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FANCC localizes with UNC5A at neurite 
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Abstract 

Objective:  The Uncoordinated 5A (UNC5A) protein is part of a family of receptors that play roles in axonal pathfind-
ing and cell migration. We previously showed that the Fanconi anemia C protein (FANCC) interacts with UNC5A and 
delays UNC5A-mediated apoptosis. FANCC is a predominantly cytoplasmic protein that has multiple functions includ-
ing DNA damage signaling, oxygen radical metabolism, signal transduction, transcriptional regulation and apoptosis. 
Given the direct interaction between FANCC and UNC5A and that FANCC interferes with UNC5A-mediated apoptosis, 
we explored the possibility that FANCC might play a role in axonal-like growth processes.

Results:  Here we show that FANCC and UNC5A are localized to regions of neurite outgrowth during neuronal cell 
differentiation. We also show that absence of FANCC is required for neurite outgrowth. In addition, FANCC seems 
required for UNC5A expression. Results from this study combined with our previous report suggest that FANCC plays 
a role in tissue development through the regulation of UNC5A-mediated functions.
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Introduction
The Uncoordinated 5A (UNC5A) protein belongs to the 
UNC5 human transmembrane receptor family, which 
includes four homologs UNC5A, UNC5B, UNC5C and 
UNC5D. UNC5 proteins promote repulsive signals dur-
ing neural development and differentiation [1–4]. In 
addition, UNC5 proteins have been proposed to func-
tion as ‘dependence receptors’, triggering apoptosis in 
the absence of the ligand Netrin-1 and sending survival 
signals when bound to the ligand [5]. UNC5A has also 
been shown to promote apoptosis independently of 
Netrin-1, indicating the possibility of other functional 
ligands for this receptor [4, 6]. In a previous report, we 
showed that the Fanconi anemia C protein, FANCC, 
interacts directly with UNC5A via its cytoplasmic death 
domain. FANCC interaction with UNC5A was also 
shown to delay UNC5A-mediated apoptosis [7]. FANCC 
is one of many Fanconi anemia (FA) proteins that act in 
signaling events following cellular stress including DNA 

damage and oxidative stress. Fanconi anemia (FA) is a 
genetic disease associated with defective hematopoiesis, 
cancer proneness and developmental deficiencies [8, 9]. 
Although the primary role of FA proteins is associated 
with hematopoiesis, the work of Sii-Felice et al. has estab-
lished that FA proteins are required for the development 
and survival of neural progenitor cells [10]. In addition, 
gene expression studies have shown that both FancA and 
FancC are highly expressed in the developing brain, spe-
cifically in the intermediate zone, which contains migrat-
ing neurons [11–13]. Furthermore, FA proteins were 
shown to be upregulated following ethanol-induced brain 
injury [14]. Given that UNC5A plays a role in axonal 
pathfinding mechanisms, neuronal differentiation and 
survival [15], and that FANCC interacts with UNC5A 
[7], we hypothesized that FANCC may be involved in 
neuronal differentiation. Consequently, objectives of this 
study were to explore whether FANCC is required for 
neurite outgrowth processes.
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Main text
Methods
Plasmids and DNA constructs
All plasmids used have been described previously in 
[7]. These include HA-tag UNC5A intracellular domain 
(pCMVzeoUNC5AICD), full-length FANCC (pREP4-
FANCC), FANCC N-terminus (pEGFPFANCC1–306), 
FANCC C-terminus (pEGFPFANCC307–558) and Myc-
tag FANCE (pCDNA3-FANCE). Other vectors included 
lentiviral vectors coding for shRNA against FANCC 
(TRCN0000083368 (sh-C1), TRCN0000083369 and 
TRCN0000083370) or against UNC5A (V2LHS-16512, 
V2LHS-16513, V2LHS-304038, V2LHS-304039, 
V2LHS-304040; ThermoFisher Scientific, Mississauga, 
ON).

Antibodies
The antibodies used in this study were as follows: 
anti-FANCC (Novus Biologicals, NBP1-03280 or 8F3, 
MABC524, EMD Millipore); anti-FANCE (Novus Bio-
logicals, NBP1-21365); anti-UNC5A (Sigma-Aldrich); 
anti-HA (12CA5, #11583816001, Roche Diagnostics, 
Indianapolis, IN); anti-GFP (clone B2; Santa Cruz 
Biotechnologies; SC-9996); anti-GAPDH (clone1D4, 
NB300-221, Novus Biologicals); anti-cMyc (Santa 
Cruz Biotechnologies clone 9E10, SC-40); anti-Tubu-
lin, (clone DM1A, #T6199, Sigma-Aldrich); goat 
anti-mouse IgG-HRP or goat anti-rabbit IgG-HRP (San-
taCruz Biotechnologies, SC-2064 or SC-2004); Don-
key anti-rabbit-Alexafluor 488 (A21206), -Alexafluor 
555 (A31572) or -Alexafluor 680 (A10043) and Goat 
anti-mouse-Alexafluor 488 (A28175), -Alexafluor 555 
(A32727) or -Alexafluor 680 (A21057; ThermoFisher 
Scientific). F-actin was labeled with Alexafluor 555 
phalloidin (ThermoFisher Scientific; A34055).

Cells, cell culture and transfection
HEK293T cells (ATCC, Cedarlane Laboratories) and 
mouse embryonic fibroblasts obtained from FancC−/− 
and wildtype mice were grown at 37  °C in 5% CO2 in 
DMEM medium supplemented with 10% FCS. SH-
SY5Y cells (ATCC, CRL-2266) were grown in a mix-
ture of DMEM and Ham’s F12 Nutrient Mixture (1:1) 
with 10% FCS at 37  °C, 5% CO2, followed by transfec-
tion using calcium-phosphate or lipofectamine 2000 
(ThermoFisher Scientific). For differentiation assays, 
SH-SY5Y cells were treated with retinoic acid (10 μM; 
Sigma-Aldrich) for 48  h or recombinant human 
Netrin-1 (500 ng/ml, R&D systems, #6419-N1) for 4 h 
prior to immunofluorescence staining. For UNC5A 
expression and stability experiments, HEK293T cells 
were transfected with increasing amounts of FANCC, 

FANCE or UNC5AICD as indicated in the figure and 
compared to cells expressing equimolar amounts of 
each coding vector.

Animals
FancC knockout mice (FancC−/−) used in this study have 
been described previously [16]. FancC−/− were main-
tained into C57Bl/6J background and housed in a SPF 
Elite facility without any pathogens. All mice had access 
to mouse chow and water ad libitum. Five to six months-
old mice including wild-type littermates used as controls 
were included in the study. Mice were euthanized accord-
ing to procedures approved by the Animal Care Com-
mittee of Laval University under the guidelines of the 
Canadian Council on Animal Care in science.

Western blotting analysis and RT‑qPCR
Mouse tissue extracts and whole cell lysates were sub-
jected to immunoblot. Total cell lysates were prepared 
in SDS loading buffer (50 mM Tris–HCL, 2% 2-mercap-
toethanol, 2% sodium dodecyl sulfate), sonicated and/
or boiled, subjected to electrophoresis on a 10% or 12% 
SDS-polyacrylamide gel, electrotransferred onto a PVDF 
membrane and probed with antibodies. For RT-qPCR, 
total RNA was isolated using the RNeasy Mini Kit RNA 
purification system according to the manufacturer’s 
instructions (Qiagen) followed by reverse transcription 
with random hexamer primers using the SuperScript™II 
protocol as recommended by the manufacturer (Ther-
moFisher Scientific). Quantitative PCR was performed 
with 100  nm each of the forward and reverse Unc5A, 
Sdha (succinate dehydrogenase) or Tbp (TATA box bind-
ing protein) primers using the SYBR Green DNA bind-
ing dye and ABI Prism 7000 Sequence Detection System 
(ThermoFisher Scientific). Dissociation curve profile of 
each amplicon and product sizes were verified by agarose 
2% gel fractionation. The Unc5A gene expression profile 
was normalized to that of Sdha and Tbp.

Immunofluorescence procedure
SH-SY5Y cells were grown on glass coverslips (12-mm 
diameter) for 24 h under the appropriate culture condi-
tions prior to fixing with 4% paraformaldehyde in PBS for 
20  min at room temperature. Cells were permeabilized 
for 15 min at room temperature with 0.3% Triton X-100 
in PBS and incubated with primary antibodies followed 
by secondary antibodies in PBS with 10% horse serum at 
the appropriate dilutions as described in the figure leg-
end. The cells were washed 3 times with PBS, and nuclei 
were labeled with DAPI prior to mounting. Images were 
acquired using a Nikon E800 fluorescent microscope 
equipped with a C1 confocal system (Nikon Canada) at 
100× magnification.



Page 3 of 7Huang et al. BMC Res Notes  (2018) 11:662 

Statistical analyses
Statistical analyses were performed using paired and 
unpaired two-tailed Student’s t-tests with the GraphPad 
Prism software (version 5.0b; GraphPad Software Inc., 
San Diego, CA).

Results
FANCC and UNC5A are required for neurite outgrowth
To determine whether FANCC localizes with UNC5A 
to distal projection of neuronal like cells within growth 
cones and axonal compartments, we used SH-SY5Y 
neuroblastoma-derived cell lines that we treated with 
retinoic acid (RA) in order to induce cellular differentia-
tion and neurite-like formation. As expected and consist-
ent with previous reports [17, 18], upon treatment with 
RA, SH-SY5Y cells showed morphological changes and 
neurite outgrowth characteristic of neuronal differenti-
ated cells (Fig.  1). Immunofluorescence labeling of dif-
ferentiated cells shows that both FANCC and UNC5A 
localized to neurite-like outgrowth structures (Fig.  1a). 
Importantly, the addition of the UNC5 ligand Netrin-1 
during the differentiation process resulted in strong 

co-labeling of UNC5A with FANCC at the ends of neur-
ite outgrowth (Fig. 1b). This finding was further validated 
by the labeling of F-actin filaments with a phalloidin 
conjugate, which confirmed neurite branching and out-
growth in differentiated cells (Fig. 1c). In addition, confo-
cal microscopic analysis confirmed the strong co-labeling 
of FANCC with UNC5A at regions of growth cones 
(Fig. 1c).

Next, to determine whether FANCC is necessary and 
required for neurite outgrowth, in the same manner as 
UNC5A, SH-SY5Y cells were depleted of either FANCC 
or UNC5A prior to differentiation. Knockdown of 
UNC5A or FANCC in SH-SY5Y cells resulted in a dras-
tic reduction of differentiated cells and neurite outgrowth 
upon RA treatment (Fig.  2a). These results are consist-
ent with our previous report showing that UNC5A and 
FANCC-depleted cells showed reduced cell growth and 
increased cell death [7]. As shown in Fig.  2b, western 
blotting experiments confirmed knockdown of FANCC 
and UNC5A in cells. In addition, labeling of F-actin fila-
ments with phalloidin conjugate confirmed the reduced 
branching and outgrowth of neurites in cells depleted 

Fig. 1  FANCC and UNC5A co-localize to neurite outgrowth. a, b Representative microscopic images of SH-SY5Y cells incubated with RA (10 μM) 
for 6 days prior to analysis. Differentiated SH-SY5Y cells were labeled with antibodies against FANCC (green) and UNC5A (red). c SH-SY5Y cells were 
incubated with recombinant Netrin-1 (500 ng/ml) prior to analysis. Labeled cells were visualized by confocal fluorescence microscopy at ×60 and 
×100 magnification using a Nikon E800 microscope equipped with a C1 confocal system
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of either FANCC or UNC5A (Fig.  2c) consistent with a 
significant reduction in neurite length (Fig.  2d). These 
results suggest that FANCC and UNC5A are required for 
neuronal differentiation mechanisms.

Unc5A expression is reduced in FancC−/− brains
Given that FancC−/− mice present decreased neu-
ronal production in developing cortex and adult brain 
[10], we evaluated Unc5A protein levels in brain cortex 
of FancC−/− mice compared to wild-type littermates. 
Results show that Unc5A is significantly reduced in the 
cerebral cortex of FancC−/− mice compared to wild-
type littermates (Fig.  3a, b). Similarly, we observed 

reduced Unc5A gene expression in FancC−/− derived 
fibroblast cells compared to wild-type cells (Fig.  3c). 
These results suggest that FANCC may regulate UNC5A 
expression and/or stability. In line with this postu-
late, we have previously shown that UNC5A expres-
sion levels increased when co-expressed with FANCC 
[7]. Therefore, to investigate whether UNC5A levels are 
modulated by FANCC, we co-expressed UNC5A intra-
cellular domain (UNC5AICD) with increasing amounts 
of FANCC. Because UNC5A interaction with FANCC 
occurs via both N-terminal (FANCC1–306) and C-termi-
nal (FANCC307–558) caspase-mediated cleavage products, 
we also co-expressed increasing amounts of FANCC 

Fig. 2  FANCC and UNC5A are required for neurite outgrowth. a Representative microscopic images of SH-SY5Y cells stably transduced with shRNA 
against FANCC (FANCCi), UNC5A (UNC5Ai), or control noncoding scrambled shRNA (Control) vectors (upper panels) and following differentiation 
with retinoic acid (+RA at 10μM; lower panels). Cells were visualized at ×40 magnification. b Western blots showing the depletion of FANCC using 
either one shRNA (sh-C1) or a mixture of 3 (sh-C3) against FANCC (upper blot) and a mixture of 5 shRNA against UNC5A (sh-U; lower blot) in SH-SY5Y 
cells. c Control cells transfected with empty vectors; NT: untransfected cells. c UNC5A- and FANCC-depleted SH-SY5Y cells (UNC5Ai and FANCCi, 
respectively) induced to differentiate with RA (10μM) were labeled with anti-UNC5A (blue) and anti-FANCC (green) antibodies and phalloidin 
conjugates (red). The labeled cells were visualized by confocal fluorescence microscopy at ×100 magnification using a Nikon E800 microscope 
equipped with a C1 confocal system. d Estimated neurite length measured estimated Control (n = 15) FANCCi (n = 21) and UNC5Ai (n = 11) 
***p > 0.0001
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fragments with UNC5A [7, 19]. In order to stabilize 
FANCC, FANCE expression vector was added to each 
experimental condition [19, 20]. As expected, FANCE 
expression increased the stability of FANCC, as previ-
ously reported [20] but had no effect on UNC5A protein 
levels (Fig.  3d). Interestingly, neither the co-expression 
of increasing amounts of FANCC nor its N-terminal 
fragment, FANCC1–306, altered the levels of UNC5AICD 
(Fig.  3d, e). In contrast, when cells are transfected with 
ten times the amount of the C-terminal caspase cleav-
age product, FANCC307–558, UNC5AICD protein level 
increased dramatically by almost tenfolds (Fig. 3f ). These 
results suggest that the C-terminal cleavage product of 

FANCC, FANCC307–558, positively impacts UNC5AICD 
protein stability. Further investigations are crucial to 
understand the functional consequence of this increased 
stability.

Discussion
In this study, we showed that FANCC and UNC5A are 
localized together at the tips of neurite-like elonga-
tions in cells induced to differentiate. We also observed 
a requirement for FANCC and UNC5A for cellular dif-
ferentiation-mediated branching and outgrowth. Given 
that UNC5 receptors control morphogenesis of neuronal 
and non-neuronal tissues [21–23], our results suggest 

Fig. 3  Reduced expression of UNC5A in FancC−/− cells. a Reduced expression of Unc5A in brain cortex of FancC−/− mice compared to wild-type 
littermates. Western blotting was performed with the indicated antibodies. Each lane represents a different animal (WT: n = 6; FancC−/−: n = 8). 
b Bar graph represents ratio of Unc5A normalized to tubulin from WT (n = 6) and FancC−/− mice (n = 8). c Bar graph representation of UNC5A 
expression normalized to Sdha and Tbp from wild-type (WT) and FancC−/−-derived fibroblasts (n = 3). RLU: Relative light units. d–f HEK293T 
cells were transfected with UNC5AICD, FANCE and FANCC constructs expressing full-length FANCC (in d), FANCC1–306 (in e) or FANCC307–558 (in f). 
Constructs were transfected at a molecular ratio of 1:1:1 or with 10 times the molar amount of FANCE, FANCC or UNC5AICD as indicated in the figure. 
The total amount of transfected plasmid was equalized for all strategies with control empty vectors. Representative immunoblots performed 
with anti-HA (UNC5AICD), anti-FANCC, anti-FANCE or anti-GAPDH antibodies are shown. Arrows indicate appropriate protein bands. Bar graphs 
represent the mean fold change ± SEM of UNC5A protein levels normalized to GAPDH compared to 1:1:1 transfection controls in at least 4 separate 
experiments. *p < 0.05; **p < 0.005
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that FANCC, via UNC5A, may play a role in branching 
morphogenesis, or structural organization during organ 
formation. This idea is supported by the numerous con-
genital malformations described for patients with FA 
including those affecting the nervous system [24–26]. 
Although little is known regarding the role of FA pro-
teins in embryonic development, our previous findings 
[7] combined to the results presented herein suggest 
that FANCC might be involved in the UNC5A-mediated 
apoptotic signal. In fact, FANCC interacts with UNC5A 
via its C-terminal death domain (DD), which is required 
for UNC5A-mediated apoptosis in response to Netrin-1 
withdrawal [6, 7, 23, 27]. In addition, overexpression of 
FANCC delays UNC5A-mediated apoptosis, whereas 
UNC5A levels increase in the presence of FANCC cas-
pase-mediated cleavage products (FANCC307–558 or 
FANCCp47 [19]) [7]. These data suggest that FANCC 
might be an important regulator of the UNC5A apoptotic 
signal during tissue morphogenesis. The fact that Unc5A 
protein levels are reduced in FancC−/− brains also sug-
gest that FANCC with UNC5A may have critical implica-
tions in neuronal tissues. Interestingly, the FANCC gene 
has been associated with entorhinal cortex thickness, a 
region that is affected early in the progression of Alzhei-
mer’s disease (AD) [28].

Furthermore, significant expression changes in UNC5A 
were found in the posterior cingulate brain region of AD 
patients, while mutations in UNC5C seemed to predis-
pose to late-onset Alzheimer’s disease [29–31]. These 
data suggest a link between FANCC, the axon-guidance 
pathway and Alzheimer’s disease thus further highlight-
ing the importance of UNC5A and FANCC in cell death 
signaling in health and disease conditions.

Limitations
It is unclear whether interaction between FANCC and 
UNC5A is required for neurite outgrowth. Further 
work is needed to determine whether FANCC regulates 
UNC5A apoptosis during cellular development or axon 
guidance in vivo.
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