.u., at frequency ω = 0.289a.u., that is resonant with a 

CT state that has essentially one electron in each well (see lower panel of Fig. 1). For this 

case, vS
i  and vS

f  within EXX are shown; the exact ones are similar. The exact dipole (Fig. 1) 

shows almost complete CT.

We now consider TDDFT simulations of this process, using three functionals: EXX, local-

spin-density approximation (LSD), and self-interaction corrected LSD (SIC-LSD). For each, 

we begin the calculation in the 4th excited KS state, as would be done in practise to model 

the process above. However, we first relax the state via an SCF calculation to be a KS 

eigenstate, so that there is no dynamics until the field is applied, as in the exact problem. We 

then apply a weak driving field of the same strength as applied to the interacting problem, 

but at the CT frequency of the approximate functional, computed from the initial state, ωi. In 

Table I one can contrast this with the values for the CT frequency computed from the target 

final CT state, ωf, as well as the bare KS eigenvalue differences, ωS
i  and ωs

f . The 

approximate TDDFT corrections to the bare KS values for CT are very small, as expected. 

Most notable is that the CT TDDFT EXX frequencies, ωi and ωf, computed in the initial and 

CT states is identical up to the third decimal place, while there is significant difference 

amongst the SIC-LSD values, and even more amongst LSD. In light of the exact conditions 

(7) and (8), we expect EXX to resonantly CT well, while SIC-LSD would suffer from 

spurious detuning, and LSD even more. Indeed, this speculation is borne out in Fig 1 lower 

panel: EXX captures the exact dynamics remarkably well. SIC-LSD begins to CT but 

ultimately fails due to its response frequencies continually changing during the dynamics, as 

reflected in the initial and final snapshots of the frequencies given in the table. LSD, with its 

even greater difference in the initial and targeted-final response frequency, indeed fails 

miserably. Note that, as in practical calculations, spin-polarized dynamics is run from the 

initial singly-excited KS determinant, with the idea that results would be spin-adapted at the 

end.

Why does EXX not suffer from spuriously time-dependent response frequencies here? For 

the special case of two electrons in a spin-symmetry-broken state, vXC
EXX, = − vH[n ], so 

vS
EXX, = vext + vH[n ]. Driving with a weak field resonant with the ↑-electron excitation, 

where the ↑ is promoted in the initial state, causes only a gentle jiggling of the ↓-electron, so 

that the ↑ sees an almost static potential; in this sense EXX mimics the exact functional, that 

keeps the response frequencies static. The bare KS frequency hardly changes (see potentials 

in lower figure), and, within the spin-decomposed version of SPA Eq. (8), the correction due 

to the EXX kernel vanishes. So, absorption and emission peaks are on top of each other. For 
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general dynamics, we do not advocate EXX, even for two-electron systems (see previous 

example); it works in this example because of the conditions above that lead to the nearly 

constant KS potential.

In a third example, when resonantly driving between two locally excited states in a single 

well ( vext = − 2/ (x2 + 1) − 3/ cosh2 x), one finds again that the EXX frequencies computed 

from each excited state are very similar, 0.824au, quite different than the exact resonant 

frequency of 0.755au. Despite this large discrepancy, the EXX dipole closely follows the 

exact one, due to the approximate satisfaction of condition (8), and, likely, condition (7), 

LSD again violates condition (8) the most severely, and its dynamics is consequently the 

worst.

Interestingly, our exact condition could explain the success of the “instantaneous ground-

state” approximation over the adiabatic approximation, explored in Ref. [42]: there, for 

initial non-stationary states evolving in a time-independent external field, the KS potential is 

always taken as equal to the initial one, so has static resonances, satisfying Eq. (7).

In conclusion, we have derived a new exact condition that should be satisfied by 

approximate functionals in TDDFT in order to accurately capture non-equilibrium 

dynamics. Violations of this condition lead to misleading results in simulating time-resolved 

spectroscopy, and failure in resonantly driven processes. We have shown that even if a 

functional does not yield accurate excitation frequencies, if these frequencies even 

approximately satisfy the exact condition Eq. (7) then the predicted non-linear dynamics 

could still be accurate. The effect of the spurious time-dependent resonances of approximate 

functionals for realistic systems could be dampened, due to the large number of electrons 

and vibronic couplings, but further investigations are necessary. Likely for spectroscopy or 

resonant control processes, satisfaction of the exact condition is essential, and our findings 

explain related observations in the real systems studied in Refs. [19–22]. The exact condition 

highlights a new feature that must be considered in the development of improved functionals 

to be able to accurately capture dynamics far from the ground-state.
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FIG. 1. 
Dipole moments calculated from the center of the double-well: exact (black), EXX (red), 

LSD (green) and SIC-LSD (blue), driven at resonant ωi for each. The initial and target-final 

KS potentials are shown as insets, exact in the top panel, and in EXX in the lower panel. Top 

panel: CT from the ground-state. Lower panel: CT from the “photo-excited” state.
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