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SUMMARY

We assessed the pluripotency of human induced pluripotent stem cells (iPSCs) maintained on an auto-

mated platform using StemFlex and TeSR-E8 media. Analysis of transcriptome of single cells revealed

similar expression of core pluripotency genes, as well as genes associated with naive and primed

states of pluripotency. Analysis of individual cells from four samples consisting of two different

iPSC lines each grown in the two culture media revealed a shared subpopulation structure with three

main subpopulations different in pluripotency states. By implementing a machine learning approach,

we estimated that most cells within each subpopulation are very similar between all four samples. The

single-cell RNA sequencing analysis of iPSC lines grown in both media reports the molecular signature

in StemFlex medium and how it compares to that observed in the TeSR-E8 medium.

INTRODUCTION

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) using a combination of

transcription factors involved in the maintenance of pluripotency (Park et al., 2007; Takahashi and Yama-

naka, 2006; Takahashi et al., 2007; Yu et al., 2007). Like human embryonic stem cells (hESCs), human iPSCs

provide a powerful means by which to investigate the pathogenesis of disease because these cells can be

differentiated into relevant cell types of interest for disease modeling, drug screening, and delving into the

fundamental aspects of disease pathology, as well as for regenerative medicine. Numerous protocols have

been described for the maintenance of human pluripotent stem cells, using different matrices and culture

media (International Stem Cell Initiative Consortium et al., 2010). The original method of maintenance of

hESCs was based on a feeder layer of embryonic fibroblasts and a serum-based medium (Reubinoff

et al., 2000; Thomson, 1998). It evolved to more defined conditions using serum-free media with key

signaling molecules (Furue et al., 2008; Pébay et al., 2005; Vallier et al., 2005; Xu et al., 2005) and/or

feeder-free conditions (including the use of Matrigel, collagen, vitronectin, or laminin) (Klimanskaya

et al., 2005; Ludwig et al., 2006). Various commercialized serum-free media have now become available

with an ongoing evolution to fully defined media, from KnockOut Serum Replacement medium supple-

mented with basic fibroblast growth factor to the TeSR family media (mTeSR1, TeSR2, and TeSR-E8)

(Chen et al., 2011; Ludwig et al., 2006; Sun et al., 2009), and the newly released StemFlex, a medium

with proprietary compounds, and hence of unknown formulation and with robustness efficiency remaining

to be characterized.

Although there have been clear advances in the maintenance, standardization, and upscaling of pluripo-

tent stem cell culture, some limitations remain and need to be addressed to realize the translational poten-

tial of iPSCs (Kim and Kino-oka, 2018). Indeed, human variability is a main source of differences observed

between cell lines generated and maintained in various laboratories (Allegrucci and Young, 2006; Alle-

grucci et al., 2007), with genetic background and methodologies also having a significant contribution (Kil-

pinen et al., 2016). The automation of pluripotent stem cell culture provides an efficient way to improve

these aspects, increasing throughput and standardizingmany aspects of cell culture, including in iPSC gen-

eration, maintenance, passaging, and differentiation into progeny cells of interest (Crombie et al., 2017;

Konagaya et al., 2015; Paull et al., 2015). These automated steps allow minimal variation in each procedure,
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Figure 1. Quality Control of iPSCs Cultivated in StemFlex and TeSR-E8

(A) Schematic representation of the experimental plan.

(B) Representative morphology of iPSCs maintained in StemFlex or TeSR-E8 post-passaging. Images of human iPSCs, at

day 8 post-passaging, at different magnifications (34,310, and320). Cells were cultivated using an automated platform,

on vitronectin, in StemFlex (IST2607, p3 1:6 ratio) or TeSR-E8 (TOB0435, p2 1:3 ratio). Images are representative of all cell

lines. Scale bars: 100 mM.

(C and D) Quantification of TRA-1-60-positive cells before passaging of human iPSCs maintained in StemFlex (C) or TeSR-

E8 (D). Scatterplot with bar of the TRA-1-60-positive (+ve) cells just before passaging, in independent iPSC lines grown in

StemFlex (TOB0224 p3,5–8; TOB0431 p3,5–8; FSA0006 p3,5–8; IST2168 p3,5–8; IST2607 p3,5,6,8; TOB0474 p3,5–8;

MBE2906 p3,5–8; FSA0001 p2,4–6,8; MBE1006 p2,4–6,8) or TeSR-E8 (FSA0002 p2,5,8; TOB0435 p5,8; MBE2900 p2,5,8;

MBE2909 p4,5,8; TOB0199 p2,4,8; TOB0412 p3,4,8 FSA0005 p4,5,8 TOB0421 p8). The abnormal lines TOB0218

(StemFlex), MBE2899 (TeSR-E8), and MBE2901 (TeSR-E8) were not included in this analysis. Each column represents the

mean G SEM of successive passages of individual lines. Two-tailed t test indicates no statistical difference in TRA-1-60

expression between the two culture conditions (p = 0.8546).

*Correspondence:
apebay@unimelb.edu.au

https://doi.org/10.1016/j.isci.
2018.08.016
reduce inter-sample variability, and hence increase robustness of cell culture procedures (Daniszewski

et al., 2017).

Using an automated platform to ensure robustness of cell culture, we compared the cellular and molecular

profiles of human iPSCs maintained in a standard TeSR-E8 medium and in the newly released StemFlex.

Quality control was assessed by markers of pluripotency, three germ layer differentiation, and virtual kar-

yotyping. We then compared samples grown in both media by single-cell RNA sequencing (scRNA-seq) to

uncover the molecular signature underlying pluripotency, and report on whether similar pathways are

modulated in both conditions.

RESULTS

Donor iPSCs were derived as described in Crombie et al. (2017). Following TRA-1-60 selection, 10 lines

were maintained in StemFlex medium and 10 lines in TeSR-E8 medium (Figure 1A). We had already

adapted automation for the culture of pluripotent stem cells using TeSR-E8 (Crombie et al., 2017), and

StemFlex also allowed maintenance on the automated platform, with colonies showing typical pluripotent

stem cell morphology (Figures 1B and S1) and similar levels of expression of TRA-1-60 (Figures 1C and 1D).

After 8 passages, all iPSC lines for both media expressed the pluripotency markers OCT-4 and TRA-1-60

(Figures 2A–2L). All iPSC lines in both conditions were able to differentiate to the three germ layers, as
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Figure 2. Expression of Pluripotency Markers of Human iPSCs Maintained in StemFlex or TeSR-E8

(A–L) Representative immunostainings for TRA-1-60 and OCT-4. Images of human iPSCs cultivated in StemFlex

(TOB0474) or TeSR-E8 (MBE2901) at day 8 post-passaging (p8), for TRA-1-60 (A and G) or OCT-4 (D and J), with DAPI

nuclei counterstain (B, E, H, and K) and merged images (C, F, I, and L). Images are representative of all cell lines. Scale

bars: 100 mM.

(M and N) Quantification of pluripotency markers. Scatterplot with bar of human iPSCs cultivated in (M) StemFlex

(TOB0224; TOB0431; FSA0006; IST2168; IST2607; TOB0474; MBE2906; FSA0001; MBE1006) or (N) TeSR-E8 (TOB0421;

FSA0005; TOB0199; FSA0002; MBE2909; TOB0435; MBE2900; TOB0412) at day 8 post-passaging (p16), for CD9, TRA-1-

60, SSEA-3, OCT-4, GPR64, CDCP1, F11R, DSG2, CDH3, NLGN4X, and PCDH1. Each column represents themeanG SEM

of 10 individual lines. FSA0006 and TOB0474 were analyzed twice for all markers aside from OCT-4, which was analyzed

once. The abnormal lines TOB0218 (StemFlex), MBE2899 (TeSR-E8), and MBE2901 (TeSR-E8) were not included in this

analysis. Two-way ANOVA followed by Sidak’s multiple comparisons test indicates no statistical difference in each

pluripotency marker expression between the two culture conditions.
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assessed by embryoid body formation (Figure S2). Virtual karyotyping using SNP analysis revealed post-re-

programming anomalies in two lines grown in TeSR-E8 (MBE2899, MBE2901) and one line maintained in

StemFlex (TOB0218) (Figure S3). At passage 16, iPSCs grown in both media were subjected to flow cytom-

etry for a panel of monoclonal antibodies that detect human pluripotent stem cells (O’Brien et al., 2017),

increasing the stringency of the characterization of cell pluripotency markers. Cells retained high levels

of expression of the panel of pluripotent markers in both media (Figures 2M and 2N). Of note, SSEA-3

was found to be low in all samples; however, this marker is known not to be essential to pluripotency (Brim-

ble et al., 2007).

We interrogated the molecular pathways involved in StemFlex and TeSR-E8 maintenance of pluripotency.

We reprogrammed two independent donor fibroblast lines, WAB0450 andWAB0069; selected iPSCs using

TRA-1-60 beads; and separated each iPSC line into the two media post-passage 1 (Figure 3A). Following

virtual karyotyping at passage 8 to ensure that cells did not acquire chromosomal abnormalities (Figures

S4A–S4F), and for confirmation of pluripotency by embryoid body formation (Figure S2), iPSCs were har-

vested for scRNA-seq to identify potential variation in pluripotency, associated pathways, and potential

culture medium signature. Passage 8 was chosen because the number of aberrant cells with aberrant

copy number variation (CNVs) is already reduced from early passages (Hussein et al., 2011). At day 5

post-passaging, iPSCs were dissociated into single cells, and live cells were selected with propidium iodide

by fluorescence-activated cell sorting (FACS). Live cells were used for library preparation and scRNA-seq,

as outlined in Figure 2A. Processing of our initial analysis identified a total of 21,597 cells in four samples.

We filtered a total of 635 cells, which met one or more of the following criteria: high/lowmapped reads (163

cells), highmitochondrial expression (456 cells), and high ribosomal expression (57 cells), resulting in 20,962

cells remaining for subsequent analysis. Wemapped reads to a reference transcriptome (GRCh38p10) con-

taining 32,838 genes, of which we filtered 16,459 because they were detected in less than 0.1% of the total

number of cells leaving 16,379 genes for the analysis. The filtered data were normalized, and cells were then

divided into individual samples and clustered separately. The distribution of cells based on gene expres-

sion profile showed a clear overlap between the four culturing samples, suggesting the overall similar ef-

fects of the two media (Figure 3B). For identifying genes and pathways involved in maintaining pluripo-

tency, we performed differential gene expression (DE) between media, assessing both individual lines

and pooled lines: WAB0450_E8 was analyzed together with WAB0069_E8 and WAB0450_SF together

with WAB0069_SF followed by analysis of individual lines (Table S1). Furthermore, we performed both tar-

geted expression analysis of 53 known pluripotency markers (Figure 3C) and genome-wide expression

comparisons for all 16,379 genes (Figure 3D) in the four separate samples or in the pooled media. Gene

expression was compared both by expression values (Figures 3C and 3D) and by percent of expressing cells

(Tables S1 and S2, Figure S5). Cell cultures retained expression of the panel of pluripotent cell surface

markers (Table S2). Notably, 99.96% of all cells in TeSR-E8 and 99.97% of all cells in StemFlex expressed

at least one of the three core pluripotency markers, namely, POU5F1, SOX2, and NANOG, suggesting

that cells are maintained in a pluripotency state (Table S2, Figure S5). The percentage of cells expressing

NANOG is at 75.5th percentile of all 16,270 reliably detected genes, higher than 13,349 genes. The distri-

bution of number of detected cells for every gene suggests that NANOG was detected in more cells than

most other genes (Figure S6). Although the total number of up- and downregulated genes in cells in the

two media are similar (Figures 3C and 3D), a number of differentially regulated genes were unique for cells

in each medium (Table S1). Pluripotency markers expressed higher in cells maintained in StemFlex include

LEFTY1, LEFTY2, IFITM1, SFRP2, REST, OTX2, TCF3, BRIX1, KLF4, KLF5, HESX1, CRABP2, NR5A2, FOXD3,

DNMR3B, UTF1, and PTEN (Figure 3C). These genes are particularly enriched for ‘‘Signaling by NODAL’’

(Reactome pathway analysis, false discovery rate [FDR] < 4 3 10�3). Gene markers expressed more in cells

maintained in TeSR-E8 include TCL1B,CD7,GDF3, LIFR,GBX2,CXCL5,CDH1, FGF4,GAL, SOX2, POU5F1,

DPPA2, PODXL, IFITM2, NANOG, ZFP42, TCL1A, NODAL, DPPA5, COMMD3, SEMA3A, POU3F1,

PRDM14, and SALL4 (Figure 3C). These TeSR-E8-upregulated genes are enriched for ‘‘POU5F1, SOX2,

NANOG repress genes related to differentiation and activate genes related to proliferation’’ (Reactome

pathway analysis, FDR < 1 3 10�4). Notably, both sets of upregulated genes share the main enriched

pathway ‘‘Transcriptional regulation of pluripotent stem cells’’ (Reactome pathway analysis, FDR < 4 3

10�3 and FDR <1.9 3 10�15) (Figure 3C, Tables S1 and S2, Figure S7). We observed that the combination

of 18 markers associated with the naive pluripotency (Collier et al., 2017; Guo and Smith, 2010; Ng and Sur-

ani, 2011;Warrier et al., 2017;Weinberger et al., 2016) were expressed by a low but comparable percentage

(with difference lower than 1%) of cells grown in both conditions (Table S2). Moreover, genes driving tran-

sition from naive to primed pluripotency, i.e., FGF4, FOXD3, and OTX2 (Collier et al., 2017) were also
iScience 7, 30–39, September 28, 2018 33



Figure 3. Comparing Effects of the Two Media at Single-Cell Level

(A) Schematic representation of the experimental randomization design. Two cell lines were cultured separately in two media. The four cell cultures were

genotyped (HumanCore Beadchip arrays) and were randomly combined into two pools for scRNA-seq experiment (10X Chromium). Cells were assigned to

original sample based on sample SNP genotype and single-cell SNPs called from scRNA-seq data. The scRNA-seq data were aggregated for all four

samples, filtered, normalized, clustered, and analyzed for differential gene expression and functional pathways.

(B) Two-dimensional distribution of cells based on gene expression profile. Dimensions 1 and 2 are principal coordinates of imputed values from CIDR

(Clustering through Imputation and Dimensionality Reduction) (Lin et al., 2017). The overlap between the four culturing samples suggests the overall similar

effects of the two media.

(C) Heatmap analysis of known pluripotency markers shown for four separate samples or the combination of two samples. Standardized gene expression is

shown from low (purple color) to high (orange color). The numbers of genes expressed highly in StemFlex or in TeSR-E8 are similar, suggesting the twomedia

maintain similar pluripotency states.

(D) Volcano plot shows genome-wide differential expression results between cells in StemFlex versus cells in TeSR-E8 (positive log2Folchange indicates

higher expression in StemFlex). The numbers of upregulated genes in each media are similar. Red text indicates genes for which upregulation is statistically

significant between the two conditions.
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identified in subpopulations from all samples; however, on average the difference between the two media

did not exceed 2% (Table S2). We also found high expression of genes involved in ‘‘Proliferation and sur-

vival’’ pathways and in ‘‘Metabolism’’ pathways (Table S2).

We then performed high-resolution comparisons at subpopulation and single-cell levels. Through clus-

tering of the 20,962 cells, we consistently identified three distinct subpopulations in each of the

WAB0450_SF, WAB0450_E8, WAB0069_E8, and WAB0069_SF samples (Figures S7–S9, Tables S4 and

S5). The subpopulations were named 1, 2, and 3 based on the order of the total cell counts, with subpop-

ulation 1 having the highest count. The dendrogram trees (Figures S7 and S8) show the clustering results,

from applying our unbiased clustering method described previously (Nguyen et al., 2018). Statistical anal-

ysis of DE between the identified subpopulations, followed by pathway enrichment analysis of significantly

regulated genes, suggests two major distinct pluripotency states. Subpopulations 1 and 2, which together

account for 77%–95% of total cells in a sample (Figures S7–S9), had gene expression signature closer clas-

sifying them as more pluripotent cells compared with cells in subpopulation 3, which are more primed to

differentiation (5%–23%, Tables S3 and S6). Table S3 shows enriched pathways for upregulated genes when

comparing subpopulations 1 and 2 to subpopulation 3. The comparison was performed separately for each

of the four samples. This comparison allows the independent assessment of the three subpopulations in

each cell line and each medium. In addition, Table S6 shows functional pathway analysis for the common

gene markers expressed highest in each of the three subpopulations and found consistently in all four sam-

ples. This comparison combines the shared pattern found in all four samples, thereby reinforcing the po-

tential gene markers for each of the three subpopulations. Overall, the enrichment of pluripotency for sub-

populations 1 and 2 compared with subpopulation 3 is consistent across cell lines andmedia (Tables S3 and

S6), which is consistent with results from our previous study of a human iPSC population (Nguyen et al.,

2018). Specifically, subpopulations 1 and 2 had a higher expression level of pluripotency markers, with sig-

nificant enrichment (p adjusted < 0.001) of the Reactome pathway ‘‘Upregulation of transcriptional regula-

tion of pluripotent stem cells’’ (>20 genes in the pathway were significantly upregulated, Table S3). For

example, consistently in four samples (WAB0450_SF, WAS0450_E8, WAB0069_SF, and WAB0069_E8),

the RNA levels of key pluripotency gene markers such as POU5F1, SOX2, and NANOG were higher in cells

within subpopulations 1 and 2 than in cells within subpopulation 3 (Table S3). Notably, the percent of cells

expressing these markers were higher in subpopulation 3 than in the remaining cells, possibly due to the

relatively smaller number of cells present in this subpopulation (5%–23% of the total cells). Compared with

subpopulations 1 and 2, the cells in subpopulation 3 were more primed to differentiation, with the signif-

icant upregulation (FDR <0.05) of differentiation-promoting pathways, such as ‘‘Signaling by NOTCH4’’

(FDR <3.6 3 10�7), ‘‘RUNX1 regulates transcription of genes involved in differentiation of HSCs’’

(FDR <1.5 3 10�5), ‘‘Beta-catenin-independent WNT signaling’’ (FDR <0.0003), and ‘‘TCF dependent

signaling in response to WNT’’ (FDR <0.008, Table S6). The complete list of all gene markers that are ex-

pressed highest in each subpopulation are shown in Table S6.

To compare subpopulation structure between two independent samples (e.g., same cell line in two media,

or different cell lines in twomedia), we applied two approaches. First, we performed unbiased clustering of

cells in each of the sample and compared the clustering results between separate samples and between

individual sample with the combined set of all cells from four samples (Figures S7–S10). The grouping of

similar cells into clusters (subpopulations) reflects the structure of the cell population in the original pop-

ulation, because the clustering is data driven and does not require prior knowledge and assumptions on

the number of clusters. We consistently found three subpopulations in each of the four samples, suggest-

ing the shared subpopulation structure (Figures S7 and S8). We found that the distribution of cells into cell-

cycle stages is similar between the four samples, suggesting that the subpopulation structure is not driven

by cell-cycle phases (Figure S9). Moreover, we performed clustering analysis for the merged dataset of all

cells from all four samples (2 cell lines 3 2 media). We also found three subpopulations, and importantly

that the percent of cells allocated to subpopulations 1, 2, and 3 are similar between all four samples, sug-

gesting that the subpopulation structure is independent of cell lines and culturing media (Figures S7 and

S8). Second, to quantitatively compare between subpopulations identified separately in each of the four

samples, we performed a machine learning model, which estimates pairwise transition scores between

subpopulations from one sample to another. For each pair of subpopulations identified through clustering,

we run scGPS (single-cell global fate potential of subpopulation), which is a machine learning classification

method to compare every cell from one subpopulation to another subpopulation, as described in Nguyen

et al. (2017). This method was applied to quantitatively estimate conditional class probability of every single
iScience 7, 30–39, September 28, 2018 35



cell belonging to a subpopulation, thus allowing to estimate the percent of similar cells between two sub-

populations. We found that approximately 98% of the cells from subpopulation 3 in one sample were

similar to cells in subpopulation 3 from the other sample, much higher than the similarity when compared

with cells in subpopulations 1 and 2 (Table S4). Thus, the analysis suggests that all samples share the com-

mon subpopulation 3. Similarly, subpopulations 1 of one cell line (WAB0069) or two different cell lines in

StemFlex and TeSR-E8 media are 95.0% and 95.8% similar, suggesting subpopulations 1 are the same

among these samples (Table S4). Notably, subpopulations 1 and 2 in the cell line WAB00450_E8 are less

specific and have the potential to convert into subpopulations 1, 2, and 3. Interestingly, subpopulations

2 in WAB0450_E8 and WAB0069_E8 samples display an intermediate state and have a high (ranging

from 82% to 100%) similarity score (i.e., high potential to be the same cell types/cell state) compared

with subpopulations 2 or 3 in WB0069_SF (Table S4). Overall, we found a shared subpopulation structure

among all samples, in which subpopulations 1 and 3 are more discrete and present in all samples, whereas

subpopulation 2 is more transient and has the potential to dynamically transition between subpopulations

2 and 3.
DISCUSSION

We analyzed the ability of the recently released StemFlex and of TeSR-E8, a widely used cell medium, to

maintain pluripotency of newly reprogrammed human iPSCs. We used an automated platform to perform

this analysis to ensure that variations observed in cell maintenance were independent of human variability.

All lines maintained in each medium (10 independent lines per media) demonstrated robust maintenance

of pluripotency, with key colony morphology and expression of pluripotency markers, analyzed by immu-

nochemistry and FACS analysis at passage 16. Most lines retained a normal karyotype with the exception of

two in TeSR-E8 and of one in StemFlex. Our data thus support the robustness of both media to maintain

iPSCs, as cells grown in both conditions display the morphological and molecular characteristics of iPSCs.

In-depth molecular analysis was then performed using scRNA-seq to access the molecular network in place

in cells grown in both culture conditions. Two independent fibroblast cultures were reprogrammed, and

the two generated iPSC lines were then maintained and passaged in both media in parallel. Following vir-

tual karyotyping, cells from different cell lines and media were then combined before single-cell

sequencing. This study design was chosen to limit the inter-variability observed between independent

iPSC lines. The analysis of gene expression profiles in the four samples—two lines each maintained in

the two media—indicate that they share a very similar global gene expression signature, although specific

pathways are enriched for cells in each of the two media. Our analysis identified that the core pluripotency

factors, i.e., OCT-4, NANOG, and SOX2, were expressed by similar proportions of cells in both StemFlex

and TeSR-E8 (Table S2), and >99.9% of all cells expressed at least one of these three factors, which is an

indication of potency of both media to maintain cells in a pluripotent state, as levels of expression of those

transcription factors are tightly correlated and critical to maintain pluripotency (Rizzino, 2009). At individual

gene levels, we observed that on average 18.1% and 19.5% of TeSR-E8- and StemFlex-cultured cells,

respectively, expressed NANOG (range 9.9%–44.5%; Tables S2 and S5). Its heterogeneous expression

was reported previously both in mouse embryonic stem cells (Chambers et al., 2007) and human iPSCs

(Yu et al., 2018), and it was suggested that NANOG levels in cells exist in a state of dynamic equilibrium

(Boyer et al., 2005; Loh et al., 2006). The low levels of NANOG found in this study are consistent with pre-

vious results from an scRNA-seq iPSC dataset, showing NANOG expression level to be approximately 47

times lower than that ofOCT-4 (Nguyen et al., 2018).OCT-4 is also essential for acquisition of naive plurip-

otency, and for differentiation (Radzisheuskaya et al., 2013). Furthermore, OCT-4 and SOX2 co-regulate

their expression (Chew et al., 2005), while they jointly regulate NANOG (Rizzino, 2009).

Altogether, our data indicate that StemFlex is an efficient medium for the maintenance of human iPSCs.

StemFlex-cultured cells retain characteristic iPSC morphology with round-shaped, tight morphology of

colonies and expression of pluripotency markers. Little difference in global gene expression signatures be-

tween iPSCs cultured in StemFlex and TeSR-E8 could suggest that their formulations are highly similar, and

also highlights the advantage of automation in stem cell research where eliminating human variability im-

proves consistency and robustness of culture. Of note, automated passaging using ReLeSR was more effi-

cient for cells maintained in StemFlex than in TeSR-E8. In our automation procedures, detaching cells from

culture plates was faster with StemFlex than with TeSR-E8 and rarely required an additional ‘‘offline’’ step of

‘‘taping,’’ required for TeSR-E8. This was selected as an advantage of StemFlex for automation, for

decreasing passaging time, reducing human intervention, and improving passaging efficiency. Our data

also indicate that iPSCs cultured in both media exist in a metastable heterogeneous state supporting
36 iScience 7, 30–39, September 28, 2018



self-renewal, which is maintained by external cues within the culture media, in concordance with previous

reports in mouse (Hanna et al., 2009; Najm et al., 2011) and human pluripotent stem cells (Buecker et al.,

2010; Hough et al., 2014). These data also describe the single-cell resolution molecular pathways modu-

lated in StemFlex and how they compare to those modulated in TeSR-E8.

Limitations of Study

There are some limitations to this study. First, conducting the analysis at several time points would likely

generate additional information regarding how signaling pathways of stem cells may be affected by pro-

longed culture in artificial in vitro conditions. The single time point used for the transcriptome analysis of

single cells restricts the understanding of expression analysis over time. The repeat of such analysis at

various passaging times could provide further information on the stability of cells in culture in both me-

dia. Furthermore, overall, the scRNA-seq dataset had relatively low number of mapped reads per cells:

less than 20,000 unique molecular identifiers per cell (Figure S10). We addressed the limitation by utiliz-

ing the large number of cells (20,962 cells) and a stringent filtering step to remove cells with a low num-

ber of mapped reads and genes detected in a small percentage of cells. Another limitation is the small

number of biological replicates used in the single-cell sequencing experiment, with two cell lines (from

two genetic backgrounds) per medium. This could result in low detection power to reveal the effect

derived from variation in genetic backgrounds from the scRNA-seq dataset. We complemented this

deficit by using more cell lines, with 10 different genetic backgrounds for each medium, in the flow cy-

tometry panel experiments. The cross-comparison between the two experimental approaches showed

consistent results.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplementary Figures and Legends 
 

 
Figure S1: Representative morphology of iPSCs maintained in StemFlexTM, Related to 
Figure 1. Images of a human iPSC line (MBE2906), from day 0 to day 7, at different 
magnifications (x4, 10 and 20). Cells were cultivated using an automated platform, on 
Vitronectin and in StemFlexTM; medium was changed every 2-3 days. Images are representative 
of all cell lines. Scale bars: 100 µM. 
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Figure S2: Differentiation of iPSCs into the three germ layers, Related to Figures 1, 2 and 
3. Embryoid bodies of iPSCs maintained in (A) StemFlexTM and (B) TeSRTM-E8TM showing 
differentiation into the three germ layers by immunostaining with NESTIN, SMA, AFP and with 
DAPI nucleic acid counterstain. Bottom right: representative negative isotype control with its 
corresponding DAPI. Scale bars: 20 µM. 
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Figure S3: Copy Number Variation Analysis, Related to Figures 1 and 2. (A) Representative 
analysis of iPSCs with a normal virtual karyotyping (FSA0005). Anomalies were revealed in the 
iPSC lines MBE2899 (B), MBE2901 (C) and TOB0218 (D). Each panel shows the B allele 
frequency (BAF) and the log R ratio (LRR). BAF at values others then 0, 0.5 or 1 indicate an 
abnormal copy number. Similarly, the LRR represents a logged ratio of “observed probe 
intensity to expected intensity”. A deviation from zero corresponds to a change in copy number.  
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Figure S4: Characterisation of WAB0450 and WAB0069, Related to Figure 3. (A-F) Copy 
Number Variation Analysis of WAB0450 (A-C) and WAB0069 (D-F) in original fibroblasts (A, 
D), iPSCs at p8 in StemFlexTM (B, E) and TeSRTM-E8TM (C, F). Each panel shows the B allele 
frequency (BAF) and the log R ratio (LRR).  
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Figure S5. Expression of key pluripotency gene markers in the two media, Related to 
Figure 3 and Tables S1-2. (A) Cells in StemFlexTM (the pool of WAB0450SF and WAB0069SF 
cells) and TeSRTM-E8TM (the pool of WAB0450E8 and WAB0069E8) expressing pluripotency 
markers are displayed in two dimensional tSNE plots. The majority of cells express common key 
pluripotency markers, such as POU5F1 (OCT4), NANOG, SOX2, and OTX2. For all 16 genes 
shown in the figure, the number of expressing cells are even between the two media. (B) Gene 
set activities calculated by applying AUCell approach for three sets of known markers shown in 
Table S2. The regulation activity, ranging from 0 to 1, is the enrichment of the genes in the input 
gene set across the expression ranking of all genes in a cell. The three sets include "Core 
pluripotency markers" (Core), "Naïve pluripotency markers" (Naïve), and "Other pluripotency 
markers" (Other).  
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Figure S6. Distribution of NANOG in all cells, Related to Figure 3 and Tables S1-2. The 
percentage of cells expressing NANOG is at 75.5th percentile of all 16,270 reliably detected 
genes, higher than 13,349 genes.  
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Figure S7: Single-cell subpopulation analysis of WAB0450 and WAB0069 in StemFlexTM 
and TeSRTM-E8TM media, Related to Figure 3 and Tables S3-6. Subpopulations were 
identified by our unsupervised clustering algorithm so that a subpopulation consist of cells that 
are more similar to cells within the subpopulation compared to cells in other subpopulations. For 
each sample, a dendrogram tree with branches colored by subpopulations and the numbers of 
cells in each subpopulation are shown (panels A, C, E, and G for WAB0450SF, WAB0450E8, 
WAB0069SF and WAB0069E8, respectively). The distribution of cells in two first PCA 
principal components are shown as scatter plots accompanied by density plots on the right and 
top axes (panels B, D, F, and H for WAB0450SF, WAB0450E8, WAB0069SF and 
WAB0069E8 respectively).  
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Figure S8. Subpopulation analysis of all cells in all four samples, Related to Figure 3 and 
Tables S3-6. (A) Dendrogram showing clustering results for more than 20,000 cells from the 
merged expression data of all four samples. The three clusters are shown by different colored 
branches. (B) The percent of cells distributed to each of the three clusters for each sample.   
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Figure S9. Predicted cell cycle stage for every cell in all combinations, Related to Figure 3 
and Tables S3-6. WAB0450 and WAB0069 cells in StemFlex (SF) and TeSR-E8 (E8) showed 
no significant difference in proportions in the different cell cycle phases (G1, G2M, S).  
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Figure S10: Quality control statistics for the single cell RNA sequencing of 21,597 human 
iPSCs, Related to Figure 3. (A)The library size (total mapped reads) range for each cell in each 
of the four samples. (B) Expression range of all genes detected. The range is greater than 6 
orders of magnitudes. Genes detected in fewer than 0.1% of all cells were removed. (C) Percent 
reads mapped to mitochondrial genes as an indicator of cell conditions. The x-axis shows four 
samples, and the y-axis shows reads mapped. Cells with mitochondrial reads exceeding 3 x 
median absolute deviation (MAD) or mitochondrial reads above 20% were removed. (D) Percent 
reads mapped to ribosomal genes. We removed cells with over 3 x MAD or over 50% reads 
mapped to ribosomal genes.   
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Supplemental Tables added as Supplemental Data 
 
Table S1. Reactome and DE genes. Differential expression and functional enrichment 
analysis (Reactome differences in SF and E8; WAB0069 reactome differences; WAB0450 
reactome differences; DE genes in SF and E8_2lines), Related to Figures 3, S5 and S6. 
 
Table S2. Comparative summary of levels of expression of key genes involved in 
pluripotency and metabolism in StemFlexTM and TeSRTM-E8TM media (pluripotency; 
proliferation and survival; metabolism), Related to Figures 3, S5 and S6. 
 
Table S3. Pathway analysis subpopulations, Related to Figures 3, S7-S9. 
 
Table S4. Comparing subpopulations between four samples (same cell line or different cell 
lines) by a machine-learning classification approach, Related to Figures 3, S7-S9. 
 
Table S5. Percent positive cells by subpopulations, Related to Figures 3, S7-S9. 
 
Table S6. Pathway Enrichment & Gene Markers, Related to Figures 3, S7-S9. 
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Transparent Methods 

Ethics. All experimental work performed in this study was approved by the Human Research 
Ethics committees of the Royal Victorian Eye and Ear Hospital (11/1031H) and University of 
Tasmania (H0014124) with the requirements of the National Health & Medical Research 
Council of Australia (NHMRC) and conformed with the Declarations of Helsinki (McCaughey et 
al., 2016). 
 
Fibroblast Culture. Human skin biopsies were obtained from subjects over the age of 18 years. 
Fibroblasts were cultured in DMEM with high glucose, 10% fetal bovine serum (FBS), L-
glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin (all from Thermo Fisher Scientific, 
USA). All cell lines were mycoplasma-free (MycoAlert mycoplasma detection kit, Lonza, 
Switzerland). Fibroblasts at passage (p) 8-10 were used for reprogramming. 
 
Generation, selection and maintenance of iPSCs. A TECAN liquid handling platform was 
used to cultivate cells, as described in (Crombie et al., 2017). iPSCs were generated by 
nucleofection (AmaxaTM NucleofectorTM) with episomal vectors expressing OCT-4, SOX2, 
KLF4, L-MYC, LIN28 and shRNA against p53 (Okita et al., 2011) in feeder- and serum-free 
conditions using TeSRTM-E7TM medium (Stem Cell Technologies, Canada) as described 
previously (Crombie et al., 2017). The reprogrammed cells were maintained on the automated 
platform using TeSRTM-E7TM medium, with daily medium change. Pluripotent cells were 
selected by sorting anti-human TRA-1-60 Microbeads using a MultiMACS (Miltenyi, Germany) 
as described in (Crombie et al., 2017). Cell number was determined and cell were subsequently 
plated onto vitronectin XFTM (Stem Cell Technologies) in TeSRTM-E8TM medium (Stem Cell 
Technologies) or StemFlexTM medium (Thermo Fisher Scientific). Subsequent culturing was 
performed on the automated platform using TeSRTM-E8TM or StemFlexTM medium, and medium 
was changed every two days. Passaging was performed weekly on the automated platform using 
ReLeSRTM (Stem Cell Technologies) onto vitronectin XFTM coated plates as described in 
(Crombie et al., 2017). 
 
iPSC quality control. TRA-1-60 quantifications were performed on a MACSQUANT 
immediately prior to passaging to fresh plates as described (Crombie et al., 2017). Pluripotency 
was assessed by expression of the markers OCT3/4 (sc-5279, Santa Cruz Biotechnology, USA), 
TRA-1-60 (MA1-023-PE, Thermo Fisher Scientific, USA). Copy number variation (CNV) 
analysis of original fibroblasts and iPSCs was performed using Illumina HumanCore Beadchip 
arrays. CNV analyses were performed using PennCNV (Colella et al., 2007) and QuantiSNP 
(Wang et al., 2007) with default parameter settings. Chromosomal aberrations were deemed to 
involve at least 20 contiguous single nucleotide polymorphisms (SNPs) or a genomic region 
spanning at least 1MB (Colella et al., 2007)(Wang et al., 2007). The B allele frequency (BAF) 
and the log R ratio (LRR) were extracted from GenomeStudio (Illumina, USA) for 
representation. Day 14 embryoid bodies (EBs) were plated on 24-well plates coated with 0.1% 
gelatin to differentiate for 7 days cultured in differentiation medium: DMEM, 20% FBS, 1% 
Non-Essential Amino Acid solution, 0.1mM 𝛽-mercaptoethanol and 1% Pen-strep. Germ layer 
differentiation was assessed by immunochemistry. For immunochemistry, cells were fixed with 
4% paraformaldehyde, permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) and blocked with 
2% normal goat serum (Life Technologies). Standard immunostaining procedures were 
performed using the following primary antibodies: mouse anti- Nestin (Abcam, AB22035) for 
ectoderm; mouse anti- Smooth Muscle Actin (SMA, clone 1A4, R&D Systems, MAB1420) for 
mesoderm; mouse anti- Alpha-fetoprotein (AFP, Merck Millipore, ST1673) for endoderm. 
Secondary antibody used was Alexa Fluor 488 goat anti-mouse IgG (ThermoFisher, A11029). 
Nuclei were counterstained with DAPI (Sigma Aldrich). 
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Flow cytometry. The intracellular and extracellular immunolabelling of iPSCs and FACS 
analyses were all similarly performed as previously described (O’Brien et al., 2017). Briefly, 
cells grown in culture flasks or dishes were washed twice with 5 mL PBS -/- (Gibco, Life 
Technologies) and harvested using 1-2ml TrypLE Express (Gibco, Life Technologies) incubated 
for 5 minutes at 37°C. The cells were washed twice with PBS supplemented with 10% v/v FBS, 
which neutralises the TrypLETM Express and help with cell viability before staining. The cells 
were resuspended in 10% v/v PBS -/- and aliquoted into individual 5ml FACs tubes for single 
extracellular labelling with primary monoclonal antibodies Anti-GPR64 (CSIRO, CSTEM7), 
Anti-CDCP1 (CSIRO, CSTEM26), Anti-F11R (CSIRO, CSTEM27), Anti-DSG2 (CSIRO, 
CSTEM28), Anti-CDH3 (CSIRO, CSTEM29), Anti-NLGN4X (CSIRO, CSTEM30), and Anti-
PCDH1 (CSIRO, CSTEM31) and the stem cell markers TRA-1-60 and SSEA3 (both Merck 
Millipore). Primary and secondary antibodies were incubated for 20 minutes on ice and washed 
twice with PBS. The fluorescent secondary antibody goat anti-mouse IgG Alexa FluorTM 488 
(AF488, Thermo Fisher Scientific) was used to counterstain the primary antibodies. Non-cross 
reacted secondary antibodies were washed away with PBS and cells were resuspended with PBS 
containing 0.1% v/v propidium iodide (Sigma-Aldrich, USA). The propidium iodide was used to 
exclude non-viable cells during FACS analysis. For intracellular staining with Anti-OCT3/4 
(Merck Millipore), cells were fixed with 4% paraformaldehyde for 30 minutes at RT, 
permeabilised with 0.01% Triton-X100 (Sigma-Aldrich) for 5 minutes and blocked with 10% 
Goat Serum (Thermo Fisher Scientific) for 30 minutes at RT after two washes with PBS. The 
fixed cells were labelled with Anti-OCT3/4 for 20 minutes at RT and washed twice with PBS. 
The secondary conjugated goat anti-mouse IgG1 AF488 fluorophore (Thermo Fisher Scientific) 
was used for the cross-reaction with Anti-OCT3/4 antibodies. The washed cells were finally 
resuspended in PBS for FACS analysis using BDTM Biosciences LSR II cell analyzer.   
 
Single cell RNA sequencing. Cells were harvested using ReleSRTM, colonies were dissociated 
into single cell suspension. Cells were counted and assessed for viability with Trypan Blue using 
a Countess II automated counter (Thermo Fisher Scientific), then pooled at a concentration of 
391-663 cells/µL (3.91x10^5-6.63x10^5 cells/mL). Final cell viability estimates ranged between 
85-97%. Cells were partitioned and barcoded using high-throughput droplet 10X Genomics 
ChromiumTM Controller (10X Genomics, USA) and the Single Cell 3' Library and Gel Bead Kit 
(V2; 10X Genomics; PN-120237). The estimated number of cells in each well in the 
ChromiumTM chip was optimized to capture approximately 8000-10,000 cells per cell pool. GEM 
generation and barcoding, cDNA amplification, and library construction were performed 
according to standard protocol. The resulting single cell transcriptome libraries were pooled and 
sequenced on an Illumina NextSeqTM500, using a 150 cycle High Output reagent kit 
(NextSeqTM500/550 v2; Illumina) in standalone mode as follows: 26bp (Read 1), 8bp (Index), 
and 98 bp (Read 2).  
  
Bioinformatics mapping of reads to original genes and cells. Raw sequencing data (Illumina 
BCL files) were processed directly with the cellranger pipeline v2.0.0 (mkfastq, count, aggr) 
using the default parameters, except for the estimated cell number set at 5,000 cells. The reads 
were aligned to the homo sapiens GRCh38p10 Cell Ranger 2.0 reference genome using the 
STAR software (Dobin et al., 2013). Cell barcodes and unique molecular identifiers (UMI) were 
filtered using default parameters in the cellranger count processing. Reads with > 90% base 
calling accuracy were kept and UMI sequences were corrected based on high-quality sequenced 
UMIs with Hamming distance 1. A gene count expression matrix for four samples was generated 
using the cellranger aggr function.We have made available both the raw and normalised data on 
ArrayExpress under accession E-MTAB-6524. 

Combining individual and cell SNP genotypes to assign cells to samples. We developed a 
new computational pipeline to combine SNP-chip data with scRNA SNP calling data in 
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individual cell to de-multiplex mixture of cells from different samples pooled into one 
sequencing reaction. Two cell lines, including WAB0450 and WAB0069 in TeSRTM-E8TM and 
StemFlexTM media, were genotyped separately by Infinium HumanCore-24 v1.1 BeadChip assay 
(Illumina). GenomeStudioTM V2.0 (Illumina) was used for SNP genotype calling of the 
BeadChip data. The full genotype report files were reformatted into Plink map, fam, and lgen 
files using custom Shell script and were then converted into variant calling format (vcf) using 
Plink 2 (Chang et al., 2015). For each sorted, indexed vcf file (separated by chromosomes), a 
strand fixing step was performed using bcf fixref function (Li, 2011). To increase the genome 
coverage of the BeadChip genotype data (total 306,670 SNPs), we performed imputation to the 
whole genome. Prior to imputation, Eagle V.2.3.5 was used for haplotype phasing the strand-
fixed genotype vcf files (Loh et al., 2016). The phased data were imputed based on the 1000 
genome phase 3 reference panel (2,535 samples) using the minimac3 program (Fuchsberger, C 
Abecasis, GR Hinds, DA, n.d.). Single-cell SNPs were called from the mapped RNA BAM files 
using Freebayes V1.0.2 (Garrison and Marth, 2012). The likelihood that a cell originated from a 
sample is the cumulative likelihoods of variants identified in each cell. We applied Demuxlet 
software (Kang et al., 2017) to calculate posterior probability of a genotype g identified for a cell 
based on scRNA data given the DNA data from the imputed BeadChip genotypes. Each cell was 
assigned to the sample with the highest likelihood. 
 
scRNA data filtering and normalisation. Sequencing reads from four samples were pooled and 
normalised at two levels - between samples and between cells. Briefly, to account for potential 
systematic measurement variation in total read depth per sample, we utilised unique information 
in read unique molecular identifiers (UMIs), sample indexes, and cell barcodes to perform 
random binomial sampling of reads. From all reads mapped to each gene in each cell, a subset of 
reads was randomly drawn from the binomial distribution, at the rate Ratei, (Readsg, Ratei). Ratei 
was determined based on: total reads per sample, number of cells per sample, and fraction of 
mapped reads in a sample. This method has been shown to be less biased than other global-
scaling methods and can equalise between sample sequencing depth while maintaining original 
read distribution (Zheng et al., 2017). The total mapped reads per cell may be affected by 
sequencing artefacts such as dropouts (RNA molecules not amplified at the initial PCR 
amplification round), PCR duplicates, or high amount of ribosomal RNA. Cells with high 
proportion of reads mapped to mitochondrial are likely cells suffering from more stress due to 
technical cell handling during library preparation and cell sorting. Transcriptional changes in 
those cells, therefore, do not reflect the biological changes of interest. After sample aggregation 
and between sample normalisation, cells and genes were filtered to remove potential technical 
noise in the data, ensuring subsequent analysis was not affected by cells that were inconsistently 
outside the threshold of three times the Median Absolute Deviation (MAD), which is a more 
robust method to detect outlier than using standard deviation around the mean (Leys et al., 2013). 
We calculated MAD for total mapped reads per cell, total genes detected in a cell, expression of 
mitochondrial, and expression of ribosomal genes for every cell in the data set (Figure S10). 
Using the outside 3 x MAD range, we found 163 cells with low or high total mapped reads, and 
456 cells by high mitochondrial gene expression and 57 cells high ribosomal genes. After 
removing cells, we subsequently removed 16,459 genes that were detected in less than 0.1% of 
all remaining cells (Figure S9B). Following sample normalisation and cell-gene filtering, a 
pooling and deconvolution method was implemented to normalise variation in read depth 
between cells (Lun et al., 2016). The method sequentially and randomly pools 40, 60, 80 and 100 
cells to form pseudo cells, in which the expression values of a gene across cells are summed. A 
size factor was calculated for each pool based on the summed expression values. The pool size 
factors then deconstructed into the size factors of individual cells by QR decomposition. This 
approach alleviates the statistical challenge in a dataset with an inflation of zero count measures, 
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including stochastic zero expression of genes that are lowly expressed (higher dropout rates), or 
genes that are turned on/off in different subpopulations of cells. 

Differential expression and functional enrichment analysis. We compared gene expression 
for cells in TeSRTM-E8TM and StemFlexTM media in three experimental designs: the pool of two 
cell lines, WAB0069 alone, and WAB0450 alone. General linear model and negative binomial 
test were implemented to identify differentially expressed (DE) genes as described in the DESeq 
package (Anders and Huber, 2010). In each condition, each cell was considered as one biological 
replicate. Prior to estimating dispersion and normalization factors, a pseudo count of one was 
added to the UMI count expression matrix, which was subtracted post DE test to adjust for 
estimated fold-change. Significantly differentiated genes were those with p-adjusted values less 
than 5% (Benjamini-Hochberg adjustment for false discovery rate). To identify functional 
pathways different between cell lines and media, we applied Reactome functional network 
analysis, a reliably curated functional network (Wu et al., 2014), to find enriched pathways in 
DE gene lists. We predicted cell cycle stage for every cell, and found no differences in cell cycle 
effects in all conditions (Figure S9).Therefore, we performed normalisation between cells and 
opted not to regress out cell cycle genes to maintain biological variation. To estimate the activity 
of three gene groups as listed on Table S2, we applied AUCell method (Aibar et al., 2017).  The 
regulation activity, ranging from 0 to 1, is the enrichment of the  genes in the input gene set 
across the expression ranking of all genes in a cell. The three sets include "core pluripotency 
markers", "Naïve pluripotency markers", and "Other pluripotency markers". A cell with a high 
gene set score suggests that the gene set actively regulate transcriptional state in the cell. As 
shown in Figure S5, no difference was observed in the activity of the three gene sets in the four 
samples, suggesting that the StemFlex and E8 equally maintain pluripotency states in the cell. 
 
Statistical analysis. Data are expressed as mean ± standard error of the mean (SEM). All 
statistical analyses and graphical data were generated using Graphpad Prism software (v6, 
www.graphpad.com). Statistical methods utilised were two-tailed t-test and two-way ANOVA 
test followed by Sidak’s multiple comparisons test. Statistical significance was established from 
p<0.05. 
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