
part of

495ISSN 2045-090710.2217/CNS.13.48 © 2013 Future Medicine Ltd CNS Oncol. (2013) 2(6), 495–510

1Life & Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal 
2Life & Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal 
3Divisions of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, UK 
4Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK 
*Author for correspondence: Tel.: +351 253604837; Fax: +351 253604831; bfmcosta@ecsaude.uminho.pt

 � Glioblastoma multiforme (GBM) is the most frequent and lethal tumor of the CNS, for which curative 
therapies are not available. Classic prognostic factors such as patient’s age and performance status, together 
with tumor characteristics, including grade and molecular features, predict survival in GBM patients.

 � The methylation status of the MGMT gene promoter and mutation in IDH1 and IDH2 genes are among 
the most promising prognostic biomarkers in GBM.

 � GBMs may be stratified into four molecular subtypes – classical, mesenchymal, proneural and neural – 
each displaying different underlying genetic alterations and gene expression signatures. The assessment 
of the subtype of each GBM might be important while designing therapeutic approaches.

 � A variety of putative prognostic biomarkers have been identified in adult GBM patients. Some examples 
include the presence of mutations or the expression levels of receptor tyrosine kinases, growth factors 
and intracellular targets (e.g., PI3K); miRNA gene signatures; and serum concentrations of the YKL‑40 
protein. More recently, the expression of HOX and cancer stem cell‑associated genes, and loss of 
chromosome 10 were suggested as novel putative biomarkers predictive of survival in adult GBM, but 
further studies are required to validate their value.

 � Mutations in the H3F3A gene are specific to pediatric GBMs, highlighting that pediatric and adult GBMs 
present a distinct underlying biology. H3F3AK27M mutant tumors have a significantly shorter overall 
survival than H3F3AG34R/V or wild‑type tumors.

 � The fast‑accumulated knowledge on new putative biomarkers of GBM aggressiveness and prognosis 
holds reason for both optimism and caution. While many of these biomarkers have been validated in 
independent studies, their clinical applicability to highly heterogeneous GBMs is still limited.
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SUMMARY Gliomas account for the majority of primary tumors of the CNS, of which 
glioblastoma (GBM) is the most common and malignant, and for which survival is very 
poor. Despite significant inter‑ and intra‑tumor heterogeneity, all patients are treated with 
a standardized therapeutic approach. While some clinical features of GBM patients have 
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Tumors of the CNS comprise of a broad variety 
of entities, which range from benign to highly 
malignant. Typically, their classification is based 
on their location and histopathological features 
[1]. Gliomas are the most frequent CNS pri-
mary tumors in adults, whose main histologi-
cal subtypes include astrocytomas, oligoden-
drogliomas and ependymomas. Astrocytomas 
represent approximately 70% of all diagnosed 
gliomas, and are graded from I to IV according 
to the WHO [1]. Of these, glioblastoma mul-
tiforme (GBM; WHO grade IV) is the most 
frequent and lethal, accounting for more than 
50% of all glial tumor types, with an estimated 
global incidence rate of approximately five per 
100,000 people/year [2]. GBMs are characterized 
by rapid growth and diffuse invasiveness of the 
adjacent brain parenchyma, and their histopath-
ological features include cellular polymorphism, 
mitotic activity, nuclear atypia, vascular throm-
bosis, microvascular proliferation and marked 
necrosis [1]. Despite several efforts, the treat-
ment for GBM remains mostly palliative, with 
a median survival of only 15 months [3]. Stan-
dard treatment uses a combination of maximum 
surgical resection, radiation, and concurrent and 
adjuvant chemotherapy with the alkylating agent 
temozolomide [3]. Molecular stratification with 
biomarkers predictive of patient response and 
outcome may prove crucial in rationalizing treat-
ment decisions. Currently, the most consistently 
reported and best-established prognostic factors 
include patient age and performance status, 
tumor grade and histology, and extent of surgi-
cal resection (Box 1) [4–6]. Age is among the most 
consistent variables associated with GBM patient 
survival, as older patients fare worse than young 
patients [4,5,7]. In addition, patients that present 
higher Karnofsky performance status scores have 
increased overall survival and better responses to 
chemotherapy [5–7]. Among the intrinsic tumor 
characteristics, gliomas of higher WHO grades 
of malignancy typically have shorter surviv-
als than those of lower grades [8]. Clinically, 
the extent of tumor surgical resection has also 
been reported as crucial on influencing GBM 
patient prognosis, as more complete resections 

are associated with better outcomes [4,6,7]. In 
this sense, these classic factors must be clearly 
assessed when assigning patients for randomized 
clinical trials, but may also be crucial in aiding 
clinicians in the refinement of treatment deci-
sions. Nonetheless, in the last decade, studies 
have identified molecular features that might be 
prognostically valuable [9–32]. The current most 
relevant prognostic biomarkers in GBM are 
summarized in Figure 1 and Box 2, and the most 
promising ones will be discussed.

MGMT promoter methylation status
The methylation status of the MGMT gene pro-
moter region has been shown by many studies as 
one of the most promising prognostic biomarkers 
in GBM, although it has not yet reached world-
wide clinical applicability [21,33]. MGMT encodes 
a DNA repair enzyme that removes alkyl groups 
from the O6 position of guanine, an important 
site for DNA alkylation after treatment of tumor 
cells with alkylating agents. If left unrepaired, 
these lesions trigger cytotoxicity and apoptosis 
leading to cell death [34]. Two groups showed 
that epigenetic silencing of MGMT by promoter 
methylation induced loss of MGMT expression 
[35,36], and, therefore, reduced DNA repair activ-
ity. Thereafter, Hegi et al. showed that this silenc-
ing leads to increased sensitivity of the tumor cells 
to temozolomide treatment [21]. This sensitivity 
translated into differences in patient survival, 
with MGMT methylation being associated with 
greater overall survival (median: 21.7 months), 
as well as higher 2-year survival rates (46%), in 
comparison with patients with unmethylated 
MGMT (median survival: 12.7 months; 2-year 
survival: 13.8%). This landmark study suggests 
that MGMT promoter methylation is an inde-
pendent and favorable prognostic biomarker in 
GBM patients, and predictive of response to 
temozolomide [21]. A follow-up study by Stupp 
et al. evaluated adult patients with newly diag-
nosed GBM, who were treated with standard 
radiotherapy or radiotherapy combined with 
concomitant and adjuvant temozolomide [37]. 
In this study, the methylation status of MGMT 
was evaluated in 206 patients from both cohorts 

already been established as classic prognostic factors (e.g., patient age at diagnosis and 
Karnofsky performance status), one of the most important research fields in neuro‑oncology 
today is the identification of novel molecular determinants of patient survival and tumor 
response to therapy. Here, we aim to review and discuss some of the most relevant and 
novel prognostic biomarkers in adult and pediatric GBM patients that may aid in stratifying 
subgroups of GBMs and rationalizing treatment decisions.
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and revealed to be a strong predictor of patient 
outcome and response to chemoradiation [37]; 
patients with a methylated MGMT promoter 
not only presented longer survivals than patients 
with unmethylated MGMT, but also seemed to 
benefit more from combined chemoradiotherapy 
[37]. The value of MGMT methylation status is 
also supported by a recent clinical trial compar-
ing radiotherapy and temozolomide-based treat-
ment in elderly patients [38]. This reported an 
association between good outcome and MGMT 
methylation in the temozolomide cohort, but not 
in the radiotherapy cohort [38]. These results were 
further supported by another study showing that 
elderly GBM patients presenting with methyl-
ated MGMT promoters and treated with temo-
zolomide had a significantly longer survival than 
those who did not present with MGMT promoter 
methylation, or those on the radiotherapy branch 
irrespective of MGMT promoter methylation [39]. 
Thus, the authors of both reports state that treat-
ment decisions for elderly GBM patients would 
be aided by assessing MGMT promoter methyla-
tion [38,39]. A meta-analysis performed by Olson 
et al. that included 20 different studies and a 
total of 2018 patients, showed that silencing of 
MGMT expression was highly associated with 
improved overall survival in patients receiving 
adjuvant chemotherapy, a mild association in 
patients that received adjuvant radiotherapy 
and no benefit in those submitted to surgery 
alone [40]. Nonetheless, other reports have not 
supported a statistically significant association 
between MGMT methylation and survival. For 
example, a study by Costa et al. that analyzed the 
methylation status of MGMT in a set of 90 GBM 
patients treated with postoperative temozolo-
mide-based chemoradiation, observed a trend 
for longer progression-free and overall survival 
in GBM patients presenting with MGMT pro-
moter methylation, but the differences did not 
reach statistical significance [15]. Similar results 
were observed in other studies and reviewed by 
Costa et al. [15]. Another study by van der Bent 
et al. also showed that the methylation status of 
MGMT did not present prognostic significance 
in GBM patients, and was not able to predict 
the responses to adjuvant procarbazine, lomus-
tine and vincristine chemotherapy [41]. This is 
mainly due to the heterogeneity of the study par-
ticipants, not only with respect to grade, histol-
ogy and treatment, but also analysis of MGMT 
mRNA expression, methylation status and pro-
tein levels [15]. Moreover, sample classification as 

methylated or unmethylated for a certain gene 
is still debatable, as the relationship between 
the CpG methylation at individual sites; over-
all CpG island methylation and their effects on 
gene silencing is highly dependent on the loca-
tion within the gene [42]. Bady et al. evaluated 
the relationship between MGMT expression, 
the specific location of CpG methylation and 
the outcome of patients treated with alkylating 
agents [43]. In this study, two regions of methyl-
ated CpGs negatively correlated with MGMT 
gene expression, and were strongly associated 
with patient survival [43]. This is consistent with 
MGMT expression silencing via CpG methyla-
tion, leading to sensitization to alkylating agents 
[43]. Similarly, Shah et al. also identified three 
regions of methylated CpGs on MGMT that cor-
relate with favorable patient progression-free sur-
vival, within a population of 44 GBM patients 
treated with radiotherapy and concomitant and 
adjuvant temozolomide [44].

Although the accumulated knowledge on 
MGMT has increased in the last few years, its 
true clinical significance remains unclear. In 
fact, MGMT methylation status is not yet typi-
cally used by clinicians to aid in therapy deci-
sions. Therefore, it is still important to conduct 
novel clinical trials in prospectively followed 
patients, and by investigating different drugs 
and dosages. Indeed, MGMT depletion using 
pseudosubstrates, such as O6-(4-bromophenyl)
guanine or O6-benzylguanine, may be able to 
improve GBM patient response to temozolo-
mide therapy. If so, overcoming temozolomide 
resistance due to MGMT promoter methylation 
will be a major advance in GBM therapy. In the 
next few years our understanding of MGMT 
prognostic value and its ability to predict tumor 
response to different therapies will be very much 
improved due to the ongoing clinical trials, 
which may definitively establish it as a major 
biomarker for GBM patient management.

Box 1. Selected clinical prognostic markers 
for glioblastoma.

Classic prognostic factor
 � Age [4,5,7]

 � Performance status [4–7]

 � Mental status [4]

 � Symptoms [143]

 � Extent of surgical resection [4,6,7]

 � Tumor location [5]

 � Histological grade [8]
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IDH mutations
Recent genomic studies revealed the presence of 
mutations in IDH1 and IDH2 genes (IDH when 
referring to both) as important prognostic fac-
tors for GBM [28,45,46]. These NADP-dependent 
enzymes are able to catalyze the oxidative decar-
boxylation of isocitrate to α-ketoglutarate, with 
the simultaneous production of NADPH [47]. 
High-throughput sequencing studies of GBM 
revealed a new IDH1 mutation, consisting of 
changing a guanine to an adenine at position 
395 of the gene (G395A), thus leading to the 
replacement of an arginine with a histidine at 
residue 132 of the protein (R132H) [28]. This 

heterozygous and somatic mutation was found in 
12% of all GBM patients. Similarly, the evalua-
tion of the IDH2 exon sequence revealed a point 
mutation changing a guanine to an adenine at 
position 515 of the gene (G515A), causing the 
substitution of an arginine to a lysine at residue 
172 (R172K). This is analogous to the R132 
residue in IDH1 [45]. IDH mutations are highly 
frequent in secondary GBM (up to 80%), but 
are rare in primary GBM (less than 10%) [45,48]. 
Importantly, IDH mutations occur more fre-
quently in younger patients, and are associated 
with greater patient survival [45,49,50]. In addi-
tion to demonstrating the capacity of IDH1 
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Figure 1. Current putative prognostic biomarkers in glioblastoma. The deregulation of receptor tyrosine kinase pathways leads to 
aberrant intracellular signaling, including the PI3K pathway, that, among other effects, induces the transcription of genes responsible 
for sustaining several cancer hallmarks (e.g., HOX genes). Loss of PTEN function by mutation or loss of heterozygosity has been 
correlated with poor glioblastoma multiforme (GBM) patient survival. MGMT expression and promoter methylation levels are markers 
of GBM patient prognosis. Mut IDH1R132H and IDH2R172K enzymes are able to convert α‑KG into 2‑HG, and GBM patients with tumors 
presenting IDH mutations have longer survival. Deregulation of several miRNAs has been implicated in both the initiation and 
progression of GBM, and many have been reported to present prognostic value. YKL‑40 is produced by GBM cells and released into 
the serum, where its levels are predictive of an aggressive phenotype and associated with poor overall patient survival. Mut H3F3AK27M 
is highly specific to pediatric GBM, and associates with worse prognosis in these patients. Green and orange boxes indicate loss or 
increased function, respectively. Blue boxes indicate mut IDHs and H3F3A. 
2‑HG: 2‑Hydroxyglutarate; α‑KG: α‑ketoglutarate; Mut: Mutant; RTK: Receptor tyrosine kinase.
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mutations on distinguishing anaplastic astro-
cytomas and GBMs into clinically meaningful 
prognostic subgroups, a report by Hartmann 
et al. showed that the distribution of IDH1 
mutations is associated with patient’s age, thus 
impacting the prognosis of high-grade astrocy-
toma patients [51]. Interestingly, in grade III ana-
plastic astrocytoma patients over 60 years old, 
the absence of IDH1 mutations was associated 
with low overall survival, which was compara-
ble with the overall survival of grade IV GBM 
patients with wild-type IDH1 [51].

IDH1 and IDH2 mutations are mutually 
exclusive and generally associate with specific 
genetic and clinical characteristics, when com-
pared with gliomas that present wild-type IDH. 
Particularly, it was shown that IDH mutations 
and amplification of EGFR in GBMs are mutu-
ally exclusive events [50], and that IDH muta-
tions are often associated with the methylation 
of the MGMT gene promoter [50,52]. However, 
these associations are yet to be clarified as they 
might represent a direct consequence of the 
mutant IDH activity, or alternative markers for 
epigenetic changes in tumors presenting IDH 
mutations [53]. Therefore, the understanding 
of the link between common genetic events 
and IDH mutations in GBMs might provide 
insights into their roles in gliomagenesis [45,54]. 
Dang et al. showed that cells presenting the 
IDH1R132H mutation have the capacity to reduce 
α-ketoglutarate into 2-hydroxyglutarate, while 
converting NADPH to NADP+, which contrib-
utes to tumorigenesis [55]. Some hypotheses have 
been raised on how the mutant IDH may con-
tribute to gliomagenesis; for example, as dioxy-
genases require α-ketoglutarate as cofactors and 
its structure is similar to 2-hydroxyglutarate, 
the former may compete for the binding site of 
dioxygenases, thus inhibiting their activity [56]. 
An example of dioxygenases critical in the con-
text of cancer are PHDs, which are dependent on 
α-ketoglutarate, and is responsible for the nega-
tive regulation of HIF-1α; a transcription factor 
that stimulates tumor growth under hypoxic 
conditions by modulating apoptosis, cell survival 
and angiogenesis [57]. In addition, the production 
of 2-hydroxyglutarate by mutant IDH inhibits 
Jmjc domain-containing histone demethylases 
[58] and TET 5-methylcytosine hydroxylases 
[56], leading to altered genome-wide histone 
and DNA methylation. Mutant IDH may also 
contribute to gliomagenesis by increasing DNA 
methylation, an effect termed glioma-CpG 

island methylator phenotype (G-CIMP; as dis-
cussed in the ‘Glioma-CpG island methylator 
phenotype’ section).

Although the understanding of IDH muta-
tions is far from complete, its incorporation 
into prognostic models might possibly improve 
the clinical management of a subset of glioma 
patients. Furthermore, a recent study by Song-
tao et al. evaluated the response of 86 secondary 
GBMs to temozolomide treatment, and associ-
ated several markers of GBM (including IDH 
mutations and MGMT promoter methylation 
status) with overall and progression-free survival 
[59]. In this study IDH mutations were found in 
73.4% of patients, and an association between 
these mutations and higher progression-free sur-
vival was implied [59]. These authors found that 
patients presenting IDH mutations and MGMT 
promoter methylation had a better response to 
temozolomide treatment, and that IDH muta-
tions may increase chemosensitivity in second-
ary GBMs [59]. In addition, the possibility of 
therapeutically targeting mutant IDH proteins 
is conceptually feasible, and might be a strategy 
to specifically target tumor cells. In fact, very 
recent studies used small molecule inhibitors 
of the most common IDH mutants in acute 
myeloid leukemia (IDH2R140Q) [60] and in glio-
mas (IDH1R132H) [61]. The treatment of a patient-
derived oligodendroglioma cell line harboring 

Box 2. Selected molecular prognostic markers for glioblastoma.

Molecular prognostic marker
 � MGMT promoter methylation [21,38,40,43,44]

 � IDH1 and IDH2 mutations [28,45,49,59]

 � Loss of chromosome 10 [27,123]

 � Activation of the PI3K/AKT pathway [14,29,96]

 � Aberrant p53/RB pathway [12,32,129]

 � HOX gene signatures [19,26]

 � HOXA9 overexpression [17,19]

 � CHI3LI (YKL‑40) expression [22,27]

 � Single miRNA/miRNA expression signatures [67–77]

 � EGFR expression/EGFR mutation (EGFRvIII) [9,20,25,26,84–87]

 � PTEN expression (wild‑type) [25]

 � Molecular signatures [30,54]

 � MET overexpression [23]

 � High expression of angiogenic genes (e.g., VEGF and VEGFR) [30,94]

 � Stem cell‑like gene expression signatures [10,11,24,26,119–122,137]

 � Activation of MAPK members [29]

 � Glioma‑CpG island methylator phenotype [52,63]

 � NFKBIA deletion [13]

 � PTEN and DLL3 expression [30]

 � H3F3A mutation [31]
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IDH1R132H with the small molecule inhibitor 
AGI-5198 reduced growth in soft agar, and 
inhibited the growth of xenograft tumors derived 
from that cell line [61]. At the genome-wide level, 
several genes associated with glial differentia-
tion were found to be upregulated and to have 
lost repressive histone marks at their promoter, 
indicating the putative capacity of IDH1 mutant 
inhibitors to erase histone modifications [61]. In 
the acute myeloid leukemia study, the treatment 
with AGI-6780 of an erythroleukemia cell line 
expressing IDH2R140Q lowered the 2-hydroxyglu-
tarate production nearly to physiological levels, 
and the treatment of patient-derived samples 
induced differentiation of leukemic blasts in 
samples harboring IDH2R140Q [60]. However, one 
must take into account the fact that, although 
promising, these targeted drugs will be a lim-
ited approach in primary GBM patients due to 
the low frequency of these mutations, as well as 
due to the high intratumor heterogeneity that 
characterizes these malignancies. In the future, 
when IDH-targeting drugs become available [62], 
it will be interesting to determine if the use of 
these IDH-targeting drugs, individually or com-
bined with other therapies, presents a significant 
anti-tumor effect in established gliomas. Despite 
the well-established relevance of IDH mutations 
in the prognosis of secondary GBM and lower-
grade gliomas, their use in the prognostication 
of primary GBM patients is limited by their low 
frequency.

Molecular subtypes of GBM
Verhaak et al. stratified 200 GBMs from The 
Cancer Genome Atlas (TCGA) into four 
molecular subtypes – classical, mesenchymal, 
proneural and neural – each displaying differ-
ent underlying genetic alterations and expression 
signatures [54]. The classical subtype was defined 
by displaying the most common genomic aber-
rations of GBM, with 93% of samples dis-
playing chromosome 7 amplif ications and 
chromosome 10 deletions, 95% showing EGFR 
amplification, and 95% with homozygous dele-
tion on the Ink4a/ARF locus [54]. The mesenchy-
mal subtype was mainly characterized by high 
expression levels of CHI3L1 (or YKL‑40) and 
the MET proto-oncogene [30]; NF1 mutation or 
deletions were also found to be characteristic of 
this mesenchymal GBM [54]. Hallmarks of the 
proneural subtype include PDGFRα amplifica-
tion, IDH1 mutations, loss of heterozygosity and 
mutations at TP53. Importantly, the proneural 

subtype was associated with younger age and 
longer survival [54]. The neural subtype was 
defined by the differential expression of neuro-
nal markers, such as GABRA1, SLC12A5, NEFL 
and SYT1 [54]. This molecular classification is 
relevant because each GBM subtype responds 
differently to treatment [54]. For example, while 
aggressive treatment protocols significantly 
delayed mortality in GBM patients with classi-
cal and mesenchymal subtypes, and a tendency 
for a longer outcome was observed in the neu-
ral subtype, patients with proneural GBMs do 
not seem to benefit from this highly aggressive 
therapeutic approach [54]. In this sense, some of 
the genetic events underlying the different GBM 
subtypes could be used to stratify patients and 
rationalize treatment decisions, ultimately con-
tributing to more personalized therapies. More-
over, publicly available resources, such as TCGA 
or Oncomine®, which systematically integrate 
genomic and clinical data from large cancer 
patient datasets, have been critical in exploring 
a wide spectrum of genomic alterations charac-
teristic of each tumor type and evaluating their 
clinical value.

Glioma-CpG island methylator phenotype
A very recent report by Turcan et al. suggested 
that the accumulation of 2-hydroxyglutarate 
might inhibit the α-ketoglutarate-dependent 
dioxygenase family of enzymes, which in turn 
will cause histone and DNA hypermethyl-
ation – termed the G-CIMP – that results in 
epigenetic deregulation [63]. Noushmehr et al. 
reported that 24 out of 272 GBMs from the 
TCGA dataset were G-CIMP-positive tumors 
[52]. Of these, 21 were classified within the pro-
neural expression group, which accounts for 
30% of all the proneural GBMs in that dataset 
[52]. Moreover, these authors reported a signifi-
cantly increased survival for proneural G-CIMP-
positive GBM patients in comparison with pro-
neural G-CIMP-negative patients, and indeed 
to all other nonproneural GBM patients [52]. In 
Cox multivariate analysis, G-CIMP remained 
a significant predictor of patient outcome after 
adjusting for patient age, tumor recurrence sta-
tus and primary versus secondary GBM status 
[52]. Of note, G-CIMP-positive tumors were 
associated with recurrent or secondary tumors, 
and strongly associated with the IDH1 mutation 
[52]. In fact, this last association is in agreement 
with the report of Turcan et al., showing that the 
mutation of a single gene – IDH1 – is sufficient 
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to establish the G-CIMP by remodeling the 
methylome, which results in the reorganization 
of the transcriptome [63]. The single introduction 
of mutant IDH1 into primary human astrocytes 
induced the alteration of specific histone marks 
and extensive DNA hypermethylation, as well 
as the reshaping of the methylome in a way that 
resembles the alterations observed in G-CIMP-
positive lower-grade gliomas [63]. Moreover, the 
epigenomic alterations induced by mutant IDH1 
activate important gene expression programs 
that characterize the G-CIMP-positive proneu-
ral GBMs, but not other proneural GBMs, and 
predict increased survival [63]. In this sense, the 
authors argue that IDH1 mutation is the molec-
ular basis of the G-CIMP [63]. Considering the 
frequent co-occurrence of G-CIMP and IDH 
mutations, which is also a putative prognostic 
biomarker, future studies are necessary to clarify 
if the putative prognostic value of G-CIMP is 
independent of the IDH. 

miRNAs
ncRNAs have recently emerged as important 
players in the deregulation of signaling path-
ways and gene expression in several tumor types, 
including GBMs. Indeed, the transcriptome is 
vastly more complex than initially anticipated 
at the time of the first genome-wide studies; for 
example, the number of noncoding transcripts 
is four-times higher than coding sequences. Of 
all ncRNAs, miRNAs are the most extensively 
studied, and are key regulators of several bio-
logical processes through negative control of 
gene expression at the post-transcriptional level 
[64]. Alterations in miRNA genes have been 
implicated in the initiation and progression of 
several cancers, either as tumor suppressors or 
oncogenes depending on their target genes [65]. 
Specifically, deregulation of these miRNAs has 
been detected in GBM, with a wide variety of 
functional roles in cell proliferation, apoptosis, 
cell cycle regulation, invasion, angiogenesis and 
glioma stem cell behavior [66]. Many reports 
have been published describing the ability of 
miRNAs to predict GBM patient survival 
[67–77]. For example, Ben-Hamo and Efroni 
studied five independent datasets and identified 
a gene–miRNA network comprising of p38 and 
its associated miRNA miR-9, which can stratify 
GBM patients into prognostic subgroups [67]. 
Other studies focused on the miR-10b expres-
sion in human glioma tumors and cell lines, 
and showed that increased expression correlates 

with increased glioma grade [78,79], and also with 
increased expression of the G-protein RhoC 
and the urokinase receptor uPAR, which have 
been implicated in migration and invasion [78]. 
Survival of GBM patients with high miR-10b 
expression was significantly shorter than those 
patients with low miR-10b expression [68]. In 
addition, miR-10b downregulates the expres-
sion of several tumor suppressor genes, and is 
associated with poorer GBM patient survival [69]. 
Silber et al. report that miR-124a is significantly 
downregulated in grade III and IV astrocytomas 
relative to non-neoplastic brain tissue [80]. More 
recently, in a retrospective review of 119 GBM 
samples, the downregulation of miR-124a was 
associated with poor patient prognosis [70]. Addi-
tionally, another study showed reduced expres-
sion of miR-451 in GBMs compared with nor-
mal brains [81], suggesting that miR-451 might 
be a tumor suppressor in the brain. Godlewski 
et al. later reported that high levels of miR-451 
are associated with a poorer survival of GBM 
patients in the TCGA dataset [73].

In addition to studies addressing the prognos-
tic value of individual miRNAs, others have tried 
to define miRNA expression signatures that may 
have higher discriminatory power concerning the 
prediction of GBM patient survival. Zhi et al. 
evaluated the expression profile of 200 miRNAs 
in a set of 84 astrocytoma samples of different 
WHO grades, and 20 normal adjacent tissue 
samples and reported a seven-miRNA (miR-24, 
miR-21, miR-30c, miR-124, miR-181b, miR-
137 and miR-106a) differential expression sig-
nature in astrocytoma samples in comparison 
with normal adjacent tissue [74]. Importantly, this 
finding was validated in an independent set of 
40 astrocytomas and 40 matched tissue samples 
[74]. Additionally, the authors observed an asso-
ciation between the downregulation of miR-137 
and advanced state of the disease, and the low 
expression of miR-181b and miR-106a, and the 
high expression of miR-21 were significantly 
associated with shorter patient survival, inde-
pendent of other clinicopathological factors [74]. 
Therefore, these authors suggest that miRNA 
profiling may be a powerful prognostic and 
diagnostic marker in astrocytomas [74]. Another 
study evaluated the levels of 365 miRNAs in 
eight GBM and four anaplastic astrocytomas, 
revealing 16 candidate markers associated with 
glioma progression, of which miR-196a and miR-
196b presented the most significant differences 
[71]. High expression of miR-196 was shown to 
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be an independent prognostic factor in a set of 
39 GBM patients [71]. This result was reinforced 
by a recent study that evaluated the expression of 
miR-196b in 198 glioma tissues [72]. Functional 
analysis of miR-196b showed that it is a pro-
moter of cellular proliferation, and, as such, its 
levels are inversely correlated with GBM patient 
survival [72]. A study performed by Srinivasan 
et al. assessed the miRNA expression data of 
222 GBM patients from the TCGA dataset, and 
found that a ten-miRNA expression signature 
was an independent predictor of patient survival 
[75]. This expression signature was also able to 
segregate GBM patients into low- and high-risk 
cohorts [75]. Of the ten-miRNA signature, seven 
were found to be in the high-risk group (miR-31, 
miR-222, miR-148a, miR-221, miR-146b, miR-
200b and miR-193a) and three were in the low-
risk group (miR-20a, miR-106a and miR-17-5p). 
These are thought to either inhibit or promote 
several traits of cancer cells [75]. Another study by 
Zhang et al. performed whole-genome miRNA 
expression profiling in 82 Chinese GBM patients 
[76]. The authors identified a five-miRNA sig-
nature, comprising of miR-181d, miR-518b, 
miR-524-5p, miR-566 and miR-1227, that was 
able to predict patient survival [76]. Patients 
scoring high with the five-miRNA signature 
presented poorer overall and progression-free 
survival when compared with patients presenting 
low-risk scores [76]. Moreover, this signature was 
found to be independent of other prognostic fac-
tors [76]. Lakomy et al. evaluated the expression 
of eight miRNAs (miR-21, miR-128a, miR-181c, 
miR-195, miR-196a, miR-196b, miR-221 and 
miR-222), as well as the methylation status of 
MGMT promoters in a group of 38 patients with 
primary GBMs [77]. In addition to the significant 
associations between the methylation status of 
the MGMT promoter and longer overall and 
progression-free survivals, the authors also found 
that the expression of miR-195 and -196b was 
negatively correlated with overall survival. More-
over, miR-181c in combination with miR-21 was 
highly sensitive and specific in the prediction of 
tumor progression within 6 months of diagnosis. 
However, the remaining miRNAs (miR-128a, 
miR-196a, miR-221 or miR-222) presented no 
prognostic or predictive value in GBM patients 
[77]. Importantly, of all the miRNAs reviewed, 
miR-196b and the miR-181 family have been 
more consistently reported to be of relevance 
in glioma. However, when evaluating miRNA 
expression profiles, special attention should be 

paid to the non-neoplastic reference due to varia-
tions on basal miRNA expression levels inherent 
to each individual, or to the fact that commer-
cial references are usually RNAs pooled from 
several non-neoplastic tissues [82]. Nevertheless, 
the studies presented here demonstrate not only 
the potential for using single miRNA genes or 
miRNAs signatures in the prediction of patient 
outcome, but also how miRNAs may be crucial 
to the understanding of GBM biology and to the 
development of new therapeutics.

Growth factor signaling pathways
Overexpression or mutations in receptor tyrosine 
kinases (RTKs), growth factors and intracellular 
RTK targets greatly contribute to the tumori-
genic process, and may represent important 
prognostic factors in GBM. EGFR is frequently 
amplified in GBM, and approximately 50% 
of these express the truncated form EGFRvIII, 
which is constitutively active and induces cell 
proliferation, survival and motility [9,83]. EGFR 
amplification and EGFRvIII mutants were associ-
ated with increased aggressiveness, and pointed 
to by some authors as prognostically valuable in 
GBM, as they are associated with shorter patient 
survival [9,20,25,26,84–87]. However, it is important 
to highlight that other authors state that these 
EGFR alterations did not associate with survival 
[88,89]. Similar to EGFR, the expression of PDGFR 
was reported to be frequently altered in GBM. 
Specifically, the phosphorylation of the PDGFRα 
subunit was associated with shorter survival in 
recurrent GBM patients [90], while other stud-
ies stated that the amplification of PDGFRα did 
not predict GBM patient survival [91,92]. Another 
RTK frequently altered in GBM is MET, which 
was rarely found amplified in GBM (only ~5% of 
GBMs), but presented a high frequency of over-
expression (~29%) [23]. Moreover, these authors 
found that MET overexpression was associated 
with GBM shorter patient survival time [23]. In 
addition to RTKs, soluble growth factors are also 
important during tumorigenesis; an important 
example in GBM is VEGF, which is a prominent 
angiogenic factor [93]. Specifically the VEGF-A 
isoform, the best characterized isoform, was 
reported to be more frequently expressed in 
higher glioma grades, and was associated with 
poor GBM patient prognosis [93,94].

Moreover, the abnormal expression of intra-
cellular targets of RTK signaling may associ-
ate with GBM patient prognosis. In particular, 
NF-kB is a transcription factor that is activated by 
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the EGFR pathway [95]. The NFKBIA is a repres-
sor of NF‑kB, which was shown to be deleted 
in up to 24% of GBMs [13]. The deletion of 
NFKBIA was associated with poor GBM patient 
prognosis [13]. Interestingly, the authors found a 
pattern of mutual exclusiveness between NFKBIA 
deletion and EGFR amplification, and that the 
restoration of NFKBIA expression lessened the 
malignant phenotype and increased susceptibil-
ity to chemotherapeutic treatment in GBM cell 
lines [13].

The activation of the PI3K pathway is fre-
quently deregulated in cancer, including GBMs. 
The pathway activation is associated with 
increased tumor grade, decreased apoptosis and 
poor patient outcomes [14,29]. In addition, several 
of the pathway intermediates per se presented 
prognostic significance. For example, phosphory-
lated AKT was reported as a biomarker of poor 
outcome in GBM patients [29,96]. The decreased 
expression of PTEN (at RNA or protein levels), or 
loss of heterozygosity of chromosome 10q, which 
encompasses the PTEN gene, were reported as 
indicators of shorter GBM patient survival [97]; 
however, this is still controversial [98]. Another 
recent example is the prognostic value of RAF 
kinase inhibitor, the expression of which was 
reported to associate with longer overall survival 
of GBM patients [99]. In the future, novel studies 
aiming to understand how the integrated analy-
sis of several molecular components of growth 
signaling pathways may help clarify the true 
prognostic value of these biomarkers and lead to 
their integration into the clinical management of 
GBM patients.

Serum biomarkers of prognosis
Access to primary tumor samples is essential in 
evaluating tumor-specific genetic and epigenetic 
features. Biopsy, debulking or serial sampling may 
be difficult in the scenario of GBM, and more-
over, a variety of imaging modalities are used 
to monitor tumor progression and response to 
treatment. MRIs can show an increase in tumor 
volume up to four weeks following completion 
of radiotherapy. In 50% of cases this is due to 
an increase in vascular permeability (treatment 
related) – an effect called pseudoprogession 
[100] – and might not necessarily translate into 
poor treatment response. This confounder [101], 
in addition to the unfeasibility of multiple tumor 
sampling during the course of the malignancy 
[102,103], clearly highlights the need for estab-
lishing less invasive predictive and prognostic 

markers. Serological markers mirroring tumor 
properties might be very good candidates. Sero-
logical biomarkers that correlate with patient sur-
vival in GBM include cathepsin D [104], AHSG 
[105], MMP-9 [22] and YKL-40, which is the most 
widely studied [22,27,106–109]. A study conducted by 
Tanwar et al. evaluated gene expression microar-
ray data of glioma tumor tissue and showed that 
the most highly expressed gene was YKL‑40 [106]. 
The role of YKL-40 is not well-established; evi-
dence suggests it may be implicated in cell differ-
entiation, angiogenesis and proliferation, decreas-
ing apoptosis and extracellular matrix remodeling 
[110]. Serum concentrations of YKL-40 seem to be 
a strong predictor of an aggressive phenotype in 
GBM [22,106]. Moreover, increased expression has 
been associated with glioma grade, shorter time to 
progression, resistance to radiotherapy and poor 
patient overall survival [22,107–109]. However, for 
the establishment of YKL-40 serum levels as a 
prognostic marker, further prospective studies 
with repeated measurements of YKL-40 levels 
before and after surgery are required. The high 
reproducibility of YKL-40 measurements in 
serum, as well as the fact that this biomarker is 
already well established for routine use, indicates 
that its inclusion in clinical practice should be rel-
atively straight forward, and might provide crucial 
information on tumor progression and patient 
survival. In general, the use of serum biochemical 
markers that correlate with the biological traits of 
the tumor may be important during the design 
of treatment strategies and evaluating response 
to treatment. Equally important, these biomark-
ers may be able to detect disease progression or 
relapse early.

Histone mutations
GBM occurs comparatively less frequently in chil-
dren than in adults but still remains a devastat-
ing disease with an incidence of 0.5 per 100,000 
in Europe. Presenting symptoms, neurological 
sequelae, radiological and histological appear-
ances are identical in both adults and children. 
What is particularly unique to the pediatric set-
ting, however, is the occurrence of diffuse intrin-
sic pontine glioma; a form of malignant glioma 
specific to the pons and which, due to its location, 
is a challenge to treat. Pediatric tissue samples 
are scarce relative to adult counterparts and it 
has, therefore, been difficult to draw definitive 
conclusions about the underlying biology. As a 
result, they have been viewed as virtually indis-
tinct from adults, contributing to a universal 
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treatment strategy of surgery, radiotherapy and 
chemotherapy with temozolomide. 

An increasing number of molecular profiling 
studies had hinted at the distinct underlying 
biology of pediatric cases [111–115], which was 
definitively proven with the identification of 
specific mutations in the H3F3A gene [116,117]. 
These were the first mutations described in 
histone genes in cancer and are highly specific 
to pediatric GBM. The H3F3A gene encodes 
the histone variant H3.3, and the mutations 
produce the amino acid substitutions glycine 
to arginine or valine at position 34 (G34R/V) 
or substitution of lysine to methionine at posi-
tion 27 (K27M). Diffuse intrinsic pontine glio-
mas may also harbor K27M mutations in the 
gene encoding histone H3.1, HIST1H3B [117]. 
G34R/V mutant tumors peak at approximately 
13–14 years, and are restricted to the cerebral 
hemispheres, while K27M mutant tumors arise 
at 6–7 years and are located in the pons and 
midline structures, especially the thalamus 
[31,118]. Although difficult to separate from the 
effects of anatomical location, K27M mutant 
tumors have a significantly worse overall sur-
vival than G34R/V or wild-type tumors [31,118]. 
This is clinically important, as thalamic tumors 
are currently treated on supratentorial protocols, 
although they may instead need to be considered 
along with diffuse intrinsic pontine glioma in 
terms of novel molecularly targeted therapies.

Other putative prognostic factors
In addition to the abovementioned prognostic 
biomarkers, other molecular characteristics of 
GBM have been suggested in some studies to 
associate with patient survival. Some examples 
include abnormal p53 and RB functions, expres-
sion of cancer stem cell markers [119–122], loss of 
chromosome 10 [27,123], codeletion of 1p/19q 
[124,125] and activation of HOX genes [17,19,26].

The p53 and RB tumor suppressor pathways 
are frequently altered in GBM (~80%). None-
theless, their prognostic value is still controver-
sial, with some studies reporting an impact of 
p53 pathway in patient survival [12,126], while 
others did not replicate this [127,128]. Similarly, 
decreased expression of the RB gene in GBM has 
not been clearly established as a prognostic factor 
[32,129,130]. In addition, wild-type p16 was asso-
ciated with improved survival of GBM patients 
treated with chemoradiotherapy [131], while the 
homozygous deletion of p16 was associated with 
poor survival in male GBM patients [132].

Studies have shown the presence of a sub-
population of cells within GBM, termed glioma 
stem cells, that present abnormal characteris-
tics regarding proliferation and differentiation 
[133]. This population of cells was associated 
with tumor recurrence [134] and therapy resis-
tance [11], and characterized by several stem cell 
markers, including CD133, CD44, ID1, Nestin 
and SOX-2 [135]. Several studies have tried to 
correlate the expression of these markers with 
GBM patient prognosis, but no consistent asso-
ciations have currently been established [136]. 
For example, some studies report an association 
between CD133, Nestin, cJun, CD44 and ID1 
expression and GBM patient poor prognosis 
[10,119–121,135,137], while others suggest an asso-
ciation of CD133 and SOX-11 expression with 
longer prognosis [24,122]; other studies report 
no effects on GBM patient survival due to the 
expression of Nestin, CD133 and CD15 [138,139]. 
The contradictory findings regarding the clinical 
relevance of these putative stem cell markers in 
GBM warrants further investigation.

The clinical relevance of some chromosomal 
copy number aberrations has also been inves-
tigated in GBM. Loss of chromosome 10 is 
highly frequent in GBM [27,123], and emerged 
as an important influence on global changes in 
the tumor gene expression, being reported as 
the most important copy number alteration for 
GBM classification and associated with a nega-
tive prognosis in GBM [27]. In addition, although 
codeletions of 1p/19q in oligodendrogliomas 
have been established as clinically relevant 
prognostic markers associated with increased 
patient survival time [140], these codeletions are 
uncommon in GBM, and the studies concerning 
their prognostic value in GBM have currently 
reported controversial findings [124,125].

Homeobox genes have also been recently stud-
ied in the context of glioma, particularly GBM. 
These genes encode transcription factors that play 
critical roles during normal development and 
differentiation [141], and have been found to be 
deregulated in cancer [141]. Recently, the expres-
sion of several HOX genes was found altered in 
gliomas [142]. A subsequent report identified the 
expression of a HOX-dominated gene cluster in 
GBM, enriched for stem cell-like properties, as 
an independent predictor factor for shorter sur-
vival time in patients treated with radiotherapy 
and concomitant chemotherapy [26]. Costa et al. 
showed that HOXA genes are differentially acti-
vated in GBM when compared with lower-grade 
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gliomas and normal brain tissue, and identified 
GBMs with an abnormal chromosomal domain 
of transcriptional activation that includes the 
HOXA cluster [17]. This gene cluster is reversibly 
regulated by the PI3K pathway via an epigenetic 
mechanism regulating the levels of histone H3 
lysine 27 trimethylation [17]. Of all HOXA genes, 
HOXA9 expression was predictive of GBM poor 
patient survival in two independent datasets, and 
was shown to have proproliferative and antiapop-
totic functions in GBM cells [17]. More recently, 
Gaspar et al. showed that pediatric GBM cell 
lines resistant to temozolomide present a coordi-
nated expression of several HOX genes, of which 
HOXA9 and HOXA10 are crucial effectors, and 
also suggested that the HOX-enriched signature is 
regulated by the PI3K pathway [19]. Importantly, 
pediatric patients with high-grade gliomas that 
express HOXA9 and HOXA10 had significantly 
shorter survival [19]. Overall, these studies suggest 
some HOXA genes may be prognostically valuable 
in both pediatric and adult GBM patients.

Conclusion
In conclusion, the work on prognostic factors 
in GBMs provides reasons for both optimism 
and caution in dealing with this highly malig-
nant cancer. To date, the most relevant and still 
promising biomarker of prognosis in adult GBM 
patients is the status of MGMT promoter meth-
ylation, which has frequently been associated with 
patient survival and therapeutic responses. The 
multiplicity of techniques available to evaluate 
MGMT methylation status (including methyl-
ation-specific PCR) allows its routine establish-
ment in the clinics, but, of equal importance, 
these methods may be applied in formalin-fixed 
paraffin-embedded tissues that is the standard 
format of samples deposited in tumor banks. 
New putative biomarkers, such as the expression 
levels of HOXA genes and the presence of IDH 
mutations, may be performed in this sample for-
mat using routine techniques such as immuno-
histochemistry or PCR followed by sequencing, 
respectively. However, the evaluation of IDH 
mutations in patient prognostication is limited 
to secondary GBM or lower-grade gliomas due 
to its low frequency in primary GBM (<10%). 
Concerning the pediatric setting, mutations of 
the H3F3A gene are as highly important, and 
may be established in the prognostication of these 
patients. Nonetheless, true clinical benefit will 
most likely only be seen with careful patient selec-
tion based on the presence of such biomarkers 

within clinical trials (the so-called precision 
medicine model). The increasing integration of 
molecular and clinical data through contempo-
rary bioinformatics tools, will hasten the intro-
duction of such biomarkers into the clinic leading 
to tailored treatment according to molecular sub-
groups. This also allows timely identification of 
patients unlikely to respond to standard therapies, 
permitting rapid entry into clinical trials, while 
avoiding the adverse unnecessary side effects of 
ineffective therapies. The challenge ahead is to 
identify and truly translate their relevance into 
effective, targeted drug therapies as well as to con-
tinue the discovery of further molecular markers 
of GBM.

Future perspective
The true clinical benefit of prognostic markers in 
GBM will probably only be perceived upon care-
ful selection of patients based on the evaluation of 
tumor biomarkers and their integration in clinical 
trials. The cumulative integration of mole cular 
and clinical data due to developments in bioin-
formatics tools will most certainly lead to the 
faster introduction of molecular biomarkers into 
the clinical routine, and thus to patient-tailored 
treatments according to the molecular alterations 
of GBM subgroups. Critically, this will concep-
tually allow the timely identification of patients 
that may not positively respond to conventional 
therapeutics, allowing their informed choice of 
entering clinical trials, while being spared the 
side effects and significant costs of ineffective 
therapies. The challenge in the neuro-oncology 
field for the next decade is to discover novel bio-
markers of prognosis and therapy response, and 
to translate and integrate this knowledge into the 
development of targeted and effective therapies. 
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