
Epilepsyecosystem.org: crowd-sourcing
reproducible seizure prediction with long-term
human intracranial EEG

Levin Kuhlmann,1,2,3 Philippa Karoly,1,2 Dean R. Freestone,1 Benjamin H. Brinkmann,4

Andriy Temko,5 Alexandre Barachant,6 Feng Li,7 Gilberto Titericz Jr.,8 Brian W. Lang,9

Daniel Lavery,9 Kelly Roman,9 Derek Broadhead,9 Scott Dobson,9 Gareth Jones,10

Qingnan Tang,11 Irina Ivanenko,12 Oleg Panichev,12 Timothée Proix,13,14 Michal Náhlı́k,15
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Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions.

However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage qual-

ity data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is

presented involving an international competition, a follow-up held-out data evaluation, and an online platform,

Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained

via the ‘Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge’ conducted at kaggle.com. Long-term continu-

ous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-

resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial

were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-

min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using

the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further

investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance

reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective

evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than

the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in

warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously

thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algo-

rithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community

study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.
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Introduction
International team-based medical science and online data

and algorithm ecosystems (Wiener et al., 2016) offer a

new large-scale alternative to standard collaborative or mul-

ticentre studies. Such ecosystems facilitate reproducibility

and comparison of findings through standardized procedures

(Wiener et al., 2016). For example, analysis of standardized

high quality experimental data can yield improvements in

predictive algorithms for diagnostics and treatment of pa-

tients. The most promising algorithms, or ensembles of mul-

tiple algorithms, can be selected from a large pool using

standardized evaluation procedures. This paper presents a

crowd-sourcing ecosystem for epileptic seizure prediction.

The ecosystem arose from an international seizure prediction

competition, a follow-up evaluation, and creation of an

online platform, epilepsyecosystem.org, for yielding further

improvements in seizure prediction performance.

The randomness and uncertainty of seizures significantly

affects the safety, anxiety, employability, and overall qual-

ity of life of people with epilepsy (Schulze-Bonhage and

Kühn, 2008). Seizure prediction offers the possibility to

provide warnings to patients so they can move to safety

or activate an intervention, such as acute, fast-acting medi-

cation or an implantable control device that uses electrical

stimulation to avert seizures (Mormann et al., 2007; Stacey

and Litt, 2008; Freestone et al., 2015). The field of seizure

prediction is largely based on the search for predictive EEG

features or preictal biomarkers that can be input into ma-

chine learning algorithms. These algorithms can be trained

to output the probability of an impending seizure and pro-

vide warnings to patients.

Over the past 20 years, there has been a concerted effort

to develop reliable seizure prediction algorithms (Mormann

et al., 2007; Kuhlmann et al., 2010, 2015; Freestone et al.,

2015; Gadhoumi et al., 2016). However, progress was

limited by the best data available at the time, which were

typically short human intracranial EEG (iEEG) recordings

obtained during epilepsy surgery evaluations (Mormann

et al., 2007). These recordings are rarely longer than

2 weeks in duration. Therefore, they do not provide suffi-

cient data and numbers of seizures for rigorous statistical

testing of seizure prediction algorithms (Snyder et al.,

2008). Data collected during inpatient monitoring are

also associated with antiepileptic drug dose tapering,

which shifts a patient’s brain state away from its typical

regime (Duncan et al., 1989).

In 2013, the world’s first-in-human clinical trial of an

implantable seizure prediction device, the NeuroVista

Seizure Advisory System, demonstrated the feasibility of pro-

spective seizure prediction in long-term iEEG recordings

(Cook et al., 2013). Fifteen patients with drug-resistant epi-

lepsy were implanted with the continuous recording device

for a period of between 6 months and 3 years, thus over-

coming the shortcomings of previous iEEG recordings. Some

patients in the trial achieved very high seizure prediction

performance, with the best case obtaining seizure sensitivity

of 100% for 3% time in warning. However, for some pa-

tients, especially those with greater seizure frequency, sensi-

tivity was as low as 17% and time in warning as high as

41%. To encourage new prospective clinical trials for seizure

prediction devices, it is necessary to demonstrate that im-

provements in performance relative to the original trial can

be achieved and satisfactory predictive performance is pos-

sible for a wider range of patients.

The first attempt to crowd-source prediction algorithms

was the 2014 American Epilepsy Society Seizure Prediction

Challenge (Brinkmann et al., 2016). The contest involved

data from long-term (up to 1 year) dog iEEG recordings

acquired with the NeuroVista device and short-term

(514 days) human iEEG recordings. After the contest

was completed, a follow-up evaluation of the top
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algorithms was performed using held-out data (Brinkmann

et al., 2016). The held-out evaluation with unseen iEEG

data from the same dogs revealed that the top algorithms

performed better than random prediction. However, a

pseudo-prospective evaluation was not performed. (Here a

pseudo-prospective evaluation refers to a special case of

retrospective evaluation that mimics real-life application

of the algorithms and simulates all aspects of a prospective

evaluation with continuous data collected on an ambula-

tory device but the evaluation focuses on data collected in

the past.) Nor were long-term human data available for

evaluation. Therefore, the potential clinical insights were

limited.

To overcome these shortcomings and seek improvements

in retrospective seizure prediction performance for patients

in the NeuroVista trial, the Melbourne-University AES-

MathWorks-NIH Seizure Prediction Challenge was com-

pleted in 2016. Herein, we describe the results of this

crowd-sourcing competition, which includes data from

three patients with the lowest seizure prediction perform-

ance from the NeuroVista trial. A follow-up pseudo-

prospective held-out data evaluation highlights the clinical

utility of seizure prediction for the most difficult patient

cases. We present this study as one application of crowd-

sourcing on a unique dataset. More importantly, the data

are made available to the global community to advance

epilepsy research.

Materials and methods

Subjects and data

IEEG data were recorded chronically from humans with re-
fractory focal epilepsy using the NeuroVista Seizure Advisory
System implanted device described previously (Cook et al.,
2013) (Human Research Ethics Committee, St. Vincent’s
Hospital, Melbourne – approval LRR145/13). Sixteen sub-
dural electrodes (4 � 4-contact strips) were implanted in each
patient, targeted to the presumed seizure focus (Fig. 1). The
electrode leads were tunnelled to a subclavicularly-placed
implanted telemetry unit. A rechargeable battery powered the
implanted device. Data were sampled at 400 Hz with signed
16-bit resolution and wirelessly transmitted to an external,
hand-held personal advisory device. Recorded iEEG from the
16 electrode contacts were referenced to the group average
across all electrode channels and continuously saved to remov-
able flash media. The electrode contacts were made of plat-
inum-iridium and embedded in silicon.

The three patients with lowest seizure prediction perform-
ance in the Cook et al. (2013) trial were selected for the con-
test. Patient selection was motivated by the opportunity to
show the maximal benefit of crowd-sourcing solutions.
Furthermore, it was anticipated that a demonstration of accur-
ate forecasting in the difficult patients would show that seizure
prediction is viable for a much wider range of patients than
initially thought. Many seizures (�35) per patient were made
available, providing the opportunity for machine learning algo-
rithms to be patient-specific. Given the nature of competitions

run on kaggle.com, there are limitations on the amount of data
participants can download as this can affect participation rates
and clog the platform bandwidth. The decision to study only
three patients met this constraint while providing an adequate
amount of data per patient such that accurate and reliable
algorithms could be developed by contestants. Adding more
patients to the study would have limited our ability to achieve
this.

Patient 1 was a 22-year-old female diagnosed with parieto-
temporal focal epilepsy at age 16. She was treated with the
antiepileptic drugs carbamazepine, lamotrigine, and phenytoin.
She had resective surgery prior to the trial. Patient 2 was a
51-year-old female with occipitoparietal focal epilepsy. Her
epilepsy was diagnosed at age 10. At the time of the trial,
she received carbamazepine medication. Patient 3 was a
50-year-old female. She was first diagnosed with seizures of
frontotemporal origin at age 15. She was receiving levetirace-
tam, oxcarbazepine, and zonisamide for treatment and had
undergone resective surgery prior to the trial.

Only lead seizures, defined as seizures occurring without a
preceding seizure for a minimum of 4 h, were used for each
patient (see Supplementary material for more details about
seizures). The data were divided into labelled training and un-
labelled testing sets for the contest. Held-out data were used
for follow-up evaluation of the top algorithms after the contest
had finished. To mimic practical application and avoid

Figure 1 The NeuroVista seizure advisory system.

(A) Example CT scan of the NeuroVista seizure advisory system

implanted in a patient. (B) Imaging reconstruction showing example

locations of electrodes (blue) used by the implant to record iEEG.

(C) An example seizure recorded with the 16-channel device.
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in-sample testing, testing data followed training data and held-
out data followed testing data in the recordings. To avoid
signal non-stationarities in the immediate period following
implantation of electrodes, the contest data came from the
period between 1 and �7 months after implantation, with
the remaining data used as held-out data.

For the contest dataset, preictal data clips were extracted
from the 66 min prior to lead seizures in six 10-min data
clips (allowing a 5-min gap to ensure preictal data were
used). The preictal data clips were separated by 10-s gaps.
Interictal clips were selected similarly in groups of six
10-min clips with 10-s spacing beginning from randomly se-
lected times, ensuring a minimum gap of 3 h before and 4 h
after any seizure. The mean of the signals was subtracted from
the signals. Data clips were stored as ordered structures includ-
ing sample data, data clip length, iEEG sampling frequency,
and channel indices in MATLAB format data files. Training
data files also included a sequence number indicating the clip’s
sequential position in the series of six 10-min data clips. The
temporal relationship between interictal and preictal data was
not made available to the contestants. The training and testing
data were selected to provide an adequate number of lead
seizures for both training and testing.

The held-out dataset consisted of continuous 10-min data
clips, in the range of 4 h after the previous seizure to 5 min
before a lead seizure, without any overlap. This kept the
number of held-out clips to a minimum to make it easier to
pseudo-prospectively evaluate the top algorithms within a
tractable amount of computation time. Clips between 60 min
and 5 min before a lead seizure were considered preictal and
all other clips interictal. The timing of the clips relative to
seizures was also noted. A summary of the data for each
patient and the number of clips in the training, testing, and
held-out datasets is shown in Table 1. Note there are much
more held-out data than contest data to assess out-of-sample
algorithm performance with confidence, and the held-out data
were more continuous to facilitate pseudo-prospective evalu-
ation and mimic real-life application of seizure prediction.

The contest and algorithm evaluation

The contest data clips were bundled and made available for
download on the contest page at kaggle.com (https://www.
kaggle.com/c/melbourne-university-seizure-prediction). The contest
ran from 3 September to 2 December 2016. Contestants were
permitted to develop algorithms in any computer language and
using any features, machine learning, and data processing meth-
ods they wished, but classifications were required to come directly
from an algorithm; classification by visual review was prohibited.
Contestants uploaded preictal probability scores (a floating-point
number between 0 and 1 indicating the probability of each clip

being preictal) for the testing data clips in a comma separated
values file, and immediate feedback on classification accuracy was

provided on a real-time public leader board on kaggle.com.

Contestants were permitted up to five submissions per day.

Public leader board scores were computed on a randomly
sampled 30% subset of the test data clips. Official winners

were determined by the private leader board score, which is

based on the remaining 70% of the testing data. Classification
scores were computed by Kaggle as the area under the receiver

operating characteristic (ROC) classification curve, created by

applying varying threshold values to the probability scores. This
score is referred to as area under the curve (AUC) (Fig. 2). Prizes

were awarded for first (US$10 000), second (US$6000), and third

(US$4000) place finishers as determined by the private leader

board scores. Winning teams were required to make their algo-
rithms publicly available under an open source licence.

Performance for the held-out data was also scored using AUC.

Figure 2 AUC-based evaluation of seizure prediction al-

gorithms. The performance of algorithms can be assessed through

ROC curves that plot true positive rates versus false positive rates

and computing the AUC to quantify performance. A perfect pre-

dictor has an AUC of 1. True positive rates refer to the proportion

of preictal data clips correctly classified and false positive rates refer

to the proportion of interictal data clips incorrectly classified as

preictal. In this paper, each algorithm provides a preictal probability

for each data clip and a threshold applied to a given preictal prob-

ability is used to determine if the algorithm predicts that the cor-

responding segment is preictal or interictal. This is determined for

all data clips. Different threshold values give rise to different points

on the ROC curve. The legend and coloured lines indicate example

performance levels of different algorithms.

Table 1 Data characteristics for the seizure prediction contest and held-out data experiment

Patient Recording

duration, days

Seizures Lead seizures Training clips

(% interictal)

Testing clips

(% interictal)

Held-out clips

(% interictal)

1 559 390 231 797 (69.0) 205 (74.1) 12003 (91.2)

2 393 204 186 2027 (89.2) 994 (94.0) 22630 (96.8)

3 374 545 216 2158 (88.3) 689 (91.3) 25079 (95.6)

Table structure mimics a similar table from the 2014 American Epilepsy Society Seizure Prediction Challenge publication (Brinkmann et al., 2016) to facilitate direct comparison.
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The AUC analysis of algorithms presented here largely mir-
rors that used in the 2014 American Epilepsy Society Seizure
Prediction Challenge (Brinkmann et al., 2016) in order to
facilitate comparison.

In addition to the machine learning oriented AUC-based
analysis, a clinically relevant pseudo-prospective evaluation
of the algorithms was also considered for the held-out data.
In the original trial of the NeuroVista Seizure Advisory System,
the device displayed three coloured indicator lights to indicate
the likelihood of impending seizures. A red, white and blue
light indicated a high, moderate or low seizure likelihood/
risk, respectively. A similar approach was applied here. Each
algorithm considered here provides a preictal probability for
each data clip and two (one upper and one lower) thresholds
are applied to this probability. When the probability is above
the upper threshold, high-seizure-risk predictions are generated
and high-risk (i.e. ‘red light’) warnings are given for a specified
warning duration (Snyder et al., 2008). When the probability
is below the lower threshold, low-seizure-risk predictions are
generated and low-risk (i.e. ‘blue light’) indicators are given for
a specified duration. The times of prediction were taken to be
the end time of each ‘threshold-crossing’ data clip.

Pseudo-prospective seizure prediction performance was eval-
uated with the metrics of sensitivity (proportion of seizures
correctly predicted, i.e. number of seizures occurring during
high-seizure-risk or ‘red-light’ warnings divided by the total
number of seizures) and proportion of time in warning (i.e.
proportion of time in red-light or, more specifically, the
amount of time spent in warning assuming a fixed warning
duration generated after each prediction divided by total
recording time) (Snyder et al., 2008). The goal in seizure pre-
diction is to maximize sensitivity and to minimize proportion
of time in warning. For high-seizure-risk warnings a warning
duration (Snyder et al., 2008) of effectively 1 h was used, con-
sistent with the definition of ‘preictal’ in the contest training
data (see Supplementary material for more details).

While the aim of assessing high-seizure-risk periods is clearly
important to seizure prediction, patients also want to know when
they are not going to have seizures. Therefore, as described above,
low-seizure-risk prediction (i.e. ‘blue light’ activation) was also
assessed. In particular, if patients are told they currently have a
low-risk of having a seizure (i.e. the blue light is on), then they
will be perturbed if a seizure does occur during this period. Thus,
low-seizure-risk prediction accuracy was assessed by the propor-
tion of seizures occurring during low-risk and the proportion of
time in low-risk. This effectively characterizes the false-negative
rates of algorithms. Time in low-risk was determined assuming a
3 h low-risk period duration, consistent with ‘interictal’ data in
the contest training data being at least 3 h before any seizure.

Seven of the top 10 teams, including the three winners, along
with the special case of the top performing team for Patient 3
agreed to participate in the held-out data evaluation. The top
performing team for Patient 3 was included because the other
teams’ algorithms included in held-out evaluation could not
outperform the original trial performance for Patient 3 when
evaluated on the held-out data. Each of these teams provided
detailed descriptions of their algorithms.

Statistical analysis

The Hanley-McNeil method (Hanley and McNeil, 1982) was
used to statistically assess if algorithm AUC scores were above

chance for the contest and held-out data. Moreover, a different
statistical test designed to compare AUC scores derived from
the same data (Hanley and McNeil, 1983; Mayaud et al.,
2013) was used to assess if the AUC score for the top contest
algorithm for a given held-out dataset (i.e. all the data com-
bined or the data from each of the individual patients) was
different from the AUC scores for the other algorithms
involved in the held-out data evaluation, as well as a circadian
predictor (Karoly et al., 2017). The circadian predictor was
based on pseudo-prospectively evolving seizure probability as
a function of the time of day, where a single seizure probabil-
ity was given for each hour of the day and this distribution of
seizures as a function of time of day was updated each time a
new seizure occurred. For a specific data clip, time of day was
determined and the corresponding seizure probability was then
treated as the preictal probability to make predictions.

Pseudo-prospective seizure prediction performance was com-
pared against the performance of three naı̈ve predictors:
random analytic Poisson (Snyder et al., 2008), periodic
(Winterhalder et al., 2003), and circadian (as noted above).
The random analytic Poisson predictor is an analytic method
that determines the sensitivity of a Poisson process-based
random predictor for a given proportion of time in warning.
The periodic predictor was based on making predictions using
two parameters: a fixed prediction interval and a first-predic-
tion time relative to the start of the recording period of inter-
est. Performance of the periodic predictor was evaluated over
12 prediction intervals spanning 40 min to 60 h and all pos-
sible starting times that were multiples of 10 min. This ensured
that a large range of proportion of time in warning values
were considered.

Unless stated otherwise, statistical tests with the Hanley-
McNeil, AUC comparison and analytic Poisson methods
were assessed with a significance level of 0.05 with subsequent
Bonferroni correction for multiple comparisons for the 10 082
algorithm entries.

Algorithms

Algorithms are summarized in Table 2 and listed in order of
AUC-based performance on the contest private leader board.
Algorithm categories in Table 2 are sorted based on the pro-
cessing stages of the algorithms, which begin by analysing
windows of data within each iEEG data clip to derive features
that are fed into machine learning algorithms to make esti-
mates of the probability that a given data clip is preictal.
Detailed information regarding these algorithms is provided
in the Supplementary material.

Circadian-weighted algorithms

To assess whether or not circadian information can be used to
improve the performance of the contest algorithms, circadian-
weighted versions of the algorithms considered in the held-out
evaluation were also evaluated on the held-out data. To
achieve this, for a given contest algorithm and for a given
data clip, the preictal probability of the circadian-weighted
algorithm was generated by multiplying the preictal probabil-
ity of the algorithm with the preictal probability of the afore-
mentioned circadian predictor for the corresponding time of
day. The circadian-weighted algorithms were then evaluated in
the same way as the original algorithms under the pseudo-pro-
spective evaluation framework.
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Epilepsyecosystem.org: ongoing crowd-sourcing

ecosystem for seizure prediction

Epilepsyecosystem.org (https://www.epilepsyecosystem.org) is an
evolving data and algorithm ecosystem focused on bringing
people together to solve the problem of seizure prediction.
Leveraging off of the results of the contest described here,
Epilepsyecosystem.org provides an online environment for
people to use the contest data and the source code for the top
performing algorithms to further develop improvements in seiz-
ure prediction algorithms. The core aspects of the ecosystem are
captured in Fig. 3. The main initial features of the ecosystem are
to provide (i) a Python programming language-based API to
enable users to download the contest data and independently
train algorithms; (ii) an iEEG data viewer to enable users to
visualize the data in an efficient manner; (iii) a GitHub organ-
ization at https://github.com/epilepsyecosystem where people
can access the code from the top algorithms from the contest
as well as share and discuss code and algorithms; and (iv) a
benchmarking procedure, involving an independent evaluator,
for comparing the performance of new algorithms to the per-
formance of the top algorithms from the contest. As incentive,
the top algorithms from the ecosystem will be invited to par-
ticipate in an evaluation of algorithms on the full NeuroVista
clinical trial dataset involving long-term recordings from 15 pa-
tients. Such an evaluation will help find the best seizure predic-
tion algorithms for the widest range of patients and provide
further justification for a large-scale prospective clinical trial
of seizure prediction. To find out more about how the ecosys-
tem works, visit https://www.epilepsyecosystem.org.

Data availability

The contest data used in this study are available for download at
https://www.epilepsyecosystem.org. Top performing algorithms
as determined through participation in Epilepsyecosystem.org
will be invited on an annual basis to be evaluated on the full
NeuroVista Seizure Advisory System clinical trial dataset.

Results

AUC-based evaluation

Altogether, 646 individuals in 478 teams entered the com-

petition and submitted a total of 10 082 algorithm entries.

AUC scores for the top scoring teams are listed in Table 2.

For the private leader board, 291 teams and, for the held-

out evaluation, all considered teams, showed statistically

significant performance that was greater than that of a

random classifier (P5 0.05/10 082 for significant cases;

95% confidence limit AUC of a random classifier following

correction for multiple comparisons was 0.6033 and

0.5292 for the contest and held-out data, respectively).

Moreover, for all the data in the held-out evaluation com-

bined, statistical testing found that the AUC score for first-

placed Team A was greater than the performance for

Teams C and E, but not necessarily for the other teams

or the circadian predictor (P5 0.05/10 081 for significant

cases; the AUC score for the circadian predictor was

0.7433 and the AUC scores for all teams are presented in

Table 2). A less conservative Bonferroni correction based

only on comparing Team A to the other of teams in the

held-out evaluation plus the circadian predictor found that

Team A performed better than Teams C–F (P5 0.05/8 for

significant cases). The ROC classification curves used to

derive the AUC values were qualitatively similar for the

contest and held-out evaluations (Supplementary Fig. 1).

When considering individuals, AUC scores for the held-

out data differed across patients (Supplementary Fig. 2).

For Patient 1, statistical comparison of AUC scores found

that the best contest algorithm for Patient 1 (Team F) per-

formed better than Teams A and C and circadian predic-

tion, but not necessarily the other teams (P5 0.05/10 081

for significant cases). For Patient 2, similar testing showed

that the best contest algorithm for Patient 2 (Team A) per-

formed better than Teams C, E and F, but not necessarily

the other teams or circadian prediction (P5 0.05/10 081

for significant cases). Likewise, for Patient 3, it was

observed that the best contest algorithm for Patient 3

(Team H) performed better than Teams D, E and G, but

not necessarily the other teams or circadian prediction

(P5 0.05/10 081 for significant cases). A less conservative

Bonferroni correction based only on comparing the top

team for each patient to the other of teams in the held-

out evaluation plus the circadian predictor found that

the top team for each patient performed better than

Teams A–D and circadian prediction for Patient 1,

Figure 3 A schematic illustration of the main features of Epilepsyecosystem.org.
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Teams C–F for Patient 2 and Teams C–G and circadian

prediction for Patient 3 (P50.05/8 for significant cases).

AUC performance for individual patients did not appear

to show time-dependent trends when AUC was computed

on quarterly (3-month) blocks of held-out data

(Supplementary Fig. 2). Sub-models of first placed Team

A gave varying AUC scores (Supplementary Table 1),

demonstrating the benefit of using the combination of com-

plementary models to boost performance.

Pseudo-prospective evaluation

Pseudo-prospective evaluation of seizure prediction per-

formance on the held-out data (Fig. 4A–C) shows different

contest algorithms performed best for different patients.

Many algorithms performed significantly better than both

random prediction (when corrected for multiple

comparisons based on the 10 082 algorithm entries) and

periodic prediction. Algorithms also performed better than

circadian prediction for Patient 1. The algorithms per-

formed significantly better than the algorithm from the ori-

ginal clinical trial of the NeuroVista device for Patients 1

and 2, and performance was comparable for Patient 3.

Many algorithms demonstrated impressively high propor-

tions of time in the low-seizure-risk state, with zero or close

to zero seizures occurring during low-risk (i.e. ‘blue light’)

periods (Fig. 4D–F, deep blue regions). This effectively in-

dicates low false negative rates for the algorithms.

Pseudo-prospective evaluation of seizure prediction per-

formance on the held-out data using circadian-weighted al-

gorithms (Fig. 5A–F) revealed that improvements in

performance relative to that of the original algorithms

were achieved for Patients 2 and 3, whereas the performance

for Patient 1 decreased. Comparing the analysis of low

Figure 4 Pseudo-prospective seizure prediction results for the held-out data. (A–C) Seizure prediction performances for Patients

1–3, respectively, for all competition teams considered in the held-out evaluation. The results are compared to circadian, periodic, and random

prediction, and to the original NeuroVista trial performance. The y- and x-axes correspond to sensitivity and proportion of time in warning (i.e.

time in ‘red light’ or high-seizure-risk), respectively. For the different teams, data points correspond to different preictal probability thresholds and

only data points surviving correction for multiple comparisons are plotted. The legend in A applies to A–C with teams listed in descending rank

on the private leader board. Error bars for the periodic predictor indicate the ranges of performance over all phases. (D–F) Low-seizure-risk

advisory performance for Patients 1–3, respectively, for all teams considered in the held-out evaluation as well as circadian prediction. The y- and

x-axes correspond to proportion of time in warning and proportion of time in low-risk (i.e. time in ‘blue light’), respectively. The colour bar in

D indicates the proportion of seizures occurring during low risk and applies to D–F. The purple vertical lines and numerical values overlaid on the

subplots in D–F provide, for a proportion of time in warning of 0.25, the maximum proportion of time in low-risk for which the proportion of

seizures occurring in low-risk is at most 0.05.
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seizure-risk prediction for the original (Fig. 4D–F) and cir-

cadian-weighted (Fig. 5G–I) algorithms demonstrated that

when circadian weighting improved seizure prediction

performance (i.e. for Patients 2 and 3), it also generally led

to an increase in the proportions of time in the low-seizure-

risk state with zero or close to zero seizures occurring

Figure 5 Pseudo-prospective circadian-weighted seizure prediction results for the held-out data. (A–C) Circadian-weighted

seizure prediction performances for Patients 1–3, respectively, for all competition teams considered in the held-out evaluation. The results are

compared to circadian, periodic, and random prediction, and to the original NeuroVista trial performance. The y- and x-axes correspond to

sensitivity and proportion of time in warning (i.e. time in ‘red-light’ or high-seizure-risk), respectively. For the different teams, data points

correspond to different preictal probability thresholds and only data points surviving correction for multiple comparisons are plotted. The legend

in A applies to A–C with teams listed in descending rank on the private leaderboard. Error bars for the periodic predictor indicate the ranges of

performance over all phases. (D–F) Change in held-out data performance when subtracting sensitivity of the original algorithms from the

sensitivity of the circadian-weighted algorithms for Patients 1–3, respectively. The y- and x-axes correspond to change in sensitivity (positive/

negative change indicates an increase/decrease in performance when adding circadian-weighting) and proportion of time in warning, respectively.

The legend in D applies to D–F. (G–I) Low-seizure-risk advisory performance for Patients 1–3, respectively, for all circadian-weighted algorithms

(i.e. teams) considered in the held-out evaluation as well as circadian prediction. The y- and x-axes correspond to proportion of time in warning

and proportion of time in low-risk (i.e. time in ‘blue-light’), respectively. The colour bar in G indicates the proportion of seizures occurring during

low risk and applies to G–I. The purple vertical lines and numerical values overlaid on the subplots in G–I provide, for a proportion of time in

warning of 0.25, the maximum proportion of time in low-risk for which the proportion of seizures occurring in low-risk is at most 0.05.
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(Fig. 4D–F, deep blue regions in both figures). This can also

be recognized by noting, for a proportion of time in warn-

ing of 0.25, the maximum proportion of time in low-risk

for which the proportion of seizures occurring in low-risk is

at most 0.05. The values for this are given for each algo-

rithm in Figs 4D–F and 5G–I, and generally increase for

Patients 2 and 3 for the circadian-weighted algorithms rela-

tive to the original algorithms. Thus, circadian-weighting

can help to reduce false negative rates in the appropriate

patient.

To further assess properties of the original and circadian-

weighted algorithms, the distribution of true predictions

relative to seizure onset (65 to 5 min before seizure) was

also evaluated for each algorithm for the held-out data. It

was found that many algorithms tended to produce more

true predictions between 35 and 5 min before seizure for

Patient 1, while for Patients 2 and 3 there was no clear

tendency for true predictions to be closer to seizures; how-

ever, these results are very dependent on the time in warn-

ing and the algorithm (Supplementary Fig. 3).

Discussion
We present a crowd-sourcing ecosystem (Wiener et al.,

2016) for seizure prediction involving an on-line competi-

tion, follow-up evaluation and an on-line platform,

Epilepsyecosystem.org, to obtain further improvements in

seizure prediction performance. To date, this has been a

major success based on the large number of participants

and algorithms submitted for the competition and the im-

provements in human seizure prediction observed in the

follow-up evaluation.

The key clinical finding of this study is that seizure pre-

diction algorithms were found that could provide good re-

sults for patients that previously had poor seizure prediction

performance. This suggests it may be possible to provide

seizure prediction to a wider range of patients than previ-

ously thought. Patients on whom prediction algorithms had

unsatisfactory performance in the earlier trial (Cook et al.,

2013) could achieve pseudo-prospective performance better

than random and periodic predictors and as good as, or

better than, circadian predictors when considering either

the original algorithms or their circadian-weighted versions.

Moreover, using the same benchmark dataset, different al-

gorithms demonstrated best performance for different pa-

tients, again suggesting that seizure prediction algorithms

should be patient-specific.

Pseudo-prospective sensitivity of the algorithms was much

better than the results from the original NeuroVista trial

(Cook et al., 2013) for the same time in warning for

Patients 1 and 2. Performance for Patient 3 was comparable

to the original trial. This is possibly due to Patient 3 having a

much higher seizure frequency (43.7 seizures/month) than the

other patients (520.9 seizures/month). A greater seizure fre-

quency may indicate a greater number of different preictal

states, making it more difficult to distinguish preictal and

interictal states. Seizure frequency appears to be an important

factor that affects seizure prediction performance given that

patients with the lowest seizure frequencies gave the best pre-

diction performance in the original trial (Cook et al., 2013).

In addition, electrode location and sampling of the epileptic

network may affect prediction performance. The difficulty to

predict seizures for the patients considered here may be due to

complex epileptic networks, as indicated by poor post-resec-

tive surgery outcomes for Patients 1 and 3, and widespread

seizure morphology for Patient 2 (Cook et al., 2013).

To see if performance for Patient 3 could be improved,

the special case of the best team for Patient 3 on the private

leader board data (Team H) was also considered. Figures

4C and 5C show that the best algorithm for Patient 3 on

the private leader board was also the best for Patient 3 on

the held-out data; however, performance only slightly ex-

ceeded that of the original trial for the circadian-weighted

version of the algorithm. It should be noted that the ori-

ginal trial only evaluated performance on a 4-month period

and was able to optimize evaluation parameters on the

training data. Here, the algorithms have been evaluated

on much more data (49 months) and evaluation param-

eters, such as the warning duration (Snyder et al., 2008),

were restricted based on the format of Kaggle.com compe-

titions. This format essentially required that a fixed preictal

period be defined for all patients, whereas for each patient,

the optimal preictal period may differ. These differences

mean that the original trial had more flexibility to find an

optimal result. Overall, the new results showed significant

improvement over the original trial results.

Comparison against naı̈ve predictors was generally favour-

able for the contest algorithms. One exception was circadian

prediction, which achieved better sensitivities than the original

algorithms for certain proportions of time in warning for

Patient 2 (Fig. 4B). However, in this case the low-seizure-risk

advisory performance was worse for the circadian

predictor (Fig. 4E). For example, for a proportion of time

in warning of 0.25, the maximum proportion of time in

low-risk resulting in zero seizures during low-risk was 0.32

and 0.04 for Team A and circadian prediction, respectively.

Statistical comparison of AUC scores with a very conserva-

tive correction for multiple comparisons based on all the

submitted contest algorithms showed that the best original

contest algorithm for Patient 1 performed better than cir-

cadian prediction, whereas the performance of the best ori-

ginal algorithms for Patients 2 and 3 could not be

statistically distinguished from circadian prediction. On

the other hand, when using a less conservative correction

for multiple comparisons based on all the teams considered

in the held-out evaluation and circadian prediction, the best

algorithms for a given patient performed better than circa-

dian prediction for Patients 1 and 3. Moreover, when com-

paring the performance of the circadian-weighted and

original versions of the contest algorithms, circadian-

weighting boosted pseudo-prospective performance for

Patients 2 and 3 but not Patient 1. Taken as a whole,

these results indicate that circadian prediction and
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circadian-weighting are important factors to consider in the

design of seizure prediction algorithms; however, this is

dependent on the patient and the statistical evaluation par-

ameters (Karoly et al., 2017). It is also likely to be depend-

ent on the circadian-weighting method used. In addition,

circadian prediction is only possible in patients with high

enough seizure frequencies to ensure seizure probability as

a function of time of day can be characterized. On the

other hand, the machine-learning-based prediction algo-

rithm applied in the original NeuroVista trial was shown

to produce high prospective seizure prediction performance

for patients with low seizure frequency (Cook et al., 2013).

Thus, the machine learning-based contest algorithms shown

here are potential candidates that may also work well for

patients with low seizure frequency.

Considering technical implementation approaches, the 2014

American Epilepsy Society Seizure Prediction Challenge

demonstrated that useful predictive features included spectral

power in discreet frequency bands and also in time domain

and/or frequency domain inter-channel correlations, while sup-

port vector machines were most commonly used to estimate

the preictal probability of data clips based on the predictive

features (Brinkmann et al., 2016). For the current contest,

similar features were also predictive of seizures (Table 2). In

addition, less common features were used, such as fractal di-

mension, Hurst exponent, and Hjorth parameters. Contrasting

the methods used to estimate the preictal probability of data

clips with methods of the previous contest, a greater number

of decision tree-based machine learning algorithms, such as

extreme gradient boosting, were employed by the top teams,

although support vector machines and deep learning

approaches, such as convolutional neural networks (Kiral-

Kornek et al., 2018; Truong et al., 2018), also played a role.

As was observed for the previous contest, AUC perform-

ance remained reliable for six of the eight teams considered

for the much larger held-out set (less than a 10% change in

performance relative to the contest test set). In a clinical

setting, stable performance is a promising indication that

algorithms can remain reliable for long-term use in seizure

advisory systems. Differences in training (such as training

separate algorithms for each patient versus training an algo-

rithm on the data from all patients combined) or overfitting

the contest data may be the reasons for the reduction in

performance for the other two teams. To make reliable al-

gorithms, this suggests care should be taken to make algo-

rithms patient-specific and not to overfit data during training

by using appropriate techniques (Witten et al., 2016).

The strength of the presented results for the patients

whose seizures have previously been the most difficult to

predict, strongly suggest it is time for a larger scale trial.

These results underscore the importance of long-term moni-

toring for reliably evaluating a patient’s epilepsy and pre-

dicting their seizures. The outcomes suggest a clinical

solution where an army of algorithms is trained for each

patient and the best algorithm is chosen for prospective,

real-time seizure prediction. This could be achieved by re-

cruiting crowd-sourced solutions into the pool of best

algorithms deployed on a seizure prediction platform.

This work presents pseudo-prospective seizure prediction

results, which should be taken to be hypothesis generating,

i.e. providing an indication of which algorithms to imple-

ment in a larger prospective clinical trial of a seizure pre-

diction device. Future work is needed to assess prospective

performance of the considered algorithms and the role

these algorithms may play in multimodal systems that

seek to improve seizure prediction performance by going

beyond considering EEG (Dumanis et al., 2017).

To aid in the push for a larger scale trial, this paper sets

forth a crowd-sourcing ecosystem (Wiener et al., 2016) for

seizure prediction that will yield further improvements in

seizure prediction. This will be achieved by making the

contest data and the sharing and benchmarking of algo-

rithms available through the aforementioned https://www.

epilepsyecosystem.org, described in the ‘Materials and

methods’ section and Fig. 3. The algorithms from the con-

test provide an initial benchmark to find even better seizure

prediction methods. Moreover, annual evaluation of the

best algorithms in the ecosystem on the full NeuroVista

trial dataset will ensure the best algorithms can be found

for the widest range of patients. Evaluation of performance

on the full trial dataset will also include weighting of algo-

rithms by (time-varying) factors, such as circadian and

other multidien information (Baud et al., 2018), interictal

spike rates and/or temperature of each patient’s local region

of residence. This will help to find new ways to tailor pa-

tient-specific algorithms. In addition, performance will be

evaluated on different seizure types within a patient (Payne

et al., 2018) to give insight into the role seizure types play

in seizure prediction. This ecosystem provides an excellent

approach for raising the standards of reproducibility and

comparison of findings in the field of seizure prediction by

way of encouraging worldwide competition, collaboration

and synergism on a unified platform using high quality

long-term human iEEG data.
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