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Abstract

Background and aims—While environmental factors are presumed to be primary drivers of 

food timing, preliminary evidence suggests that genetics may be an additional determinant. The 

aim was to explore the relative contribution of genetics and environmental factors to variation in 

the timing of food timing in a Spanish twin population. Because chronotype, bedtime and wake 

time are related to food timing, covariance with food timing was further assessed.

Methods—In this observational study, 53 pairs of adult (mean(SD)=52(6.03) years) female twins 

(28 monozygotic; 25 dizygotic) were recruited from the Murcia Twin Register. Zygosity was 

determined by DNA-testing. Timing of the three main meals of the day was assessed via 7-day 

dietary records, and the midpoint of food intake was computed by calculating the midpoint 

between breakfast and dinner times. Chronotype, bedtime and wake time were self-reported. 

Heritability of food timing and related traits were estimated by comparing monozygotic and 

dizygotic twin correlations and fitting genetic structural equation models to measured variables.

Results—We observed genetic influences for food timing, with highest heritability for the 

midpoint of food intake (64%) in an overweight/obese population (BMI=26.01±3.77). Genetic 

factors contributed to a higher degree to the timing of breakfast (56%) than the timing of lunch 

(38%) or dinner (n.s.). Similarly, heritability estimates were larger in behavioral traits earlier on in 
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the day (i.e. wake time, (55%)), than those later on in the day (i.e. bedtime, (38%)). Bivariate 

analyses revealed a significant genetic overlap between food timing and bedtime and chronotype 

(rg between .78 and .91).

Conclusions—Genetic influences appear to account for a significant proportion of the 

variaibility in food timing, particularly breakfast. Thus, interventions related to food timing may 

be more effective when targeting afternoon/evening traits, such as lunch or dinner times. 

Furthermore, our data suggest shared genetic architecture underlying food timing and 

phenotypically related traits.

Clinical trial—NCT03059576. https://clinicaltrials.gov/ct2/show/NCT03059576
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Introduction

Secular trends from national surveys indicate shifts in the timing of food intake towards later 

timing [1]. This late eating habit has been associated with adverse health outcomes such as 

estimated higher odds of being overweight/obese [2, 3] and impaired glucose tolerance and 

insulin secretion [4, 5]. Moreover, later consumption of the main meals of the day, as 

determined by self-reported food timing, has also been shown to hinder weight loss during a 

dietary intervention [6, 7] and following bariatric surgery [8]. Adverse effects of later meals 

have also been suggested by experimental studies. In randomized, crossover studies, it was 

shown that a later lunch decreases resting-energy expenditure, fasting carbohydrate 

oxidation and glucose tolerance [5, 9, 10], later dinner times worsens postprandial glucose 

profiles for the following morning’s breakfast [11], and later consumption of the main meal 

of the day inverts the salivary microbiota 24-rhythm [12]. Moreover, to include a high-

energy breakfast plus a low-energy dinner reduced metabolic risk compared with a meal 

pattern with a low-energy breakfast plus a high-energy dinner [13].

These recent findings emphasize the importance of food timing as a novel dimension in 

nutrition science [6, 14, 15]. Indeed, the timing of food intake is newly proposed as a 

modifiable risk factor for weight management and chronic disease prevention [16]. As food 

timing is likely a complex trait, like food composition [17], elucidating the genetic and 

environmental components that contribute to the variability in food timing for individual 

eating episodes is necessary. Unraveling those components is relevant in designing more 

effective and individually tailored therapeutic strategies related to food timing and 

developing public health initiatives tackling later food intake and understanding biological 

pathways regulating decisions related to food timing [18, 19]. Whereas environmental 

determinants of food timing such as chronotype, caloric density [20], and sleep [21–24], 

have been explored in epidemiological studies, genetics remains under-investigated [9].

Thus far, only a single study has investigated the heritability of food timing [25]. In that twin 

study from the United States, the highest heritability was observed for the timing of 

breakfast (24%), while lunch and dinner timing showed lower heritability estimates (ranging 
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from 18–22%) [25]. Other related studies provide additional support for the putative genetic 

component of food timing. For instance, genetic influences have also been suspected for 

night eating syndrome (NES) and sleep-related eating disorder (SRED), two eating disorders 

with evening eating preference [26]. We have previously reported an association between a 

genetic variant in CLOCK (rs4580704) and lunch time [6]. Moreover, we reported that food 

timing modifies the association between a genetic variant in the PLIN locus and the efficacy 

of a weight loss intervention [27]. In addition, no study to our knowledge has investigated 

the genetics of food timing along with closely related heritable traits that may explain the 

metabolic implications of later food intake and unravel shared genetic architecture among 

those traits.

Findings from twin studies have indicated that genetics plays a major role in several diet-

related phenotypes including energy and macronutrient intakes, dietary patterns, and the 

intake of specific foods [28]. Twins provide a naturally unique case-control experiment 

whereas the classical twin design compares the similarity of identical/monozygotic (MZ) 

and dizygotic (DZ) twins. Genetics are implicated in the investigated trait when MZ twins 

are observed to be considerably more similar than DZ twins. The aim of our current 

investigation was to explore the relative contribution of genetics and environmental factors 

to variation in the timing of the three main meals of the day (i.e., breakfast, lunch and 

dinner) in a twin population. Because chronotype, bedtimes and wake times are related to 

food timing, co-variation with these traits was further assessed.

Methods

Subjects

In this observational study, a sample of female twins selected from the Murcia Twin Register 

(MTR) participated in this study. The MTR is a population-based registry of people born 

between 1940 and 1966 in the region of Murcia, southeast Spain. The twin pairs that form 

the MTR are assumed to be representative of the general Spanish population [29]. The 

registry has collected information from >2200 individual twins. More detailed description 

regarding characteristics and procedures of the MTR can be found elsewhere [30, 31]. 

Written informed consent was obtained from all participants. The Committee of Research 

Ethics of the University of Murcia has approved MTR data collection procedures and 

management; the protocol follows national regulations regarding personal data protection.

Using a regional health system database, female pairs living within the same geographical 

area, and within a 30-km radius from the recruitment center, and free from severe health 

condition that may impede or hinder participation such as cognitive disorders, diabetes 

mellitus, chronic renal failure, hepatic diseases or cancer were selected for inclusion in this 

study. A total of 118 twin pairs were recontacted (between 2012 and 2014), and a total of 53 

pairs of adult female twins (N=106) volunteered for this study (28 MZ; 25 DZ). This sample 

size has been shown to be enough to assess the heritability of cronotype and other related 

features [32, 33]. Zygosity was confirmed by DNA testing.
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Timing of food intake

The primary outcome of the present study was the timing of food intake. The timing of food 

intake was self-reported via a 7-day food record. Specifically, participants recorded the start 

time, finish time, and duration of individual food intake episodes during 5 weekdays and 2 

weekend days. Midpoint of intake was ascertained by calculating the midpoint between 

breakfast and dinner times (first and last eating episode). Participants were instructed and 

trained on how to accurately complete the food records at the start of the study, and collected 

data were later reviewed with a technician.

Sleep and Chronotype

Participants also recorded information related to sleep including bedtime and wake time 

during the same 7-day period. Chronotype was assessed using the Morningness-Eveningness 

(ME) questionnaire, a 19-item scale developed by Horne and Östberg, and an ME score was 

computed [34]. A higher ME score reflects more morning (earlier) chronotype.

General characteristics of the sample/subjects and procedures

Body weight was estimated in barefooted participants wearing light clothes using a digital 

scale accurate to the nearest 0.1 kg. Height was determined using a portable stadiometer 

(rank, 0.14–2.10) and subjects were positioned upright, relaxed, and with the head in the 

Frankfort plane. Body Mass Index (BMI) was calculated by weight (kg) divided by height 

(m2). Total body fat was determined by bioelectrical impedance, using TANITA TBF-300 

(Tanita Corporation of America, Arlington Heights, IL, USA) equipment. In addition, waist 

to hip ratio was calculated using waist circumference (cm), at level of the umbilicus, and hip 

circumference (cm) [35].

Statistical Analyses

First, differences between MZ and DZ general characteristics were assessed by t-test. 

Heritability analysis was based on the basic logic of twin studies and can be summarized as 

follows: MZ twins (identical) share 100% of their genetic makeup, while DZ twins (non-

identical) share on average 50% of their segregating genes [36]. Comparing the resemblance 

(correlation) of MZ twins for a trait with the resemblance of DZ twins for that trait the total 

variance of a trait can be partitioned into genetic and environmental factors, following a 

variance components approach. Observed MZ and DZ correlations generally reflect a 

combination of additive (A; i.e., summed allelic effects across multiple genes) and non-

additive (D; i.e., genetic dominance, possibly including epistasis) genetic factors, as well as 

shared (C; i.e., common/family environment) and individual (E; i.e., idiosyncratic 

experiences, including measurement error) environmental factors. A greater phenotypic 

resemblance in MZ twin pairs compared with DZ twin pairs must be due to genetic 

influences (A or D components), considering the assumption that both MZ and DZ twins are 

exposed to equal shared environments during childhood [37]. It is not possible to estimate C 

and D simultaneously in a classical twin model and the choice of modelling C or D depends 

on the pattern of MZ and DZ correlations; usually C is estimated if the DZ twin correlation 

is more than half of the MZ twin correlation (ACE model), and D is estimated if the DZ twin 

correlation is less than half of the MZ correlation (ADE model) [38].
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Structural equation models (SEM) offer a precise way to estimate the variance explained by 

each of the latent components (A, C, D and E) and determines the combination that best 

matches the observed data. For each variable, the full models (ACE/ADE) were estimated 

and tested against nested sub-models, where A component, C/D component or both 

(AC/AD) were fixed to zero. The log-likelihood ratio test (LRT) was used to compare the fit 

of the different models and sub-models. The difference in minus two times the log-

likelihood (−2LL) between two models has a χ2 distribution with the degrees of freedom 

(df) equaling the difference in df between the two models. Additionally, model fit was 

evaluated using Akaike’s information criterion (AIC) which is a parsimony-adjusted statistic 

used to select among competing models.

In the present study, all SEM were fitted to the raw data employing the full information 

maximum likelihood (FIML) method within the Open-Mx package v2.7.9 [39] for R v3.3.3 

[40]. The accuracy of the obtained parameters was assessed using likelihood-based 95% 

confidence intervals. Effect of age was regressed out from the raw scores using also the 

FIML procedure in Open-Mx. Subsequently, SEM were fitted to the residual scores. Data 

preparation and descriptive analyses were performed in SPSS v19 [41].

Results

The MTR population included in the present study comprised of 53 adult female twin pairs 

(n=106) with overweight/obesity (BMI= 26.01±3.77) and their general characteristics are 

presented in Table 1. Mean age of the selected participants was 52 years (SD: 6.0; Range: 

46–69). Mean timing of food intake was 8:43±00:53 for breakfast, 14:53±00:31 for lunch, 

and 21:29±00:41 for dinner. The mean midpoint of intake was estimated at 15:20±00:36. 

Significant weekday and weekend differences were observed for breakfast timing only. The 

timing of breakfast was significantly earlier on weekdays (8:33±1:03) compared to 

weekends (9:12±1:06) (P=0.001). No significant differences were observed between MZ and 

DZ twins for food timing. Furthermore, no differences were observed between the two 

groups for anthropometric measures, sleep timing, and chronotype.

MZ twins showed higher intra-pair correlations than DZ twins for breakfast and lunch 

timing, but not for dinner timing. In addition, MZ twins showed higher intra-pair 

correlations than DZ twins for wake and bed times and chronotype (Table 2). AE models, 

where phenotypic variance is explained by additive genetic and non-shared environmental 

factors, showed the best fit in every case. The only exception was for dinner timing, where a 

CE model showed a better fit accordingly to the higher DZ correlation compared to MZ 

(Table 3).

Higher heritability was observed for investigated traits made earlier on in the day (Figure 1). 

Indeed, heritability was higher for the timing of breakfast (56%) compared to lunch (38%), 

and the timing of dinner was not determined to be heritable. Similarly, the heritability of 

wake time was higher (55%) compared to bedtime (38%). Furthermore, we observed the 

highest overall heritability for the midpoint of food intake (64%).
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Further bivariate analyses for midpoint of food intake and the other timing-related factors – 

sleep timing and chronotype – rendered high genetic correlation estimates in the range of 

0.78 and 0.91. Environmental correlations, however, were smaller and non-significant (Table 

4). Hence 85% of the covariance between midpoint of intake and chronotype could be 

attributed to common genetic variation. Genetic contribution to covariance between 

midpoint of intake and wake and bed time was 90% and 75%, respectively.

Discussion

The present study provides supporting evidence that the timing of food intake is indeed 

heritable, and thus has an underlying genetic component. We observe that the estimated 

heritability of food timing varies by meal, and ranges from 56% for breakfast to non-

significant heritability for dinner. Heritability estimates are higher for meals earlier on in the 

day (breakfast), than later on in the day (lunch and dinner). Similarly, heritability plays a 

larger role in other behaviors specific to the morning, such as wake times. Conversely, the 

environmental component is larger for the timing of dinner and other evening behaviors, 

such as bedtime. This variation in heritability suggests that interventions geared towards 

modifying behaviors later on in the day, and those less predetermined by genetics, may be 

more successful. Lastly, bivariate analyses for midpoint of food intake and sleep timing and 

chronotype suggest shared genetic architecture and likely common biological pathways 

underlying those phenotypically related traits.

Our data support the simultaneous interplay between genetic and environmental factors in 

contrast to earlier presumptions that the timing of food intake is determined by cultural 

factors alone. In twin studies, any learned habit should have an equal effect on MZ and DZ 

pairs and as such should have produced a significant effect of common (familial) 

environment in the analysis. Because the adult twins participants in the present study live 

separately and away from the familial environment, the higher intra-pair correlations found 

in MZ siblings suggests that food timing, like food composition [17], is a heritable trait.

Our results show that the timing of intake for breakfast, lunch, and dinner are differentially 

influenced by genetics with higher heritability for meals earlier on in the day, confirming 

previous results [25]. Consistent with the timing of meals, we also observe that other traits 

related to later on in the day tend to be more driven by environmental factors. Secular trends 

from US national surveys indicate shifts in food timing. For example, data from the National 

Health and Nutrition Examination Survey analyzing over a 40-year span from 1971–1974 to 

2009–2010 observed later intakes of breakfast, snacks between breakfast and lunch, lunch, 

and snacks between lunch and dinner (among men), in addition to earlier intakes of snacks 

after dinner in 2009–2010 compared to 1971–1974 [42]. Our heritability results suggest that 

intervening for the purpose of advancing late lunch and dinner may be more achievable than 

changing breakfast time. Moreover, it is not clearly demonstrated that breakfast timing may 

impact health, but rather the prolongation of an overnight fast, which depends on the timing 

of both the first and the last meal, may be beneficial [43]. Our previous study on weight loss 

showed that a delayed breakfast time was not significantly associated with lower weight loss 

effectiveness [6]. Nevertheless, other breakfast habits such as skipping breakfast [44–46] or 

a lower energy intake at breakfast relative to at dinner [13, 47] may yield adverse metabolic 
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consequences. Thus, targeting the timing of breakfast intake might be less effective than 

targeting the timing of lunch and dinner for the purpose of achieving overall health: first 

because of its genetic influence and, second due to its unclear health benefits. By contrast, 

targeting the timing of lunch and dinner may be crucial as the timing of lunch has been 

observed to associate with weight loss success [6], and late or night-time eating was found to 

be linked to night-time hunger, body image distortions, and mood disorders [48], as well as 

elevated fasting blood levels of insulin and glucose that characterize metabolic syndrome 

[49].

In the current work, we aimed to study the relationship between the heritability of the timing 

of food intake and other phenotypically related traits, particularly sleep timing and 

chronotype. These traits have been associated with food timing in epidemiological studies 

[6, 24, 42, 50]. There is also evidence for the heritability of sleep rhythms [51] and 

chronotype [52, 53]. Our results confirm the importance of genetic factors for sleep timing 

phenotypes and chronotype. We detect moderate heritability for wake and bed times (55% 

and 38%, respectively), and for chronotype (43%), corroborating previous studies [52–56]. 

Furthermore, when analyzing the genetic and environmental contribution to covariation 

between those variables, we find high and significant genetic correlations (.78 to .91) of the 

timing of food intake (midpoint) with sleep timing and chronotype. The genetic contribution 

to phenotypic correlation was 3–5 fold larger than that of the environment. Such outcome 

indicates that it is likely that a common set of genes underlies timing decisions regarding 

food intake, sleep timing and chronotype. Thus, future analyses in population-based studies 

equipped with genome-wide genetic data are warranted to confirm these genetic 

correlations.

Our results on the high heritability in food timing may be surprising, considering anecdotal 

evidence that food timing is driven primarily by cultural factors. However, studies performed 

under laboratory conditions with a protocol that controlled for several behaviors, including 

meal content and sleep periods, showed that the internal circadian clock controls the 

temporality of hunger and appetite independent of other behaviors [57]. Moreover, a recent 

study has demonstrated that adipose tissue specific deletion of BMAL1, a core molecular 

clock component, is able to impact the timing of food intake in mice [58]. Both studies 

indicate that the temporality of food intake is influenced by the internal circadian clock.

The present findings on the relative contribution of genetics and environmental factors to the 

timing of different meals may have relevance to the prevention and treatment of metabolic 

disorders considering the emerging evidence implicating food timing with metabolic 

diseases. Later timing of food intake has been associated with: (a) a substantial increase in 

the odds of being overweight/obese [2]; whereas, a later endogenous circadian timing of 

food intake, relative to melatonin onset, has been associated with increased body fat [3] (b) 

weight loss impairment during a dietary intervention [6, 47] and following bariatric surgery 

[8]; (c) and decreased insulin sensitivity [6, 47]. In addition, a large epidemiological study 

performed in 61,364 participants showed that late-night dinner consumption is associated 

with hyperglycemia, independent of relevant confounders, including BMI [59].
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Some limitations need to be considered when interpreting the results of our study. Food and 

sleep timing were self-reported and are prone to measurement error, however these self-

reported measures were previously found to be associated with metabolic diseases and 

weight-loss difficulty [6, 8, 9]. Furthermore, timing is a single dimension of diet. Finally, our 

study was limited to adult female twin pairs in Spain, and thus findings may not be 

generalizable to individuals of different gender, age, and BMI groups.

In conclusion, our data support that genetics may account for a large proportion of the 

variation in food timing, particularly for breakfast, whereas the environment appears to be a 

more important determinant of lunch and dinner timing. These results suggest that 

intervention studies targeting food timing may be most effective if focused on modifiable 

factors later on in the day, such as lunch or dinner, rather than breakfast. In addition, future 

efforts should attempt to unravel specific genetic variants associated with food timing and 

disclose the shared genetic architecture underlying food timing and phenotypically related 

traits.
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Figure 1. 
Broad heritability and environmental effect estimates for food timing and related variables 

analyzed. The rectangles represent the contribution (percentage) of heritability (A: additive 

genetic factor + D: non-additive genetic factors) in black and non-shared environmental 

factors (E) in grey of the different variables. The asterisk represents the share environmental 

factors (C) in diagonals lines.
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Table 1

General characteristics of 53 twin pairs.

Monozygotic
(n =56)

Dizygotic
(n =50)

p
values

Age (years) 51±6 53±6 0.066

Weight (kg) 64.12±8.56 63.44±7.91 0.370

Height (cm) 156.43±6.84 157.52±5.61 0.369

BMI (kg/m) 26.30±3.89 25.66±3.65 0.404

Body fat (%) 32.99±5.89 32.96±6.72 0.979

Waist (cm) 90.56±8.76 90.08±10.66 0.805

Hip (cm) 103.68±7.15 102.39±8.10 0.379

WHR 1.15±0.06 1.14±0.09 0.742

Timing of food intake

Breakfast 08:49±00:54 08:36±00:52 0.209

Lunch 14:31±00:33 14:32±00:30 0.904

Dinner 21:36±00:40 21:22±00:41 0.072

Midpoint of intake 15:16±00:32 15:23±00:40 0.335

Sleep

Wake-time (hh:mm) 07:33±01:09 07:38±01:00 0.684

Bed-time (hh:mm) 24:18±00:56 24:28±00:59 0.288

Chronotype score 55.21±8.67 56.44±7.56 0.442

Data are represented as means ± SD.

Abbreviations: BMI, body mass index, WHR, waist-to-hip ratio
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Table 2

Twin intra-pair correlations with 95% CI for timing of food intake and related traits

Intra-pair correlation coefficients

r MZ
(CI 95%)

r DZ
(CI 95%)

Food intake timing

Breakfast timing 0.56 (0.26, 0.74) 0.29 (−0.12, 0.59)

Lunch timing 0.40 (0.06, 0.63) 0.15 (−0.26, 0.50)

Dinner timing 0.36 (−0.03, 0.63) 0.42 (0.08, 0.66)

Midpoint of food intake 0.64 (0.39, 0.79) 0.438 (−0.16, 0.61)

Sleep and wake timing

Wake timing 0.54 (0.26, 0.73) 0.37 (−0.06, 0.65)

Bed timing 0.42 (0.10, 0.65) 0.02 (−0.36, 0.40)

Chronotype (MEQ) 0.42 (0.11, 0.64) 0.23 (−0.22, 0.57)

r MZ: monozygotic intra-pair correlation coefficient, r DZ: dizygotic intra-pair correlation coefficient, CI (95%): confidence interval, MEQ; 
Morning-Evening Questionnaire.
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Table 4

Phenotypic (rP), genetic (rG), and unique environmental (rE) correlations from bivariate AE models for 

midpoint food intake and circadian-timing related traits.

Midpoint of food intake

rP
(CI 95%)

rG
(CI 95%)

rE
(CI 95%)

Sleep and wake timing

Wake timing 0.56 (0.40, 0.69) 0.79 (0.53, 1.00) 0.15 (−0.17, 0.45)

Bed timing 0.53 (0.37, 0.66) 0.78 (0.41, 1.00) 0.28 (−0.55, 0.56)

Chronotype (MEQ) −0.45 (−0.60, −0.27) −0.91 (−1.00, −0.60) 0.23 (−0.10, 0.49)

MEQ: Morning-Evening Questionnaire
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