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Oncolytic virotherapy is a relatively novel 
and increasingly examined strategy to 
combat various tumor types including 
those of the CNS [1]. In this approach, 
replication-competent viruses are engi-
neered to specifically infect and replicate in 
cancer cells, while normal cells are spared. 
In the process of progeny particle release, 
tumor cells are killed and tumor-associated 
antigens are released. Exploiting their self-
perpetuating and replicative nature, onco-
lytic viruses (OVs) can spread throughout 
the tumor, ideally leading to complete 
tumor destruction by anti-tumor immune 
activation, disruption of tumor blood sup-
ply, and virally encoded therapeutic trans-
genes in addition to direct oncolysis [2]. 
Several oncolytic agents have recently pro-
gressed to advanced efficacy trials for solid 
non-CNS tumors, including the pioneer-
ing herpes simplex virus (HSV) talimogene 
laherparepvec, which may be the closest 
to receiving US FDA approval for intra
tumoral treatment of malignant melanoma 
[101]. Local administration is also applicable 
for oncolytic virotherapy of gliomas, for 
which viral infusions into the tumor or 
the resection cavity are performed either 

by free-hand [3] or convection-enhanced 
delivery [4]. 

Phase I/II trials have been carried out 
using OVs for the treatment of glioblastoma 
(GBM), and different viral species and 
strains have been utilized. Some have been 
chosen on the basis of their natural onco
tropism, as in the case of Newcastle disease 
virus administered intravenously [5] or the 
Dearing strain of reovirus (named Reo-
lysin®; Oncolytics Biotech, Inc., Calgary, 
Canada) administered intratumorally [6]. 
Other OVs are genetically modified to 
ensure tumor-specific replication: examples 
include the adenovirus ONYX-015 with 
deletions in the early genes E1B and E3 [3], 
or HSVs G207 [7], G47Delta [8], HSV1716 
[9] or rQNestin34.5 [10] with mutations 
that attenuate the virus so that it replicates 
primarily in tumor cells. All these viruses 
have been administered into the tumor or 
peritumorally.

All trials of OV therapy for GBM so far 
have shown relative safety even at the high-
est administered doses. In fact, evidence 
for a maximum tolerated dose has not been 
currently shown in any of the published 
trials. These safety data are especially 
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encouraging in the context of intratumoral 
injection of gliomas, where no signs of focal or 
diffuse viral encephalitis have been observed. 
Furthermore, OV transmission to others in con-
tact with treated subjects has not been observed 
[11], despite the occasional detection of viral shed-
ding in saliva, urine and feces [5–7]. Regardless, 
monitoring for serious adverse events remains 
paramount as manufacturing techniques are 
allowing for administration of even higher doses 
of OVs and new, more potent, OVs are being 
engineered and tested. 

Since the power for detection of efficacy is 
nonexistent in early-stage clinical trials, reports 
of benefit remain anecdotal. For instance, one 
out of 11 patients treated intravenously with 
multiple doses of Newcastle disease virus was 
reported to exhibit a complete remission accom-
panied by an improved neurological status lead-
ing to discontinuation of corticosteroid therapy. 
However, within 3 months, histologically con-
firmed GBM regrew [5]. Similarly, one out of 
12 patients participating in a trial establishing 
safety of a reovirus experienced stable disease for 
39 weeks after a single dose of Reolysin® (Onco-
lytics Biotech, AB, Canada) until the astrocy-
toma eventually progressed [6]. As expected, 
subjects with grade III astrocytomas survived 
longer than those with GBM after virotherapy, 
but this is more likely owing to the more favor-
able behavior of the lower grade tumor [6,9,12]. 
Overall, all trials using an OV as a single agent 
provide hints of a therapeutic effect, but further 
improvements in virus design and/or delivery 
are required.

Currently, a series of new OVs are being 
tested. In addition to a Phase  I/II trial using 
the rat parvovirus H-1 [13], a dose-escalation 
study investigating the genetically engineered 
poliovirus PVS-RIPO for intratumoral infusion 
into recurrent GBM was initiated in January 
2012. This virus relies on entering cells via the 
nectin-5 receptor, overexpressed in GBM and 
other malignancies. It has also been engineered 
to be non-neuropathogenic by exchange of the 
translation-regulating sequences of poliovirus 
with those of human rhinovirus 2 [14]. Another 
OV consists of Delta24-RGD, an engineered 
adenovirus that selectively replicates in pRB-
deficient tumor cells and also enters via surface 
integrins [15]. This OV is currently under inves-
tigation in two early clinical trials in humans 
with GBM [102]. Clinical trials for GBM with a 
measles virus are currently ongoing [103].

Several challenges remain before OV therapy 
shows meaningful efficacy. For instance, OV 
replication within tumors appears to be relatively 
low [7]. A possible explanation for low levels of 
viral replication may be the effects of the innate 
immune system, which attempts to limit the 
initial phases of OV infection and replication 
within tumors [16–18]. OV biodistribution and 
spread throughout the tumor may also be an 
issue. Spread throughout the tumor could be 
improved using slow and continuous infusions 
with a microcatheter [19]. To increase spread 
through the tumor stroma, OVs have been 
engineered with transgenes that can dissolve 
components of the extracellular matrix, such as 
hyaluronidase [20] or chondroitinase ABC [21]. 
Alternatively, virus species with intrinsic proper-
ties beneficial for movement through the tumor 
may be chosen, such as measles viruses spread-
ing via cell fusion or vaccinia viruses via drilling 
themselves into neighboring cells with an actin 
tail [1]. Finally, tumor infection selectivity could 
be increased by redirecting OV tropism towards 
molecules expressed on the tumor surface [1].

Clearly, the immune system influences viro-
therapy. It could pose a barrier to viral deliv-
ery and replication, but it can also support 
tumor clearance when directed toward tumor-
associated antigens rather than viral epitopes. In 
fact, the two OVs that have progressed the fur-
thest in clinical trials, talimogene laherparepvec 
and the vaccinia virus JX-549, actively express 
granulocyte–macrophage colony-stimulating 
factor to provoke anti-tumor immunity after 
infection. Malignant melanoma, known to be 
highly susceptible to immunotherapies, appears 
to respond particularly well to these OVs. How-
ever, other tumor types, such as GBM, could 
also benefit from oncolysis-mediated cross-
priming of tumor antigens and immunostim-
ulation by virally encoded cytokines [22]. The 
temporal sequence of modulating the innate 
immune system to initially allow OV replica-
tion and lysis, followed by restimulation of the 
innate and adoptive immune responses with a 
lysed tumor antigen ‘debris’ field is thought to be 
the appropriate strategy to achieve OV efficacy.

Another approach consists of combination 
therapies in which the OV is one component 
of a multimodal regimen. This can include 
arming of viruses with prodrug convertases 
able to activate innocuous prodrugs into active 
chemotherapeutic metabolites that can not only 
kill infected tumor cells, but also uninfected 
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neighboring tumor cells [23,24]. The most popu-
lar systems consist of HSV thymidine kinase 
plus gancyclovir (or derivatives) and bacterial or 
yeast cytosine deaminase plus 5-fluorocytosine. 
In fact, a nonlytic replicating retrovirus Toca-511 
expressing an optimized cytosine deaminase is 
currently under clinical investigation for glioma 
therapy in combination with 5-fluorocytosine 
[25]. Importantly, OVs are able to synergize with 
radiation or chemotherapies offering a plethora 
of combination regimens to be evaluated in the 
future. Promising results from a scheme unit-
ing glioma surgery, adenoviral oncolysis, thymi-
dine kinase-mediated valacyclovir activation and 
radiotherapy achieved median overall survival 
of 12.4 months [12] encourage the development 
of other complex protocols. Of note, tumor 
killing may also be augmented by combining 
two OVs selected to complement each other’s 
effect: in a seminal study, a vaccinia virus and a 
vesicular stomatitis virus were effectively com-
bined and viral yields in human brain cancer 
tissue samples could be increased up to 1000-
fold [26]. Additional synergies between these 
and other virotherapeutics are certainly worth 
investigating. Combination therapies not only 
offer a way to enhance efficacy, but could also 
solve the heterogeneous responses of tumors to 
single agents.

Ultimately, the field will benefit considerably 
from developing OV platforms for efficient sys-
temic delivery to allow convenient repeated dos-
ing and treatment of distant metastases. Multiple 
factors have hampered the success of intravenously 

administered OVs, including sequestration in 
the liver and spleen as well as neutralization by 
complement and antibodies [27–29]. Strategies to 
overcome this include pharmacologic agents [30], 
chemical modification of the viral surface typi-
cally using polyethylene glycol or clodronate, 
chimeric viruses displaying neutralizing epitopes 
of alternative noncrossreactive serotypes [31], or 
viral strains naturally evolved for blood-borne dis-
semination. Another promising strategy relies on 
mesenchymal stem cells or other cells with tumor-
homing capacities as ‘Trojan horses’ to carry OVs 
to the tumor, thus rendering viral particles invis-
ible to neutralizing serum factors [1]. Importantly, 
this strategy has been shown to be suitable for 
CNS applications when neural stem cells were 
used to deliver a conditionally replicating adeno-
virus to glioma xenografts in nude mice [32]. All 
these approaches provide a toolkit to improve 
the outcome of oncolytic virotherapy of gliomas. 
Viral engineering, immunomodulation and com-
bination therapies are yet to be fully exploited for 
progress in this clinically young field. 
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