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Abstract

The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board 

NASA’s Terra and Aqua satellites have provided nearly two decades of global fire data. Here, 

we describe refinements made to the 500-m global burned area mapping algorithm that were 

implemented in late 2016 as part of the MODIS Collection 6 (C6) land-product reprocessing. The 

updated algorithm improves upon the heritage Collection 5.1 (C5.1) MCD64A1 and MCD45A1 

algorithms by offering significantly better detection of small burns, a modest reduction in burn­

date temporal uncertainty, and a large reduction in the extent of unmapped areas. Comparison of 

the C6 and C5.1 MCD64A1 products for fifteen years (2002–2016) on a regional basis shows 

that the C6 product detects considerably more burned area globally (26%) and in almost every 

region considered. The sole exception was in Boreal North America, where the mean annual area 

burned was 6% lower for C6, primarily as a result of a large increase in the number of small lakes 

mapped (and subsequently masked) at high latitudes in the upstream C6 input data. With respect 

to temporal reporting accuracy, 44% of the C6 MCD64A1 burned grid cells were de-tected on the 

same day as an active fire, and 68% within 2 days, which represents a substantial reduction in 

temporal uncertainty compared to the C5.1 MCD64A1 and MCD45A1 products. In addition, an 

areal accuracy assessment of the C6 burned area product undertaken using high resolution burned 

area reference maps derived from 108 Landsat image pairs is reported.
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1. Introduction

The availability of remotely sensed terrestrial observations from NASA’s Moderate 

Resolution Imaging Spectroradiometer (MODIS) instruments has yielded an extensive 
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suite of global land, oceanic, and atmospheric data sets designed to meet the science and 

applications needs of the global change community (Justice et al., 1998). Within this suite 

are the MCD45A1 and MCD64A1 burned area products, which map the spatial extent and 

approximate date of biomass burning worldwide at a spatial resolution of 500 m. Both 

products have been used to conduct a broad range of research concerning biomass burning 

over the past decade (e.g., Andela et al., 2017; Archibald et al., 2009; Chen et al., 2016; 

Grégoire et al., 2013; Hantson et al., 2015; Lehmann et al., 2014; Oliveras et al., 2014; 

Petrenko et al., 2012; Randerson et al., 2012; Vadrevu et al., 2012; Yang et al., 2014). In 

addition, since 2006 the MCD64A1 product has been a major component of the Global Fire 

Emissions Database (Giglio et al., 2010, 2013; van der Werf et al., 2006, 2010, 2017), which 

has in turn been used in the investigation of a similarly broad set of research questions (e.g., 

Chen et al., 2013; DeFries et al., 2008; Larkin et al., 2014; Magi et al., 2012; Nevison et al., 

2008; Schultz et al., 2008; Spessa et al., 2015; van der Werf et al., 2008, 2013).

Far from existing in isolation, NASA’s MCD64A1 and MCD45A1 products are but two 

members of a larger ensemble of remotely-sensed global burned area data sets derived 

from what is, by contemporary standards, coarse spatial resolution (250 m–1 km) satellite 

imagery. Within this group also reside the 1-km L3JRC and 300-m Copernicus PROBA-V 

Burnt Area products (Tansey et al., 2008), and ESA’s 1-km GLOBCARBON (Plummer et 

al., 2006), 300-m Fire_cci v4.1 (Chuvieco et al., 2016), and 250-m Fire_cci v5.0 products 

(Chuvieco et al., 2018).

Reprocessing is a fundamental requirement for producing consistent, science quality data 

sets suitable for long-term monitoring. The MODIS instrument data and products have been 

reprocessed into different Collections using updated calibration and geolocation information, 

and improved algorithms refined in response to routine product quality assessment and 

periodic validation activities (Justice et al., 2002b).

Here, we describe refinements made to the MCD64A1 burned area mapping algorithm 

and associated product for Collection 6, which is the third major reprocessing of the 

MODIS time series for which a burned area product has been generated. The Collection 6 

MCD64A1 product, which supersedes both of its Collection 5.1 MCD45A1 and MCD64A1 

predecessors, is intended to improve upon those earlier versions. We begin by briefly 

summarizing the status of the MODIS burned area products in Section 2. In Section 3, we 

describe the Collection 6 MCD64A1 algorithm, emphasizing those aspects that changed 

since Collection 5.1. In Section 4, we provide a brief global and regional intercomparison 

of the Collection 5.1 and Collection 6 MCD64A1 products. Finally, in Section 5, we 

present a temporal and areal accuracy assessment of the Collection 5.1 and Collection 6 

MCD45A1 and MCD64A1 burned area products performed using MODIS active fire data 

and high-resolution Landsat burned area reference maps.

2. MCD45A1 and MCD64A1 product status

The MCD45A1 product was first produced and made publicly available in mid-2008 as part 

of the Collection 5 (C5) MODIS land product suite. The MCD45A1 mapping algorithm 

modelled on a tem-porally rolling basis the bidirectional effects in the daily MODIS time 
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series to identify persistent changes and in surface reflectance due to burning (Roy et al., 

2005b, 2002). Initial validation results indicated that the product captured about 75% of 

the total area burned across southern Africa (Roy and Boschetti, 2009). Various algorithm 

changes intended to reduce certain types of omission and commission errors subsequently 

followed, with a reprocessed Collection 5.1 (C5.1) released in mid-2013.

The C5 MCD64A1 product (at the time not yet named as such) was first released in late 

2009 in conjunction with the version 3 Global Fire Emissions Database (GFED) (Giglio 

et al., 2010). Minor adjustments were made over the next several years, directed primarily 

at reducing (albeit only slightly) an excessive loss of small agricultural burns in cropland, 

culminating in the release of the global C5.1 MCD64A1 product in late 2012. Unlike 

MCD45A1, the MCD64A1 mapping algo-rithm is a hybrid one that supplements daily 

surface reflectance imagery with daily active fire data. The algorithm is a major extension 

to an earlier hybrid approach used by (Roy et al., 1999) to map savanna burns in southern 

Africa with 1.1-km Advanced Very High Resolution Radiometer (AVHRR) imagery.

Assessment of the MCD45A1 and MCD64A1 products has been conducted under various 

regional validation efforts for Southern Africa, Siberia, central Asia, boreal Eurasia, Russian 

croplands, the Brazilian cerrado, Alaska, and the western conterminous United States 

through comparison with high-resolution satellite (typically Landsat) imagery (Giglio et 

al., 2009; Hall et al., 2016; Libonati et al., 2015; Loboda et al., 2011, 2012; Roy and 

Boschetti, 2009; Tsela et al., 2014; Zhu et al., 2017). At present, global assessment is limited 

to Padilla et al. (2014) and Padilla et al. (2015), who validated six global burned area 

data sets (including MCD45A1 and MCD64A1) for the 2008 calendar year using reference 

maps derived from Landsat-5 TM and SLC-off Landsat-7 ETM image pairs. The authors 

reported global commission and omission errors for both MODIS products of approximately 

44% and 70%, respectively, with slightly lower error rates for MCD64A1. These figures 

should be viewed with caution as the rigorous temporal sampling strategies recommended 

for validation scene selection by Boschetti et al. (2016) and by Padilla et al. (2017) were not 

adopted by Padilla et al. (2014) during the selection of the Landsat reference imagery.

The broadly applicable findings of the above efforts may be sum-marized as follows: 1) 

both MODIS products often fail to map small (≲100 ha) burns, 2) the omission of small 

burns is significant in croplands (∼10× underestimate), and 3) a much lower proportion of 

un-mapped areas exists in the MCD64A1 than the MCD45A1 product be-cause the latter is 

considerably more sensitive to cloud- and aerosol-contaminated observations and data gaps. 

Overall, both C5.1 burned area products tend to under-report burned area, in some regions 

quite substantially.

Based on these results, and given the cost of maintaining two separate operational MODIS 

production codes, the MODIS fire science team elected to retire the MCD45A1 product 

with C5.1 and implement Collection 6 (C6) refinements to the MCD64A1 algorithm. Those 

refinements are described in the next section.
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3. Collection 6 MCD64A1 algorithm description

The C6 MCD64A1 burned-area detection algorithm uses as inputs the MODIS C6 Terra 

and Aqua 500-m atmospherically-corrected Level 2G daily surface reflectance products 

(Vermote and Justice, 2002), denoted MOD09GHK and MYD09GHK, respectively, and 

the C6 1-km Terra (MOD14A1) and Aqua (MYD14A1) Level 3 daily active fire products 

(Justice et al., 2002a), replicated to 500-m resolution, and the 500-m Level 3 MODIS 

annual land cover product, denoted MCD12Q1 (Friedl et al., 2010). The C6 MCD64A1 

algorithm, like the previous C5.1 MCD64A1 algorithm, uses the most recently available 

C5.1 MCD12Q1 land cover product that was made for each year from 2001 to 2013, 

and substitutes the 2013 C5.1 MCD12Q1 product for 2014 onward. The MODIS Level 

2G and Level 3 products are defined in the sinusoidal projection in fixed geolocated tiles 

approximately 1100 km × 1100 km in size (Wolfe et al., 1998).

The algorithm proceeds through multiple stages (Fig. 1), processing in each instance a 

single MODIS tile. The general approach is to produce composite imagery summarizing 

persistent changes in the time series of a burn-sensitive vegetation index, and then use spatial 

and temporal active-fire information to guide the statistical characterization of burn-related 

and non-burn-related change. This information is used to estimate probabilistic thresholds 

suitable for classifying individual 500-m grid cells as either burned or unburned.

Although the algorithm is capable of mapping burning over arbitrary time periods, for 

C6 the mapping period is constrained to a single calendar month. One month of daily 

observations before and after the mapping period are required to accommodate the moving 

windows employed in the change-detection process. Consequently, three consecutive months 

of observations are required to map one calendar month of burning. The approximate day of 

burning in each month is reported for each 500-m grid cell.

3.1. Time series extraction

Valid daily 0.65 μm (band 1), 1.24 μm (band 5), and 2.13 μm (band7) reflectance values 

are extracted from the Terra and Aqua Level 2G surface reflectance products using the 

four criteria previously described in Giglio et al. (2009): valid daily observations are 1) 

cloud-free (based on the MO/YD09 internal cloud mask), 2) fire-free (based on the MOD14/

MYD14 active fire product), 3) acquired over land, and 4) have physically valid reflectance, 

i.e., > 0 and ≤ 1, for bands 1, 5, and 7. When multiple daytime observations are available for 

a 500-m grid cell on the same day, a single daily reflectance value is selected by choosing 

the cloud-free observation sensed at the smallest view zenith angle. This selection helps to 

reduce bidirectional reflectance effects that, across the MODIS swath, can be greater than 

reflectance changes due only to burning (Roy et al., 2002), and because observations sensed 

at smaller view zenith angles have finer spatial resolution (Wolfe et al., 1998). Bidirectional 

effects that remain are reduced through a temporal averaging process, described in Section 

3.2, thus mitigating the need for BRDF-corrected surface reflectance data as an algorithm 

input.

Adopting the notation of Giglio et al. (2009), we denote the daily reflectance values selected 

for bands 1, 5, and 7 as ρ1,i, ρ5,i, and ρ7,i, respectively, where the index i numbers the 
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individual days for which valid observations are available (i = 1,2,3,…,N). A record of the 

ordinal day of year for each observation, denoted as ti, is also recorded.

For Collection 6, it was necessary to impose an additional test that overrides a cloud 

commission error in the MOD09 internal cloud mask that occurs in certain low-reflectance 

situations and is often related to wet soil, due to, for example, snow melt or after heavy 

rainfall. Regardless of the underlying cause, no visual evidence of cloud cover is apparent 

for these problem cases. To this end, observations flagged as cloudy that also have a red 

reflectance ρ1,i ≤ 0.12 are treated as clear.

The daily reflectance values are used to compute the daily burnsensitive vegetation index 

VIi = (ρ5,i −ρ7,i) / (ρ5,i + ρ7,i) for each grid cell. As noted by Roy and Landmann (2005) 

and Giglio et al. (2009), this spectral index, which shows a significant decrease after a burn, 

provides good burned-unburned discrimination.

3.2. Composite change summary

In this phase, the algorithm produces change- and fire-related composite imagery for 

subsequent classification. With the exception of the shortened temporal windows described 

below, this aspect of the algorithm remains unchanged from Collection 5, and consequently 

is described only briefly here. The reader is referred to Giglio et al. (2009) for a more 

detailed description.

The algorithm first examines the daily VI time series at each grid cell by considering 

observations within two non-overlapping adjacent sliding temporal windows, each 

containing W = 8 successive daily MODIS observations. These windows are referred to 

as the candidate pre-burn and candidate post-burn windows, respectively. Here a smaller 

window was adopted for Collection 6 (previously, W = 10 days) to re-duce the number of 

unclassified grid cells due to persistent cloud cover, and to reduce the temporal uncertainty 

in the burn date estimated for each burned grid cell.

Following the convention of Giglio et al. (2009), we use the index k to reference the 

temporal position of the adjacent windows as they are moved through the N − 2W + 1 

distinct positions within the time series of the grid cell at location (x,y). At each temporal 

position, the 10% trimmed mean and trimmed standard deviation of the VI ob-servations 

within the candidate pre- and post-burn windows are calculated, denoted as VIpre(x,y,k), 

σpre(x,y,k), VIpost(x,y,k), and σpost(x,y,k), respectively. The trimmed summary statistics are 

derived in the conventional manner. If the number of observations is not an integer multiple 

of 10 (the 10% trim proportion) then appropriate weights are applied to the individual 

observations prior to the summary statistic calculation. For example, to calculate the 10% 

trimmed mean of 8 observations, the largest and smallest values are weighted by a factor of 

0.2 and the remaining observations are weighted by a factor of 1.

Grid cells having too few valid observations to fill the candidate pre-and post-burn windows 

are immediately labeled as unclassified and subsequently ignored. Otherwise, a measure of 

temporal separability, S, is evaluated for all k:
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S x, y, k = Δ VI x, y, k
σpre x, y, k + σpost x, y, k /2 , (1)

where ΔVI(x,y,k) = VIpre(x,y,k) − VIpost(x,y,k). The properties of this measure are discussed 

by Giglio et al. (2009). In brief, abrupt decreases in the VI time series, such as those 

expected as the result of a fire, will yield large positive values of S.

The maximum value of S within the time series (i.e., the maximum separability) is identified 

for each grid cell, and the value of k at which this maximum occurs is designated k*. 

Recorded for this event is the day associated with maximum VI separability, t*(x,y), the 

uncertainty in the date of maximum separability, Δt*(x,y), the corresponding absolute 

change in VI, ΔVI(x,y,k*), and the associated candidate post-burn VI, VIpost(x,y,k*). 

Following the convention of Giglio et al. (2009), we adopt for legibility the more concise 

notation ΔVI*(x,y) ≡ ΔVI(x,y,k*), VIpost
*(x,y) ≡ VIpost(x,y,k*), etc., hereafter.

Included also in the change summary is the interquartile range (IQR) of the dates 

spanned by the maximum-separability pre- and post-burn windows, denoted IQRpre* x, y  and 

IQRpost* x, y , respectively, which, as described in Giglio et al. (2009), are used to robustly 

determine if the time period spanned by either window is excessively long. In this situation, 

specifically if either IQRpre* x, y  or IQRpost* x, y  exceeds 30 days, the grid cell is tentatively 

classified as unburned and ignored during subsequent processing until the final classification 

phase (Section 3.10).

Last among the composites is a cumulative mask, tf(x,y), identifying in each grid cell the 

date on which an active fire was detected (if any) during the three-month time period being 

processed. If multiple fires were detected during the compositing period, the date nearest to 

t*(x,y) is chosen.

A complete list of all composited spatial variables is provided in Table 1.

3.3. Temporal texture

As previously noted by Giglio et al. (2009), the day of maximum change (t*) usually shows 

much higher spatial coherence in burned patches than unburned patches. To exploit this 

additional textural information, the algorithm computes the local standard deviation of t* 

within a small circular kernel, defined on the reference spheroid by a circle of 500 m radius 

from the centroid of each 500-m grid cell. Because the sinusoidal projection is neither 

conformal nor equidistant, when projected onto the MODIS grid this kernel assumes the 

form of an ellipse having a location-dependent size and orientation; the cells whose centroid 

falls inside the kernel constitute the local neighborhood from which the standard deviation 

is computed (Fig. 2). In most locations, the kernel includes five cells (a center and four 

neighbors), although only three and four cells can occur away from the Equator and the 

prime meridian.

To prevent the loss of fine, 1-grid-cell sections of burned patches, the texture map is 

filtered with an edge-restoring ranked order filter (Astola and Kuosmanen, 1997) that selects 
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the 25th percentile within the kernel (here, calculation of the 25th percentile may require 

inter-polation when the number of grid cells contained within the kernel is not four). As in 

the original algorithm description, the resulting filtered temporal texture is denoted σt* (x, 
y).

3.4. Selection of training samples

The cumulative active-fire composite described above is used to help identify representative 

burned and unburned training samples that are used during the subsequent supervised 

classification phase of the algorithm. As we have previously cautioned, the identification 

process requires careful consideration of both resampling error as well as the special 

characteristics of active fire data (Giglio et al., 2009). The composited active-fire map 

consequently undergoes a process of spatial and temporal cleaning coupled with region 

growing to prevent excessive cross-contamination of the respective training samples.

3.4.1. A-priori unburned grid cells—Selection of training samples begins by 

identifying grid cells that are highly unlikely to have burned during the mapping period. 

As in the Collection 5 algorithm, the grid cell at location (x,y) is identified as unburned a 
priori if S*(x,y) < 2 (i.e., spectral separability is too low) or σt* (x, y) > 8 days (i.e., spatial 

coherence is too low).

3.4.2. Burned training grid cells—A”clean” subset of those grid cells flagged as fire 

in the cumulative active fire mask is used to create an initial training mask of burned grid 

cells. The cleaning process consists of morphological erosion followed by a series of spatial 

and temporal threshold tests. The subset of grid cells that remain comprise the initial burned 
training mask. Full details are found in Giglio et al. (2009).

To reduce the impact of under-sampling of spatial fire extent by MODIS active fire 

observations, the initial burned training mask is expanded through a process of region 

growing which considers ΔVI*, VIpost*, and σt*, constrained by a maximum growth 

distance of 10 km. For C6, this procedure remains exactly as described in Giglio et al. 

(2009), with the exception that the region growing is not performed for those grid cells 

within the initial burned training mask that are classified as cropland in the MCD12Q1 

land cover product. This stipulation helps reduce the likelihood of commission errors within 

broad swaths of cropland during the harvest season.

The end result of the region growing procedure is a burned training mask, which is used to 

extract burned training samples during the next phase of the algorithm.

3.4.3. Unburned training grid cells—In producing a complementary mask of 

unburned training pixels, we exploit information from the a priori unburned grid cells 

(Section 3.4.1) as well as the burned training mask (Section 3.4.2). As in Giglio et al. 

(2009), the grid cell at location (x,y) is flagged as an unburned training grid cell if either of 

the following conditions is satisfied: 1) the grid cell is an a priori unburned grid cell, or 2) 

the grid cell contains valid data, is not included among the burned training observations, and 

has dB(x,y) > Rd, where the parameter Rd is the “dilation radius” (Giglio et al., 2009) and 
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the function dB(x,y) denotes the distance from location (x,y) to the nearest grid cell within 

the burned training mask.

For Collection 5, the parameter Rd was nominally fixed at 5 km but modified for tiles 

encompassing Africa and during the Terra-only period prior to mid-2002. For Collection 6, 

Rd is now coupled to the parameter σp used during the assignment of prior probabilities 

(Section 3.7) such that Rd = 2.5σp (ultimately this will mean that Rd can assume a value of 

either 5 km or 12.5 km). The new coupling maintains consistency with this later algorithm 

phase, as both phases share the assumption that distant grid cells (i.e., those distant from 

burned training cells) are less likely to have burned.

3.5. Extraction of conditional probability densities

In this step, which remains unchanged for C6, the burned and unburned training samples 

obtained above are used to derive the conditional burned (B) and unburned (U) probability 

density functions (PDFs) Pl(∆VI*|B) and Pl(∆VI*|U) for each land cover type l present in the 

MODIS tile being processed. To estimate these densities we use a Gaussian kernel density 

estimator, P(u), with normalization factor C and standard deviation σk = 0.02, given by

P u = C∑
i

exp − u − ui
2

2σk
2 , (2)

with the summation taken over each observation in the training sample.

3.6. Separability test

The ΔVI* burned and unburned conditional probability distributions for each land cover 

class are at this point tested to ensure they differ suffciently to permit burned and unburned 

grid cells to be discriminated. Previously, an overly strict criterion based on the Hellinger 

distance, a quantitative measure of the overlap between two probability distributions (Upton 

and Cook, 2002), was used. For Collection 6, we adopted more relaxed criteria that are less 

sensitive to noise that can appear in the tails of the ∆VI* distributions, particularly when 

the number of training samples is small. The Collection 6 tests are based upon the medians 

(50th percentiles) of the land-cover-specific burned and unburned conditional ∆VI* training 

samples, which we denote as Ql
(50) (ΔVI*|B) and Ql

(50) (ΔVI*|U), respectively.

The separability criteria are applied to the difference in medians, ∆Ql = Ql
(50) (ΔVI*|B) − 

Ql
(50) (ΔVI*|U), and the number of observations (grid cells) in the burned training sample 

within each land cover class (NB,l): If ∆Ql < −0.05, or if ∆Ql ≤ 0 and NB,l < 100, then 

all grid cells belonging to land cover class l are immediately classified as unburned, and 

processing continues for the remaining land cover classes present in the MODIS tile. Note 

that while ∆Ql > 0 is expected for “normal” burns, the C6 algorithm permits slightly 

negative values (∆Ql ≥−0.05) to enable a minimal mapping capability during particularly 

illbehaved instances of cropland burning. However, when the burned training sample is 

small (NB,l < 100), this is not permitted since the burned conditional PDF is inherently less 

reliable.
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As a point of clarification, the unclassified vs. unburned labels to which a grid cell may be 

summarily categorized – the former during production of the composite change summary 

(Section 3.2), and the latter as just described when the separability criteria are not met – 

reflect the quite different circumstances encountered by the algorithm when these classes are 

summarily assigned. In the former case, no spectral information whatsoever can be extracted 

from the input data for the grid cell, and the unclassified label reasonably represents this 

state of complete ignorance. In the latter situation, however, the algorithm has a usable time 

series of observations but recognizes that there exists no discernable spectral difference 

between the unburned and burned training samples. In this indeterminate situation, the 

algorithm conservatively chooses the more likely scenario, which in at least most parts of the 

world would be that, at the scale of a MODIS tile, the majority of the grid cells associated 

with a specific land cover class do not burn over the span of a calendar month. Users 

objecting to this designation may easily track such grid cells with a flag set in the quality 

assurance layer of the MCD64A1 product.

3.7. Prior probabilities

The algorithm at this point establishes spatially explicit prior burned probabilities PB(x,y) 

in preparation for the application of Bayes’ rule. With minor modification, the approach 

replicates that used for the C5 algorithm. All grid cells labeled a priori as unburned training 

cells are assigned PB(x,y) = 0, otherwise the burned prior probability for the grid cell 

is computed as a function of its proximity to the nearest burned training cell using the 

Gaussian weighting function

PB x, y = Pmax − Pmin exp − dB x, y 2

2σp2
+ Pmin, (3)

where Pmax = 0.5 and dB(x,y) is the distance from grid cell (x,y) to the nearest burned 

training grid cell. Eq. (3) limits the range of the prior probability such that Pmin ≤ PB(x,y) 

≤ Pmax, with the maximum being attained at the location of each burned training grid cell. 

For the C5 algorithm, σp was fixed at 5 km and Pmin was either 0.05 (Africa) or 0.02 

(elsewhere). For the C6 algorithm, Pmin is fixed at 0.01 while the former value of σp = 5 km 

is now retained only for African tiles but reduced to σp = 2 km elsewhere. Given Eq. (3), the 

prior unburned probability is derived as PU(x,y) = 1 −PB(x,y).

As previously noted by Giglio et al. (2009), the prior probability in Eq. (3) provides a 

way to quantify our initial degree of belief that a specific grid cell was burned based 

on a subset of the remotely-sensed data available to the algorithm, and is based on the 

reasonable expectation that burns are more likely to occur in the proximity of other burns. At 

distances far from “known” (i.e., training) burned cells, the prior probability asymptotically 

approaches the minimum likelihood Pmin. The comparatively low value specified for this 

parameter (0.01) reflects the fact, in general, any small, randomly selected patch of the land 

surface is highly unlikely to have burned during the past several months.

Giglio et al. Page 9

Remote Sens Environ. Author manuscript; available in PMC 2018 October 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



3.8. Posterior burned probability

As with the C5 algorithm, the posterior probability of the grid cell at location (x,y) and 

within land cover class l having burned during the compositing period, given the observed 

change in VI, is estimated using Bayes’ rule:

P B Δ VI* x, y = Pl Δ VI* B PB x, y
Pl Δ VI* B PB x, y + Pl Δ VI* U PU x, y . (4)

We note that within our Bayesian framework the phrase “posterior probability of a grid cell 

having burned” used here represents our revised degree of belief that the grid cell actually 

burned; strictly speaking, the phrase “probability of having burned” is meaningless, as the 

mapping algorithm operates long after the event in question did or did not occur.

3.9. Initial classification

In this penultimate step, the algorithm produces a tentative classification of burned or 
unburned for each valid 500-m grid cell within the MODIS tile, excluding those cells 

summarily designated as unburned by the separability test (Section 3.6).

As with Collection 5, two relative thresholds are computed for each land cover class and 

employed during this step: Ql
(98) (VI*post|B), the 98th percentile of the VIpost* burned 

training sample, and Ql
(98) (σt*|B), the 98th percentile of the σt* burned training sample. 

Grid cells satisfying the following four conditions, which are with one exception unchanged 

from Collection 5, are tentatively classified as burned:

1. the grid cell was not identified as an a priori unburned grid cell during the 

selection of training observations (Section 3.4.1);

2. the posterior probability Pl(B|∆VI*(x,y)) ≥ 0.5;

3. VIpost* x, y ≤ Ql
(98)(VIpost* B);

4. σt* (x, y) ≤ Ql
(98) (σl* B).

The sole change for Collection 6 occurs in condition (2), where the ΔVI* posterior 

probability threshold was reduced from 0.6 to 0.5 to reduce the frequency of omission 

errors. Grid cells that fail to satisfy one or more of the above conditions are tentatively 

classified as unburned.

3.10. Final classification

In this final step, additional contextual information is used to update as needed the label 

assigned to each grid cell during the previous step (Section 3.9). As with the C5 algorithm, 

the basis for this relabeling is a constrained majority filter, but with a modification intended 

to help capture small burns that were previously removed indiscriminately.

Input data Algorithm tuned for C6 MODIS surface reflectance and active fire products. 

Time series extraction (3.1) Adopted cloud minimum red-reflectance threshold to override 

MOD09 cloud mask. Change summary (3.2) Temporal window duration W reduced from 
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10 to 8days. Training samples (3.4) Region growing no longer performed in cropland. 

New parameter coupling: Rd=2.5σp. Separability test (3.6) Hellinger distance criterion 

eliminated; ΔVI* percentile criterion relaxed. Prior probabilities (3.7) Pmin reduced to 0.01; 

σp default value reduced to 2km. Initial classification (3.9) Posterior probability threshold 

reduced from 0.6 to 0.5. Final classification (3.10) Majority filter employs projection-aware 

kernel and is modulated using information derived from training data.

The C6 approach considers the number of tentatively burned grid cells (nB) and tentatively 

unburned grid cells (nU) within 500-m of the grid cell being processed, employing the 

projection-adjusted spatial kernel described in Section 3.3. Also considered is nCB, the 

number of tentatively burned grid cells counted in nB that are temporally consistent with 

the central grid cell being processed (0 ≤ nCB ≤ nB). Grid cells at adjacent locations (x,y) 

and (x′,y′) are considered to be temporally consistent if |t*(x,y) − t*(x′,y′)|≤ 10 days. 

This 10-day threshold was found to reasonably accommodate spread rates typical of even 

comparatively “slow” fires, in combination with a practical 1- or 2-day minimum burn-date 

uncertainty.

Unlike the C5 algorithm, the C6 algorithm considers prior information about the likelihood 

that a burned grid cell will have burned neighbors. This prior knowledge is used to modulate 

the aggressiveness of the burned-to-unburned relabeling process. The specific information 

employed is the local cumulative conditional probability that a burned grid cell has nB or 

fewer burned neighbors, F(nB|B), where

F nB B = P NB ≤ nB B (5)

= ∑
N = 0

nB
P NB = N B . (6)

The conditional burned-neighbor probability (for random variable NB, from which nB is 

drawn) in Eq. (6) is independently estimated for each grid cell tentatively classified as 

burned during the initial classification phase by examining the surrounding neighborhood 

within 50-km of the grid cell. The true (i.e., non-estimated) probability is in fact circularly 

dependent on the final classification that this phase of the algorithm will ultimately produce. 

Consequently, the burned training mask produced earlier (Section 3.4.2) is used as a proxy 

burned area map to estimate F(nB|B). Representative examples of these cumulative prob­

abilities for large savanna versus small cropland fires are shown in Fig. 3.

The Collection 6 final-classification relabeling scheme, which incorporates a new burned­

neighbor cumulative probability filtering criterion, is as follows. A grid cell initially 

classified as burned is relabeled unburned if nU > nB and F(nB|B) < 0.1. Here, the latter 

criterion limits the elimination of small burned patches and isolated burned grid cells to 

those cases having an exceptionally low prior expectation of occurrence. Conversely, a grid 

cell initially classified as unburned is relabeled burned if nB > nU and nCB ≥ 1.
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Compared to the original algorithm, the C6 relabeling scheme typically yields a comparable 

population of grid cells relabeled from unburned to burned, but, on a global scale, a vastly 

reduced population relabeled from burned to unburned. We examine the impact of this new 

scheme in Section 4.

3.11. Summary of Collection 6 algorithm changes

As is clear from the preceding algorithm description, a number of significant changes were 

made to the original Giglio et al. (2009) ap-proach as part of the MODIS Collection 6 

reprocessing effort. We provide a summary of those changes in Table 2.

We note that the C6 MCD64A1 algorithm includes a number of algorithm parameters, of 

which the majority are tuned empirically through a combination of physical insight, trial and 

error, and the authors’ experience using MODIS and other satellite data, supplemented in 

some instances with sensitivity analyses. While it is not unreasonable to view this reliance 

on empirical tuning as a shortcoming, some important caveats should be kept in mind. 

We note first that many of the algorithm parameters (e.g., W) are highly constrained by 

physical quantities associated with fire behavior (e.g., the fire spread rate), the MODIS 

sensor (e.g., spatial resolution), and the orbital characteristics (e.g., repeat cycle) of the 

Terra and Aqua satellites on which the sensor resides. Second, a number of parameters 

are “innocuous” in the sense that the final output is relatively insensitive to the particular 

value chosen for the parameter. An example from this category is the smoothing parameter 

σk used in the Gaussian kernel density estimator. Third, fully one fourth of the algorithm 

parameters are fundamentally related to the suppression or management of noise (e.g., the 

10% trim used during extraction of the time series). Employing automated methods to tune 

such parameters is often problematic since the numerical optimization is inherently inclined 

to overfit the very noise the parameters are meant to suppress. Finally, we note that for a 

global algorithm the number of empirical MCD64A1 parameters is not especially unusual 

among traditional burned area mapping algorithms developed for application over large 

spatial scales (e.g., Loboda et al., 2007; Alonso-Canas and Chuvieco, 2015). While recent 

machine-learning approaches (e.g., Ramo and Chuvieco, 2017) are in contrast comparatively 

parameter-free, this advantage is achieved at a cost of having the mapping algorithm 

expressed as a “black box” containing tens to hundreds or even thousands of individual 

weights or rules. Moreover, machine learning algorithms used for classification purposes 

require appropriate configuration prior to their application, and the optimal configuration is 

a subject of investigation (Wulder et al., 2018).

4. Comparison with Collection 5.1

To demonstrate the impact of the algorithm refinements described in Section 3 we performed 

a comparison of the C6 MCD64A1 and C5.1 MCD64A1 products for the years 2002–2016. 

A much more detailed comparison, including consideration of differences in seasonality, was 

conducted by Humber et al. (2018) as part of a larger, multi-product intercomparison. Note 

that the burned area component of the version 4 Global Fire Emissions Database (GFED4) 

from mid-2000 onward was derived from the C5.1 MCD64A1 product (Giglio et al., 2013), 
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hence the results presented here serve equivalently as a comparison between GFED4 and C6 

MCD64A1.

To quantify gross regional differences, we computed the mean annual area burned globally 

and within the 14 sub-continental GFED regions loosely defined on the basis of fire behavior 

and their suitability for emission studies (Giglio et al., 2006). The smallest region, Central 

America (CEAM), encompasses an area of 2.7 × 106 km2, and the largest, Central Asia 

(CEAS), encompasses an area of 18.1 × 106 km2, corresponding to approximately 2% 

and 13% of the global land surface, excluding Antarctica, respectively (Boschetti and Roy, 

2008). Overall, the C6 product maps significantly more burned area globally (26%) and in 

almost every region considered (Table 3). The sole exception was in Boreal North America 

(BONA), where the mean annual area burned was 6% lower for C6, primarily as a result 

of a large increase in the number of small lakes mapped (and subsequently masked) at high 

latitudes in the upstream input data (Fig. 4).

Of the 13 regions experiencing an increase in reported burned area for C6, the bulk of this 

newly mapped burned area appears as smaller patches typically 21 ha (i.e., one MODIS 

“500-m” grid cell) to ∼100 ha in size (Fig. 5). A large proportion of these small burns in 

turn occur within cropland (Fig. 6), roughly doubling the reported cropland burned area in 

seven regions (TENA, CEAM, NHSA, SHSA, EURO, MIDE, BOAS, CEAS, and SEAS) for 

C6. Some portion of this additional area may be the result of commission errors associated 

with tilling and/ or harvesting, but it is also likely that the C6 MCD64A1 product still 

grossly under-reports the extent of cropland burning in many agricultural regions due to 

the assortment of complications that confound attempts to remotely sense this class of 

fires (Hall et al., 2016). The improved handling of small burned patches under Collection 

6 similarly impacted the extent of burning mapped within forest throughout much of the 

tropics (CEAM, NHSA, SHSA, and SEAS), again approximately doubling the reported area 

burned (Fig. 6).

We note that the impact of any MCD12Q1 land cover product errors will be common to both 

the C5.1 and C6 MCD64A1 burned area products, as they both used the C5.1 MCD12Q1 

product. The main intent in using the annual land cover classification data is to help ensure 

that phenology-related changes in the VI time series of one particular 500-m grid cell are not 

confused with burn-related changes in the VI time series of another. This is accomplished 

by “localizing” the conditional PDFs as well as the extent within the MODIS tile to which 

they apply. However, we note that the C6 algorithm change to no longer perform region 

growing for cropland burns is expected to be subject to errors in the MCD12Q1 cropland 

classification which globally is reported as 83.3% (producer’s accuracy) and 92.8% (user’s 

accuracy) (Friedl et al., 2010).

5. Accuracy assessment

5.1. Temporal uncertainty

We repeated the Boschetti et al. (2010b) temporal reporting accuracy and precision 

assessment for both the MCD45A1 and MCD64A1 burned area products (Fig. 7). The 

assessment examines the time difference between MODIS active fire and burned area 
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detections that occur within 90 days as a measure of temporal uncertainty. We found that, 

globally, 44% of the Collection 6 MCD64A1 burned grid cells were detected on the same 

day of an active fire, and 68% within 2 days, which represents a substantial reduction in 

temporal uncertainty compared to the Collection 5.1 MCD64A1 and (especially) MCD45A1 

products.

5.2. Areal uncertainty

5.2.1. Preliminary global validation—A preliminary validation using a globally 

distributed independent reference data set (Fig. 8) consisting of 108 Landsat scenes 

visually interpreted into burned, unburned, and unmapped classes was undertaken. Landsat 

5 Thematic Mapper (TM) images acquired from 2000 to 2010, and Landsat 7 Enhanced 

Mapper Plus (ETM+) images sensed from 2000 to 2003 before the ETM+ scan line 

corrector failure (Markham et al., 2004), were used. The scenes are distributed to cover 

a range of representative global burning conditions, but are not selected via probability 

sampling. The sampling provides a Stage 2 validation, i.e., the product accuracy is 

assessed over a widely distributed set of locations and time periods that represent the 

full range of conditions under which the product is expected to perform (Morisette et 

al., 2006). The independent reference data were derived following the protocol developed 

by members of the GOFC/GOLD Southern African Fire Network (SAFNet) (Roy et al., 

2005a) and subsequently adopted by the Committee on Earth Observations (CEOS) Land 

Product Validation Working Group for use by the international community (Boschetti et 

al., 2010a). The CEOS validation protocol requires that global coarse re-solution burned 

area products (250 m–1 km spatial resolution) be validated using independent reference 

data derived from two or more Landsat-class images, allowing for comparison between the 

reference data and the burned areas detected by the global product in the period between 

acquisitions, with the exception of ecosystems (such as boreal forest) where burned areas 

are unambiguously visible in satellite data for more than an entire fire season. According 

to the protocol, the in-dependent reference data must be derived with minimum error, either 

by visual interpretation (Roy et al., 2005a; Roy and Boschetti, 2009; Giglio et al., 2009) 

or by application of a semi-automatic algorithm followed by visual checking and manual 

refinement (Boschetti et al., 2006; Padilla et al., 2014). All unobserved areas (e.g. due to 

clouds or shadows), or areas having spectral characteristics that could not be unambiguously 

interpreted, were masked and removed from further analysis.

The validation procedure is summarized as follows. The three MODIS burned area products 

(MCD64A1 C6, MCD64A1 C5.1, and MCD45A1 C5.1) were temporally composited to 

encompass the interval between the two Landsat acquisition dates. In the case of 24 boreal 

forest reference scenes in Siberia derived from the interpretation of single-date images 

(Loboda et al., 2007), the MODIS products were temporally composited from the first day 

of the year up to the Landsat acquisition date. The temporally composited MODIS products 

were subsequently reprojected into the UTM projection of each reference scene, with nearest 

neighbor resampling to the Landsat pixel size, to allow for direct pixel-by-pixel comparison 

between the classified and reference data.
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The local scale accuracy was characterized by the confusion matrix, which reports the 

area agreement and disagreement between the classification and the reference data. Six 

commonly used pixel-level accu-racy metrics were derived from the confusion matrix: the 

overall ac-curacy (OA), the burned area omission error ratio (“omission error”, OE), the 

commission error ratio (“commission error”, CE), the producer’s accuracy (PA), the user’s 

accuracy (UA), and the relative bias (Brel). Formulas for all metrics can be found in Padilla 

et al. (2015). Table 4 reports the error matrices and the accuracy metrics computed for 

the C6 and C5.1 MCD64A1 and the C5.1 MCD45A1 products, aggregated over the entire 

independent reference data set. The error matrices are reported in terms of area (km2) as 

well as percentages. It should be noted that the difference in unmapped area of the three 

products leads to a different total mapped area in each matrix. The C6 MCD64A1 product 

had a slightly lower omission error than the C5.1 version (0.37 vs. 0.40) and a slightly 

higher commission error (0.24 vs 0.22); the C5.1 MCD45A1 product had a significantly 

higher omission error (0.45) than the other two products, and a similar commission error 

(0.23). All three products had similarly high overall accuracy (0.97), mostly reflecting the 

prevalence of the unburned class. The C6 MCD64A1 product also detects the highest total 

area burned among the three products (C6 MCD64A1: 100,327 km2; C5.1 MCD64A1: 

91,825 km2; C5.1 MCD45A1: 83,332 km2).

The slightly higher producer’s accuracy (+2% absolute difference) and correspondingly 

lower omission error of the C6 MCD64A1 product might seem inconsistent with the 26% 

global increase in mean global burned area (compared to C5.1) we reported in Section 4. 

However, much of this increase is a consequence of the C6 algorithm now operating over 

a significantly expanded range of sub-optimal conditions that were reported as unmapped 

in the C5.1 product (Fig. 5). These C6 algorithm characteristics work in tandem to capture 

significantly more burned area than would be expected on the basis of our validation results 

alone.

A certain degree of error of omission and commission is due solely to the presence of 

mixed pixels (Boschetti et al., 2004), and the error matrix does not distinguish between these 

unavoidable errors, and er-rors due to misclassification. For this reason, the error matrix and 

the derived accuracy metrics were complemented by a regional scale accuracy assessment 

based on regression metrics. The proportion of 5 km coarse resolution grid cells detected 

as burned by the MODIS products is compared to the proportion of area detected by the 

reference data; the slope and offset of the regression line are an indication of the ac-curacy 

of the burned area detection, whereas the coeffcient of determination (r2) is an indication of 

the precision. Fig. 9 reports the scatter plots obtained by combining all the cells from the 

108 reference scenes. The analysis shows that the C6 MCD64A1 product has slightly higher 

accuracy and precision than the C5.1 MCD64A1 (slope: 0.88 vs. 0.85; r2: 0.818 vs. 0.808), 

and significantly higher than the C5.1 MCD45A1 (slope: 0.76; r2: 0.744).

5.2.2. Multitemporal accuracy assessment over small fires—One of the most 

significant changes in the Collection 6 algorithm is the preservation of small burned patches 

and isolated pixels. In order to assess the accuracy of detection on extremely small and 

fragmented fires, a time series of Landsat 8 Operational Land Imager (OLI) 30-m images 

was acquired over WRS path/row 200/051, located in Mali in the same area previously 
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studied by Laris (2005). In this region, the burned areas are spatially fragmented and small 

relative to the 500-m MODIS pixel dimension. Ten consecutive Landsat images, acquired 

from 28 September 2013 to 8 April 2014, were interpreted pair-wise, generating reference 

burned area maps covering the 2013–2014 fire season (Fig. 10). Fig. 11 reports the scatter 

plots of the proportion of area burned as detected by the Collection 6 MCD64A1 product 

and by the reference data, and the linear regression metrics computed following the same 

procedure described in Section 5.2.1. As a reference, each scatter plot reports also the 

regression line computed using the Collection 5.1 MCD64A1 and MCD45A1 products. With 

the exception of the first time interval at the beginning of the season (Fig. 11, upper left 

plot) when a few fires are entirely omitted, the slope of the re-gression line varies from 

a minimum of 0.083 to a maximum of 1.738, and the coeffcient of determination r2 from 

0.554 to 0.777.

6. Conclusions

We have described improvements made to the MCD64A1 burned area mapping algorithm as 

part of the MODIS Collection 6 land-product reprocessing. The updated algorithm improves 

upon the Collection 5.1 MCD64A1 and Collection 5.1 MCD45A1 mapping algorithms 

by offering significantly better detection of small burns, a modest reduction in burn-date 

temporal uncertainty, and a large reduction in the extent of unmapped areas. Our 2002–2016 

comparison of the product with these previous MODIS products showed that, overall, the C6 

product detects considerably more burned area globally (26%) and in almost every region 

considered. The sole exception was in Boreal North America, where the mean annual area 

burned was 6% lower for C6, primarily as a result of a large increase in the number of small 

lakes mapped (and subsequently masked) at high latitudes in the upstream input data.

We performed a temporal and areal accuracy assessment of the C5.1 and C6 products 

using MODIS active fire data and high resolution burned area reference maps derived from 

Landsat imagery. With respect to temporal reporting accuracy, 44% of the C6 MCD64A1 

burned grid cells were detected on the same day of an active fire, and 68% within 2 

days, which represents a substantial reduction in temporal uncertainty compared to the 

C5.1 MCD64A1 and MCD45A1 products. The areal accuracy assessment consisted of a 

preliminary CEOS Stage 2 validation using a reference dataset of 108 Landsat scenes. At 

the pixel level, the Collection 6 MCD64A1 product had a commission error of 0.24 and an 

omission error of 0.37; the linear regression computed using 5 km grid cells yielded a slope 

of 0.88, with coeffcient of determination r2 = 0.82. The accuracy metrics of the Collection 

5.1 MCD64A1 product were almost identical, whereas the MCD45A1 product had a higher 

omission error (0.45) and a lower linear regression slope (0.74). Because the reference 

dataset was not extracted via probability sampling, these figures cannot be extrapolated 

to the whole temporal and spatial domain of the product, and should be used only as an 

indication of relative importance. A global validation of the Collection 6 MCD64A1 burned 

area product to CEOS Stage 3, i.e., using a statistically robust and globally representative 

accuracy assessment that employs reference imagery selected via probability sampling, is 

planned. In closing, we note that the Collection 6 MCD64A1 algorithm and product is also 

the baseline for the forthcoming science-quality Suomi National Polar-orbiting Partnership 
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(S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) VNP64A1 burned area product 

to be produced by NASA.
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Fig. 1. 
Flow chart of Collection 6 MCD64A1 burned area mapping algorithm, which is applied to 

individual tiles of the MODIS sinusoidal grid. Input data layers are shown in light grey, 

intermediate data layers computed internally as part of the algorithm are shown in medium 

grey, and final output map is shown in dark grey. Numbers in parentheses refer to section 

numbers in the main text.

Giglio et al. Page 21

Remote Sens Environ. Author manuscript; available in PMC 2018 October 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 2. 
Representative examples at five locations of the equi-distant spatial kernels (shown in 

yellow) used by the Collection 6 MCD64A1 mapping algorithm. Within the MODIS 

sinusoidal projection plane, these kernels assume the form of ellipses having variable 

orientation and eccentricity. Superimposed on each kernel as red squares is the rasterized 

approximation for the specific case of a 500-m radius that operates on the gridded MODIS 

data. The examples shown here have been greatly magnified for clarity and are not drawn to 

scale. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.)
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Fig. 3. 
Example cumulative conditional burned-neighbor probability distribu-tions for savanna 

located in northern Australia (MODIS tile h31v10) versus cropland located in western 

Russia (tile h20v03). Within cropland, a full 20% of burned training cells have no burned 

neighbors, while in savanna only ∼1% of burned training cells share this characteristic.
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Fig. 4. 
Example of MODIS Collection 5 and also Collection 5.1 (middle panel) and Collection 6 

(bottom panel) MODIS land/water mask for a spatial subset of MODIS tile h12v02 (top 

panel, red outline) encompassing the western half of the Great Slave Lake in Northwest 

Territories, Canada. In this particular ex-ample, the increase in the number of small water 

bodies (shown in blue) mapped in Collection 6 is striking. The region shown in the lower 

two panels is approximately 830 km × 830 km in size. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Collection 5.1 (top panel) and Collection 6 (bottom panel) MCD64A1 monthly burned area 

maps for September 2002 in MODIS tile h13v09, which overlaps eastern Brazil, illustrating 

the improved sensitivity to small burns and the reduction in unmapped grid cells. Unburned 

land grid cells are depicted in grey, unclassified areas in white, water in blue, and burned 

grid cells in black. In this formerly problematic case (due to persistent cloud cover), the 

1.53 Mha of burned area mapped in the C6 product is four times greater than the 0.38 

Mha mapped under C5.1. The tile is approximately 1100 km × 1100 km in size. (For 
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interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 6. 
Regional 2002–2016 mean an-nual area burned for the C5.1 (hashed bars) and C6 (solid 

bars) MCD64A1 products, stratified by land cover class. The abbreviations used for the 

individual region names are listed in Table 3. Mean values take into account land cover 

changes as reported in the C5.1 MCD12Q1 land cover product for the years 2002–2013 

only; for the years 2014–2016 the MCD64A1 burned area was partitioned using the 2013 

MCD12Q1 product.
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Fig. 7. 
Histogram of time differences (in days) between spatially coincident MODIS MCD64 and 

MCD45 burned area and MODIS active fire detections for all MODIS land tiles during 

2006. Negative numbers indicate that the MODIS active fire detection precedes the burned 

area detection.

Giglio et al. Page 28

Remote Sens Environ. Author manuscript; available in PMC 2018 October 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 8. 
Location of the 108 Landsat 5 TM and Landsat 7 SLC-on ETM+ scenes used for validation. 

The location of the scenes was selected by trained interpreters, with the involvement of 

the GOFC GOLD regional networks, and all the reference data were generated via visual 

interpretation according to the CEOS Cal/Val Protocol. The Landsat acquisition dates range 

from 2000 to 2011.
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Fig. 9. 
Scatter plots of the proportions of 5 km × 5 km cells labeled as burned by the MCD64A1 

Collection 6 (top), MCD64A1 Collection 5.1 (middle), and MCD45A1 Collection 5.1 

(bottom) products, plotted against the proportion labeled as burned by the reference dataset, 

considering all the independent reference data derived from 108 Landsat path/rows (Fig. 8). 

The point densities, calculated using a 50 × 50 quantization of the plot axes, are displayed 

with a rainbow logarithmic color scale. Regression results are as follows: C6 MCD64A1: 

126,888 cells plotted, slope 0.88, intercept −0.003, r2 = 0.818; C5.1 MCD64A1: 113,423 

Giglio et al. Page 30

Remote Sens Environ. Author manuscript; available in PMC 2018 October 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



cells, slope 0.85, intercept −0.004, r2 = 0.808; C5.1 MCD45A1: 122,991 cells, slope 0.76, 

intercept −0.002, r2 = 0.744. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 10. 
MODIS tile h17v07 (Mali) selected for consistency assessment of small burns. Left: burned 

areas detected by the Collection 6 MCD64A1 product from September 2013 to April 2014, 

represented with a rainbow scale indicating the day of burning, overlaid on MODIS Blue 

Marble true-color reflectance to provide geographic context. Right: cumulative map of the 

burned areas detected through the pair-wise interpretation of nine Landsat-8 OLI ∼ 180 

× 180 km images acquired between 28 September 2013 and 8 April 2014, and detail of 

the Collection 6 MCD64A1 (MCD64C6), Collection 5.1 MCD64A1 (MDC64C51), and 

Collection 5.1 MCD45A1 (MCD45C51) burned areas shown with the same scale and 

coverage as the Landsat reference data. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. 
Regression of the proportion of area burned in coarse resolution cells between the MODIS 

burned area products and manually interpreted Landsat-8 OLI reference data for path WRS 

path/row 200/051 (Mali) in the 2013–2014 fire season. The individual data points (5 × 5 

km cell values), regression coefficient, and regression line (red dotted line) are shown for 

the Collection 6 MCD64A1 product, whereas only the regression line is shown for the 

Collection 5.1 MCD64A1 (green dashed line) and Collection 5.1 MCD45A1 (purple dash­

dot line) products. Only isolated burns at the beginning of the time series (time intervals 1 
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through 4) were not detected by the three products. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Spatial variables comprising the temporal change summary produced as part of the mapping algorithm.

Variable Description

S* Maximum separability in VI time series

t* Date of maximum VI separability: t* (x, y ) = (t k * + W − 1 + tk * +W)/2.

∆t* Uncertainty in date of maximum separability:
∆t * (x, y ) = tk*+W−1 − tk*+W.

∆VI* Change in VI associated with maximum separability:

VIpost* Post maximum-separability VI

t f Cumulative mask identifying date on which active fire was detected
during the three-month processing period.

IQRpre* Interquartile range of observation dates in candidate pre-burn window
associated with maximum separability

IQRpost* Interquartile range of observation dates in candidate post-burn
window associated with maximum separability.

σt* Temporal “texture”, i.e., rank-filtered local standard deviation of t*.
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Table 2

Summary of major changes made to the Collection 5.1 MCD64A1 mapping algorithm for Collection 6.

Step/Section Description of Change

Input data Algorithm tuned for C6 MODIS surface reflectance and active fire products.

Time series extraction (3.1) Adopted cloud minimum red-reflectance threshold to override MOD09 cloud mask.

Change summary (3.2) Temporal window duration W reduced from 10 to 8 days.

Training samples (3.4) Region growing no longer performed in cropland. New parameter coupling: Rd = 2.5σp.

Separability test (3.6) Hellinger distance criterion eliminated; ∆VI* percentile criterion relaxed.

Prior probabilities (3.7) Pmin reduced to 0.01; σp default value reduced to 2 km.

Initial classification (3.9) Posterior probability threshold reduced from 0.6 to 0.5.

Final classification (3.10) Majority filter employs projection-aware kernel and is modulated using information derived from training data.
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Table 3

Regional 2002–2016 mean annual area burned (Mha yr−1), and relative change (∆), for the MODIS Collection 

5.1 and Collection 6 MCD64A1 burned area products. NH and SH denote the northern and southern 

hemispheres, respectively.

 Region  Abbrv. C5.1 C6 ∆ (%)

 Global  GLOB 336.5 422.5 26

 Boreal North America  BONA 2.7 2.5 −6

 Temperate North America  TENA 2.0 2.8 43

 Central America  CEAM 1.6 2.8 77

 NH South America  NHSA 2.7 5.3 100

 SH South America  SHSA 17.8 29.3 64

 Europe  EURO 0.6 1.0 71

 Middle East  MIDE 0.8 1.4 80

 NH Africa  NHAF 110.3 129.9 18

 SH Africa  SHAF 125.3 153.7 23

 Boreal Asia  BOAS 6.3 9.7 55

 Central Asia  CEAS 12.9 19.9 54

 Southeast Asia  SEAS 7.5 14.4 91

 Equatorial Asia  EQAS 1.3 1.7 30

 Australia and NZ  AUST 44.8 48.1 7
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Table 4

Confusion matrix and accuracy metrics for the MCD64A1 Collection 6 and Collection 5.1 and MCD45A1 

Collection 5.1 products, considering all the in-dependent reference data derived from 108 Landsat path/rows 

(Fig. 8). Accuracy metrics, which are described in the main text, consist of overall accuracy (OA), omission 

error (OE), commission error (CE), producer’s accuracy (PA), user’s accuracy (UA), and relative bias (Brel).

MCD64 C6 Reference data

Burned Unburned Row total

Burned [km2] 76,520 23,808 100,327 OA 0.97

(2.81%) (0.87%) (3.67%) OE 0.37

Unburned [km2] 45,705 2,581,562 2,627,268 CE 0.24

(1.68%) (94.6%) (96.3%) PA 0.63

Col. total [km2] 122,225 2,605,370 2,727,595 UA 0.76

(4.48%) (95.5%) B rel −17.9%

MCD64 C51 Reference data

Burned Unburned Row total

Burned [km2] 71,442 20,383 91,825 OA 0.97

(3.08%) (0.88%) (3.97%) OE 0.40

Unburned [km2] 47,292 2,175,683 2,222,975 CE 0.22

(2.04%) (94.0%) (96.0%) PA 0.60

Col. total [km2] 118,734 2,196,065 2,314,800 UA 0.78

(5.13%) (94.9%) B rel –22.7%

MCD45 C51 Reference data

Burned Unburned Row total

Burned [km2] 63,926 19,406 83,332 OA 0.97

(2.44%) (0.74%) (3.18%) OE 0.45

Unburned [km2] 51,710 2,483,134 2,534,845 CE 0.23

(1.98%) (94.8%) (96.8%) PA 0.55

Col. total [km2] 115,636 2,502,541 2,618,176 UA 0.77

(4.41%) (95.6%) B rel –27.9%
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