Hindawi

Journal of Healthcare Engineering
Volume 2018, Article ID 1592821, 11 pages
https://doi.org/10.1155/2018/1592821

Research Article

An Evaluation of HTML5 and WebGL for Medical

Imaging Applications

Qiusha Min

» Zhifeng Wang, and Neng Liu

Department of Digital Media Technology, Central China Normal University, Wuhan 430079, China

Correspondence should be addressed to Qiusha Min; mingiusha918@hotmail.com

Received 3 April 2018; Revised 22 June 2018; Accepted 18 July 2018; Published 29 August 2018

Academic Editor: Olivier Beuf

Copyright © 2018 Qiusha Min et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Despite the fact that a large number of web applications are used in the medical community, there are still certain technological
challenges that need to be addressed, for example, browser plug-ins and efficient 3D visualization. These problems make it necessary
for a specific browser plug-in to be preinstalled on the client side when launching applications. Otherwise, the applications fail to run
due to the lack of the required software. This paper presents the latest techniques in hypertext markup language 5 (HTML5) and web
graphics library (WebGL) for solving these problems and an evaluation of the suitability of the combination of HTML5 and WebGL
for the development of web-based medical imaging applications. In this study, a comprehensive medical imaging application was
developed using HTML5 and WebGL. This application connects to the medical image server, runs on a standard personal computer
(PC), and is easily accessible via a standard web browser. The several functions required for radiological interpretation were
implemented, for example, navigation, magnification, windowing, and fly-through. The HTML5-based medical imaging application
was tested on major browsers and different operating systems over a local area network (LAN) and a wide area network (WAN). The
experimental results revealed that this application successfully performed two-dimensional (2D) and three-dimensional (3D)
functions on different PCs over the LAN and WAN. Moreover, it demonstrated an excellent performance for remote access users,
especially over a short time period for 3D visualization and a real-time fly-through navigation. The results of the study demonstrate
that HTML5 and WebGL combination is suitable for the development of medical imaging applications. Moreover, the advantages

and limitations of these technologies are discussed in this paper.

1. Introduction

Internet technologies have evolved to a point where it is
possible to create web-based applications that are compa-
rable with those typically found on desktop computers and
workstations. Web applications have been used in a wide
range of areas, including business, media, education, and the
medical community. Many radiologists recently participated
in the development of these web applications for radiological
purposes [1]. Examples of web-based medical imaging ap-
plications are presented briefly in Table 1.

Although these applications enable radiologists to share
images and implement remote access interpretations, there
are still certain technological challenges that need to be
addressed. As can be seen from Table 1, Java is the most
popular web technology for developing these applications
owing to its cross-platform compatibility and remote

accessibility [13]. Unfortunately, the implementation of Java
is dependent on the preinstallation of the JVM. During the
installation process, certain constraints such as adminis-
trative permission prohibit changes to the computer. In this
case, Java-based web applications fail to run due to the
unsuccessful installation of the JVM. This drawback leads to
several disadvantages in web-based applications. Moreover,
a similar problem exists with ActiveX applications. If this
problem remains unsolved, radiologists may be unable to
use the applications due to the lack of the required browser
plug-in, thereby discouraging them from implementing
remote access interpretations in the future.

Another challenge with respect to the development of
medical imaging applications is the lack of an efficient
approach for 3D visualization. Although recent studies have
proposed the application of AJAX or TypeScript to develop
web-based medical imaging applications to solve the plug-in

mailto:minqiusha918@hotmail.com
http://orcid.org/0000-0002-4837-4613
https://doi.org/10.1155/2018/1592821

Journal of Healthcare Engineering

TaBLE 1: An overview of several previously published medical imaging applications.

Group

Year Client technology

Functions

Required plug-in

Access to remote patient database, the compressed

Slomka et al. [2] 2000 Java image is transmitted to the local computer, and JVM?
several applets are available for different study types
Knoll et al. [3] 2000 Java Patient .adm.mlstratlon., 2D reconstructlo.n an.d image VM
processing, interpretation and collaborative diagnosis
Choi et al. [4] 2002 Java Medical imaging conference JVM
Zeng et al. [5] 2003 ActiveX Access to remote medlcal. image databgses, image ActiveX plug-in
presentation, and image processing

Kaldoudi and Karaiskakis [6] 2006 XML Access to remote medical image databases and image None
presentation

Mongeau et al. [7] 2008 VRML® 3D visualization VRML browser plug-in

Kamauu et al. [8] 2008 Java Image display and processing JVM

Costa et al. [9] 2009 ActiveX Access to remote medical image databases and image ActiveX plug-in
presentation

Mahmoudi et al. [10] 2010 AJAX®+VRML Image processing; and 3D visualization VRML browser plug-in

Shen et al. [11] 2014 AJAX Access to remote medical image databases and image None
presentation

Qiao et al. [12] 2015 AJAX Image presentation and image processing None

Looney et al. [13] 2016 Java Access to remote medical image databases and image VM
processing

Xiberta and Boada [14] 2016 AJAX Image presentation and image processing None

Doel et al. [15] 2017 Java Medical imaging data sharing JVM

Transmission performance improvement with

Jiang et al. [16] 2017 Android respect to batch transmission processing and image None
presentation

Huang et al. [17] 2018 AJAX Access to remote medical image databases and image None
presentation

Goeg et al. [18] 2018 TypeScript [19] Access to remote medical image databases and image None
presentation

}JVM is the acronym for Java virtual machine; "VRML is the acronym for virtual reality modeling language; AJAX is the acronym for asynchronous

JavaScript and XML.

problem, it can be seen from Table 1 that these types of
applications lack three-dimensional (3D) visualization fea-
tures. Given that a series of medical images is typically larger
than 200 MB, the rendering of the entire dataset requires
a significant amount of memory and time. Certain re-
searchers have proposed the use of VRML to achieve
hardware-accelerated rendering over the Internet; however,
this presents three severe drawbacks, which are the plug-in
problem, highly limited interface, and inconsistencies with
different web browsers [20]. Due to the inherent limitation
of the Internet technologies, web-based 3D visualization has
recently become an impediment to the development of
medical imaging applications.

In 2014, the World Wide Web Consortium (W3C) of-
ficially published a new version of HTML, referred to as
HTMLS5 [21]. The previous version of HTML could only
display simple information and implement simple in-
teractions. These static web pages were not suitable for
publishing variable data and were unable to provide rich
interfaces over the Internet. To address this drawback, W3C
updated the HTML standard. The latest version, HTMLS5,
provides a richer and more interactive user experience with
many new advanced features, including interaction with local
files, image pixel operations, and support for advanced 3D
functionalities. With the upgrades in the latest standard,
HTMLS features are available in most browsers. A number of

studies have therefore been conducted to exploit the potential
of HTMLS5 in specific areas, such as e-learning [22] and re-
mote macromolecular visualization [23]. In the field of
medical imaging applications, Monteiro et al. used HTMLS5 to
develop a sophisticated web-based medical image viewer [24].
The experimental results revealed that the application suc-
cessfully demonstrated basic interpretation functions, for
example, measurement, annotation, windowing, image ro-
tation and filtering, and zooming. The performance of the
HTML5-based medical image viewer was then improved by
reducing the data access latency [25]. Although the HTML5-
based implementation solved the plug-in problem, it lacked
3D features, which presents a potential limitation of the study.
Many studies have confirmed the feasibility and clinical
benefit of the 3D functions used in radiological interpretation
[26]. In particular, with the assistance of the 3D function, the
examiner performance with respect to sensitivity and in-
terpretation time is better than that in the case wherein only
a two-dimensional (2D) tool is used [27, 28]. Therefore, in
addition to 2D image processing tools, the remote medical
imaging application needs to provide 3D functions, to help
the examiner make timely and accurate decisions.
Visualization researchers proposed WebGL [29] as
a solution for web-based 3D visualization, due to its capa-
bility to access OpenGL for Embedded System 2 (OpenGL
ES2) using a JavaScript application programming interface

Journal of Healthcare Engineering

(API) [30-35]. The combination of the HTML5 <canvas>
element and WebGL enables hardware acceleration, without
plug-in requirements. WebGL was initially implemented at
Mozilla in 2006 and the nonprofit technology consortium,
Khronos Group, worked on the WebGL standard in 2009. In
2011, the WebGLI1.0 specification was released, and most
browsers supported it, for example, Chrome, Firefox, Safari,
and Opera. Thus far, there are several WebGL demos that
demonstrate its immense potential to incorporate 3D
graphics into web pages [32, 33]. Hence, Cantor-Rivery and
Peters described how these new technologies (HTML5 and
WebGL) can improve medical imaging web applications, with
respect to 3D visualization [36], and presented a demo that
demonstrates an excellent performance of this combination
[37]. Unfortunately, a comprehensive quantitative evaluation
of the application running in different contexts was not
provided. More tests are required to confirm the suitability of
HTML5 and WebGL for the development of remote access
medical imaging applications. It can therefore be concluded
from the literature that HTML5 and WebGL are not being
extensively explored by the medical community, and there is
a need for a comprehensive qualitative and quantitative
evaluation of these technologies.

In this paper, the latest revision of HTML (HTML5)
combined with WebGL is discussed in the context of a po-
tential solution to the plug-in and 3D visualization problems.
As the new standard for the web, HTML5 is platform-
independent, and in combination with the promising
WebGL 3D web technology, it can create sophisticated 3D
applications. The aim of this study was to evaluate the per-
formance of an HTML5-based medical imaging application
with respect to accessibility, functionality, and usability to
determine its appropriateness for remote viewing and the
interpretation of radiological images. The various functions of
this application are covered in detail in the following sections,
and a series of results are presented to confirm the suitability
of HTML5 and WebGL for the development of remote access
medical imaging applications.

2. Materials and Methods

2.1. Application Design. There are several common func-
tionalities of medical imaging applications. First, it is pref-
erable to initially transfer the medical dataset from the server
to the client side so as to provide a short response time.
Therefore, the application is required to directly interact with
the local file system. Furthermore, to facilitate radiological
interpretation, the basic functions for image processing are
necessary for radiologists to identify the useful information
contained in images. Finally, the interpretation may be
supported by 3D functions so that the volumetric dataset can
provide more details of patient anatomies and pathological
conditions. Thus, a comprehensive medical imaging appli-
cation should include the following features: (1) interaction
with the local file system, (2) basic functions for 2D image
processing, and (3) 3D visualization of the region of interest
within the dataset.

In this paper, a demo application for computed to-
mography colonography (CTC), also known as virtual

colonoscopy, is designed to satisfy all criteria and is then
used to conduct an evaluation of the HTML5 and WebGL
combination as a development tool. The initial start page for
the demo application is presented in Figure 1 and available at
http://203.195.157.19/datatest/2D_Viewer.html. The opera-
tion flow of radiological interpretation using this demo
application is as follows:

Step 1. Select a dataset to be interpreted and click the
Download button, which activates the download pro-
cess. The selected dataset is stored on the local
computer.

Step 2. Click the Choose file button and in the dialog
box, select the downloaded file. As a result, the first slice
of the dataset is automatically displayed on the screen.

Step 3. Navigate through the image dataset using the
Previous and Next buttons.

Step 4. Interpret the dataset using 2D image processing
tools, for example, zoomin, zoomout, filtering,
threshold, edge detection, and windowing.

Step 5. Interpret the dataset using 3D visualization
tools, for example, 3D rendering and fly-through.

This application provides remote access interpretation in
such a way that radiologists can view images from
a downloaded dataset and manipulate them using 2D or 3D
functions.

This application can be placed as a client component in
a large teleradiology system. A typical teleradiology system
comprises two components: the server side and the client
side of the application. The server-side component is re-
sponsible for retrieving the required image datasets and
sending them to the client. The client side is a medical
imaging application. The application sends the request to the
server to download the selected dataset and displays the
downloaded image. The radiological interpretations can be
assisted by the 2D and 3D functions in the application.

This paper focuses solely on the client application and
presents an evaluation of HTML5 and WebGL for the de-
velopment of medical imaging applications. The following
section presents a demo application for CTC and a discus-
sion on all the necessary implementation details.

2.2. Application Implementation

2.2.1. Access to the Local File System. The application enables
the user to choose a patient dataset to study (Figure 1). The
selected dataset is transmitted to the client side and stored on
the local computer using a custom format. At present,
HTMLS has added a new input type, <input type = “file”>,
which provides a standard way to interact with local files.
The File Open dialog box that appears when the user clicks
the File button is used to access the local file system from the
browser. This new feature in HTMLS5 is a core requirement
for the remote viewer application.

Once the downloaded file has been opened, the first slice
in the dataset is automatically displayed on the screen
(Figure 2).

http://203.195.157.19/datatest/2D_Viewer.html

-crc X =g = O

- (& Q »
08629CTC |V || Download ' | Browse... | No file selected.
22118CTC
08629CTC
08779CTC
| Previous | Next | slice: l zoomin | zoomout | reset
I&‘ median filtering 150 thresholding
| Sobel ~| | edge-detection
|Window center: Mindow width: oK
| 3D rendering [fly-through

FIGURE 1: Screenshot of the initial start page for the demo
application.

2.2.2. Image Processing. Another crucial requirement for
this application is pixel-level manipulation. Owing to the
introduction of the <canvas> element in HTMLS5, it is
possible to define the color of an image pixel in the canvas.
The application is therefore capable of implementing certain
advanced image processing functions that could not be
achieved with previous versions of HTML. 2D image pro-
cessing functions, for example, magnification, windowing,
filtering, thresholding, and edge detection are provided by
the application and typical functions depicted in Figure 3.
The implementation of accessing the local file and 2D image
processing comprises approximately 700 lines of JavaScript
code without support from other libraries.

2.2.3. 3D Visualization. It is well known that 3D visuali-
zation is extremely computationally intensive. Hence, this
task is normally implemented at a workstation equipped
with a high-performance graphics processing unit (GPU).
For a single CTC interpretation, the application is required
to render approximately 1,000,000 polygons to generate the
entire colon surface. As is expected, it is difficult to complete
this 3D visualization on a personal computer (PC) that is not
equipped with high-performance GPUs or to run it in
a browser.

Journal of Healthcare Engineering

08629CTC | Download 08629CTC.dat

| Previous | Next | slice:o ‘ zoomin | zoomout | | reset

3x3 v|| median filtering 150 thresholding
| Sobel V| edge-detection
|Window center: Mindow width: oK

| 3D rendering ‘ fly-through

FIGURE 2: Screenshot of an image display.

Based on the study by Cantor-Rivery and Peters [36, 37],
in this study, WebGL was used for 3D functions realized
using HTML5 implementation. In addition, WebGL is the
most promising technology to satisfy the criteria, which are
as follows:

(i) Accessibility: the application should be supported
by most web browsers, and the interface should
require no more than the interaction capabilities of
a standard PC. In this way, users can complete the
remote access interpretation using their existing
computers, without any additional software or
hardware requirements.

(ii) Functionality: the application should provide a 3D
visualization for the region of interest within the
dataset.

(iii) Usability: the application should be easy to use, and
a short response time is an important factor that
affects the user satisfaction.

The following presents the 3D implementation based on
HTML5 and WebGL used in this study.

In this implementation, the 3D visualization is based on
surface rendering. Surface rendering generally involves two
stages: surface extraction and 3D rendering. The marching
cubes algorithm [38] is used to extract the isosurface from

Journal of Healthcare Engineering

-
(¢

08629CTC v | Download

Browse... = 08629CTC.dat

‘ Previous = Next slice:0 Izoomin

3x3 || median filtering [150
‘ Sobel || edge-detection
Window center: [20 Window width: 200

[3D rendering [fly-through

zoomout | | reset

‘ thresholding

()

3 - I E x
» = c

08629CTC v || Download

Browse... | 08629CTC.dat

|Previous Next slice:0 ‘zoomin zoomout reset

3x3 v|| median filtering IISO

| Sobel

|Window center:

| 3D rendering

thresholding

3 ‘ edge-detection ‘

Mindow width: oK

[fly-through

()

FIGURE 3: Screenshots of the user interface of the implementation of typical image processing functions: (a) a slice with adjusted window
(parameters: center =20 HU, width =200 HU); (b) edge detection using the Sobel operator.

a volumetric dataset. The preferred method for shortening
the rendering time is to perform the surface extraction once
and store the vertex and normal files on the server. When the
user sends the request to view the 3D data, the application
loads the corresponding vertex and normal files and renders
the 3D content on the client side, without the need to
perform surface extraction. Once the vertex and normal files
of a 3D model have been set, the 3D model surface can be
defined and WebGL renders the entire model according to
the predefined light and viewpoint. The total number of lines
of JavaScript code for 3D rendering is approximately 500,
without support from other libraries. Figure 4 presents a 3D
colon model extracted from a CTC dataset using the ap-
plication described above. The user can also interact with
this model and perform operations such as rotation and
translation using the mouse.

Virtual fly-through navigation is a feature used in ma-
nipulating the results of the 3D reconstruction. Moreover,
WebGL provides a function to set the viewpoint location,
which is an essential prerequirement for the camera
movement. The camera can therefore move along a planned
path, commonly referred to as the colon center line, to
render internal views. Using these advanced imaging
techniques, the radiologist can examine the inner wall using
3D fly-through in a virtual colon model which has been

regarded as a time-efficient method for colon cancer de-
tection. The same CTC dataset was used to implement a fly-
through function. Figure 5 presents a captured image of the
3D fly-through within the colon, running in a browser.

3. Results

3.1. Experiment Design. The demo application enabled ra-
diologists to connect to an image server to download the
selected dataset and then manipulate the images in a web
browser. A range of appropriate tools, such as windowing,
zooming, and 3D visualization, were also provided by the
application.

To evaluate the HTML5-based application, two types of
experiments were conducted. The first was used to de-
termine the performance of the application on multiple
platforms. The second was used to evaluate the performance
of the application using either a local area network (LAN) or
a wide area network (WAN). Three datasets were used in the
experiments. The data were downloaded from the Cancer
Imaging Archive (TCIA), which provides a freely accessible
and open archive of cancer-specific medical images to the
research community [39]. A complete description of the
datasets is presented in Table 2, and the information about
computers used in the experiments is presented in Table 3. It

- Search with Google or enter address =

v

FIGURE 4: Screenshot of a 3D model of the whole colon in the
browser.

8 o

&« - Search with Google or enter address D=

~

N

N

N

\ -

FIGURE 5: Screenshot of the implementation of the fly-through in
the browser.

N
.
Py .

v

is evident that the computers were ordinary laptops for
regular users.

Thus far, all major browsers including Firefox, Chrome,
Safari, IE, and Microsoft Edge support HTML5 and WebGL.
However, when testing the application in different browsers,
IE returned a memory error, due to the large number of faces

Journal of Healthcare Engineering

that required rendering. Therefore, the experiments were
focused on Chrome, Firefox, Safari, and Microsoft Edge. The
details of the testing metrics in this study are presented in
Table 4.

3.2. Performance on Multiple Platforms. The first experiment
was carried out using dataset 1 through LAN to evaluate the
performance of the application on multiple platforms. The
demo application was run on several computers to test the
performance on the Windows, Linux, and Mac platforms.
Each function in the application was implemented 20 times
on these platforms, using different browsers. The average
performances for each function are presented in Figure 6. A
comparison of the performances on the different platforms
reveals that Windows, Linux, and Mac could provide nearly
the same application performances, with the exception of
magnification and 3D rendering. Magnification imple-
mented on Linux was much slower than that implemented
on Windows and Mac, regardless of the browsers used;
whereas 3D rendering implemented on Linux and Mac was
much faster than that implemented on Windows. Although
different platforms could provide nearly the same applica-
tion performances, the performance of each browser on
different platforms led to inconsistencies. For example,
Firefox on Windows and Mac provided faster windowing
than that on Linux, whereas Firefox on Linux and Mac
provided faster thresholding than that on Windows. Ad-
ditionally, the inconsistent performances on different plat-
forms also occurred in Chrome. For example, the execution
time for viewing a slice on Windows and Linux was twice
that on Mac and the execution time for magnification on
Linux was twice that on Windows and Mac. However, on
Magc, Safari, Firefox, and Chrome provided nearly the same
2D and 3D performances.

3.3. Performance via LAN and WAN. In the second exper-
iment, the computer was used to test the application over
LAN and WAN. This computer was equipped with Win-
dows, and therefore had only three browsers, that is,
Microsoft Edge, Firefox, and Chrome, which were used to
implement the HTML5-based application. All three datasets
were used in the experiment. Dataset 1 was used to identify
which of the three browsers could offer the best performance
for the HTML5-based application. Dataset 2 was used to
determine the performance differences in Chrome when
running the application via LAN and WAN. Dataset 3 was
used to determine the performance differences in Firefox
when running the application via LAN and WAN. In WAN,
the application accessed the medical image dataset and
vertex/normal files on the remote server. The bandwidth of
the connecting network was 40 Mbps, and it had a download
speed of approximately 4.8 MB/s. The download sizes for the
medical image dataset, vertex file, and normal file are pre-
sented in Table 2.

Each function in the application was implemented 20
times by Chrome, Firefox, and Microsoft Edge, either over
the LAN or WAN. The average performances for each
function are presented in Table 5. The results of the

Journal of Healthcare Engineering

TaBLE 2: Description of the datasets used in the experiments.

3D visualization

Dataset Type Size
Vertex file Normal file The number of faces
#1 CT 512 x 512 x 610 (312,320 kB) 59,545 kB 59,545 kB 1,693,700
#2 CT 512 x 512 % 628 (321,536 kB) 57,747 kB 57,747 kB 1,642,580
#3 CT 512 %512 % 500 (256,000 kB) 60,236 kB 60,236 kB 1,713,372
TaBLE 3: The details of computers using in the experiments.
Computer Type Operation system CPU Memory GPU
. . Intel(R) Core(TM) i5-6300HQ
I Laptop Windows 10 64-bit CPU @ 2.30 GHz 8.00GB NVIDIA GeForce GTX 950M
Intel(R) Core(TM) i5-6300HQ
I Laptop Ubuntu 16.04 CPU @2.30 GHz 8.00GB NVIDIA GeForce GTX 950M
111 Laptop (MacBook Pro) Mac OS Sierra 10.12.5 Intel Core Intel i5@2.30 GHz 8.00GB Intel Iris Plus Graphics 640
TaBLE 4: The details of testing metrics in this study.
Function Label Description Measurement
Data access M1 Execution time for downloading a medical image Manual measurement
dataset
M2 Execution time for viewing a slice in a medical image Measured by JavaScript code
dataset
M3 Execution time for 1m1:11iecr:ent1ng windowing per Measured by JavaScript code
M4 Execution time for 1mplsellixc1€ent1ng magnification per Measured by JavaScript code
2D image processing
M5 Execution time for 1mplement.1ng median filtering Measured by JavaScript code
(3 x3) per slice
M6 Execution time for 1mpileizr;ent1ng thresholding per Measured by JavaScript code
M7 Execution time for '1mplemer'1t1ng Sobel edge Measured by JavaScript code
detection per slice
Execution time for downloading the vertex and
M8 A Manual measurement
normal files of a medical image dataset
3D visualization Execution time for rendering a 3D model based on .
M9 the downloaded vertex and normal files Measured by JavaScript code
M10 Frame rate of fly-through Measured by JavaScript code

performance tests of Chrome, Firefox, and Microsoft Edge
on dataset 1 revealed that Firefox and Chrome were superior
to Microsoft Edge with respect to 2D image processing.
However, for 3D visualization, Microsoft Edge achieved the
highest frame rate with an increase of 20% when compared
with Firefox and 50% when compared with Chrome. Fur-
thermore, the results presented in Table 5 reveal that the
most significant difference between the LAN and WAN was
the data transmission speed, as expected. After loading data
to the local storage, the application performance over the
WAN was the same as that over the LAN.

The experiments revealed that the response time for the
2D image processing functions was significantly less than 1s
per slice on every computer. It can therefore be concluded
that the application can demonstrate real-time performances
for all the provided 2D tools. For the 3D visualization,
approximately 1 min was required for the download of the
vertex and normal files and the generation of the entire 3D
model over the WAN, whereas over the LAN, approximately

14 s (execution time on M8 and M9) was required. The user
was then able to control the camera movement, resulting in
the change of viewpoint in real time.

4. Discussion

At present, three alternatives to HTMLS5 for the development
of web applications are Flash, Java, and Silverlight [40]. Circa
2000, Java was a popular web technology used in tele-
radiology applications. Slomka et al. developed a remote
viewer using Java applets [2]. In their system, the com-
pressed patient images were downloaded with a Java archive
file (JAR); thus, the client required only one connection to
the server, which can dramatically reduce network traffic,
due to the decrease in the client-server communications.
Knoll et al. [3] and Choi et al. [4] also developed Java ap-
plications for teleradiology purposes. Recently, the ubiquity
and small size of Flash Player stimulated a growing trend
toward the utilization of Flash. Arguifiarena et al. used this

M1 (seconds)

M3 (seconds)

M5 (seconds)

M7 (seconds)

B Firefox (Win) MS Edge (Win)
B Chrome (Linux) B Firefox (Mac)
® Chrome (Win) Firefox (Linux)
W Safari (Mac) B Chrome (Mac)
(a)
0.12 -
0.1
0.08 -

B Firefox (Win) MS Edge (Win)
B Chrome (Linux) B Firefox (Mac)

® Chrome (Win) Firefox (Linux)
B Safari (Mac) B Chrome (Mac)

(c)

B Firefox (Win)

MS Edge (Win)
B Chrome (Linux) M Firefox (Mac)

Firefox (Linux)
B Chrome (Mac)

B Chrome (Win)
W Safari (Mac)

(e)
0.3 -
0.25 -
0.2 -
0.15 -
0.1 -

0.05

: I Il i

M Firefox (Win) MS Edge (Win)
B Chrome (Linux) B Firefox (Mac)

M Chrome (Win) Firefox (Linux)
W Safari (Mac) B Chrome (Mac)

(g)

Journal of Healthcare Engineering

0.0015
__0.0012
e
S 0.0009
2
< 0.0006 -
=
0.0003 -
0
B Firefox (Win) MS Edge (Win)
B Chrome (Linux) B Firefox (Mac)
® Chrome (Win) Firefox (Linux)
M Safari (Mac) B Chrome (Mac)
(b)
0.006 -
0.005 -
"% 0.004 -
§ 0.003 -
= 0002
=
0.001 -
0
W Firefox (Win) MS Edge (Win)
B Chrome (Linux) M Firefox (Mac)
® Chrome (Win) Firefox (Linux)
M Safari (Mac) B Chrome (Mac)
(d)
0.12 -
0.1 -
’g 0.08 -
15
§ 0.06 -
S 0.04-
=
0.02 -
0
B Firefox (Win) MS Edge (Win)
B Chrome (Linux) M Firefox (Mac)
B Chrome (Win) Firefox (Linux)
W Safari (Mac) B Chrome (Mac)
(f)
14
12
% 0- - ®mm - pm B
§ 8
K2 6
§ 4. m N
2
0

B Firefox (Win)
B Chrome (Linux)
B Chrome (Win)
M Safari (Mac)

MS Edge (Win)
B Firefox (Mac)

Firefox (Linux)
B Chrome (Mac)

()

FiGure 6: Continued.

Journal of Healthcare Engineering

M9 (seconds)

B Firefox (Win)
B Chrome (Linux) M Firefox (Mac)

MS Edge (Win)

® Chrome (Win)
B Safari (Mac)

Firefox (Linux)
B Chrome (Mac)

@

M10 (fps)

B Firefox (Win)
B Chrome (Linux) M Firefox (Mac)

MS Edge (Win)

® Chrome (Win)
B Safari (Mac)

0)

Firefox (Linux)
B Chrome (Mac)

FIGURE 6: Application performances on different platforms. The computational time required for (a) downloading the selected dataset; (b-g)
implementing 2D image processing per slice; (h-j) implementing 3D visualization.

TaBLE 5: Comparison of the proposed application performances over the WAN and LAN.

Data access

2D image processing

3D visualization

Dataset Browser
M1 (s) M2(s) M3(s) M4 (s) M5(s) M6(s) M7 (s) M8(s) M9 (s) MI10 (fps)

Firefox (WAN) 18.6 0.0008 0.066 0.002 0.456 0.070 0.040 4.7 3.61 49.54
#1 Chrome (WAN) 27.1 0.0014 0.024 0.002 0.150 0.021 0.089 10.5 3.52 39.8
Microsoft Edge (WAN) 19.5 0.0005 0.102 0.001 0.359 0.102 0.268 32 4.12 60.0
“ Chrome (LAN) 28.9 0.0013 0.025 0.001 0.167 0.024 0.103 10.4 3.30 40.41
Chrome (WAN) 135.5 0.0015 0.029 0.001 0.169 0.028 0.165 46.0 3.78 40.05
#3 Firefox (LAN) 17.9 0.0003 0.039 0.001 0.468 0.039 0.039 4.8 3.80 47.28
Firefox (WAN) 102.3 0.0005 0.042 0.002 0.495 0.046 0.068 40.2 3.85 46.95

type of application to connect with a picture archiving and
communication system and to provide a shorter image
display time to improve the teleradiological productivity
[41]. Our previous study determined the suitability of Flash
for the development of web-based medical imaging appli-
cations [42].

However, the main disadvantage associated with these
technologies is the requirement of a browser plug-in. Al-
though Flash Player is the most popular browser plug-in
technology in the world thus far; in 2010, Apple decided to
stop incorporating Flash Player in Macs. For this group of
users, it is therefore necessary to ensure that their computers
are equipped for running Flash applications, which requires
an initial installation of the Flash Player. Moreover, the same
problem occurs in Java and Silverlight. To run Java-based
web applications without a plug-in installation, Oracle de-
veloped a tool to generate the package for a self-contained
application. This application contains the Java application
and the required Java Runtime Environment and requires no
additional JVM installation. However, the drawbacks of self-
contained application packages are their lager download
sizes and platform dependencies [43]. Fortunately, these
drawbacks do not exist with the application described in this
paper, given that HTML is the native language of all
browsers. Therefore, HTMLS5 is a truly “no preinstallation”
and platform-independent technology.

Another drawback of remote access medical applications
is the visualization of the region of interest within a volu-
metric dataset. The majority of the previous work was focused

on the utilization of VRML on the client side [7, 10]. However,
this approach also suffers from several limitations, which were
discussed in the previous section. This study addressed
a different technology for an improvement in user friendli-
ness. Furthermore, the WebGL and HTML5 combination has
numerous potential advantages over VRML with respect to
JavaScript support, consistency across different browsers, and
no plug-in requirements. Cantor-Rivery and Peters demon-
strated that the HTML5 and WebGL combination for medical
imaging applications could solve the problem relating to the
inability of user browsers to support 3D interactions [37]. The
demo application was tested on several platforms and re-
quired only 1 min to download the corresponding files and
generate an entire 3D model while running on an ordinary
laptop computer in a remote location. In addition, as a useful
tool for the image interpretation, virtual fly-through navi-
gation could also be implemented in real time using
a browser. It should be noted that the download sizes of the
vertex and normal files could be dramatically reduced by
server-side smoothing and polygon decimation, thus short-
ening the download time for the vertex and normal files. On
the other hand, if the clients are high-performance computers,
the 3D reconstruction process can be implemented locally,
which eliminates the necessity of downloading the vertex and
normal files. Furthermore, all these procedures make it
possible to further improve the 3D performance of the
application.

Nevertheless, there are minor limitations in the current
implementation. At the time of writing, the latest version of

10

HTML released was 5.2. In comparison with HTML5.0, the
latest version provides new features, such as the <dialog>
element and the allowpaymentrequest attribute of the
<iframe> element. However, the method for accessing the
local file in HTML5.2 still requires user interaction.
Therefore, in the application in this study, the users
themselves are required to specify the file path when reading
the downloaded dataset. Given that the W3C is still working
on the HTMLS5 specification, in the future, a smart way may
be developed in HTMLS5 to read the local file after obtaining
user permission, such as trusted applications in Java and
Silverlight. Furthermore, the 3D visualization of the medical
image data is based on surface rendering, and the surface
information is predefined on the server. Consequently, the
user is not allowed to choose the surface-generation pa-
rameters, and the parameters may affect the geometric
representation of the 3D models. To provide a custom 3D
visualization of medical image data, it is reasonable to allow
the user to define the surface-generation parameters in the
application, and the server then implements a fast surface
extraction according to the chosen parameters. In this case,
a further study on the fast surface extraction is required. One
more limitation of this study is browser compatibility. Given
that the W3C HTML5 recommendation was released in
2014, old versions of browsers do not support HTMLS5.
Therefore, some of the latest features in HTML5 may not be
compatible with user browsers (e.g., the <canvas> and
<video> elements), if the browsers are not updated. How-
ever, as HTMLS5 is used more extensively, it is expected that
all of the browsers installed on PCs will support HTML5,
and the medical community will adopt the more advanced
features of HTMLS5. The results of the comparison with other
teleradiology applications suggest that this new type of web
application can provide the necessary functionalities for
radiological interpretations and offer an excellent perfor-
mance for remote access users, especially in a short time, for
3D visualization and real-time fly-through navigation.

5. Conclusions

From a review of the literature, it is apparent that there is
a need for a straightforward solution to the remote access of
radiological images. As revealed in this paper, an HTML5-
based application provides a solution by the remote
implementation of 2D image processing functions and 3D
visualization without the need for preinstallations. More-
over, it should be noted that the implementation of the
application only requires a web browser on an ordinary
computer. The experimental results indicate that this so-
lution can achieve real-time performances for 2D and 3D
functions over both LAN and WAN, providing significant
improvements with respect to accessibility, functionality,
and usability. Therefore, it can be concluded from the study
that the HTML5 and WebGL combination can provide
a remote access medical imaging experience that is com-
parable with (or superior to) that of alternative technologies
that are currently available.

Journal of Healthcare Engineering

Data Availability

Three datasets used in the experiments were downloaded
from The Cancer Imaging Archive (TCIA), which provides
a freely accessible and open archive of cancer specific
medical images to the research community.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge Dr. Robert Sadleir
for his helpful contribution to this work. This work was
supported by the National Key Technology Research and
Development Program of the Ministry of Science and
Technology of China (no. 2015BAK33B02) and the MOE
(Ministry of Education in China) Project of Humanities and
Social Sciences (no. 17YJC880081).

References

[1] D.D. Prasad, S. Ray, A. K. Majumdar et al., “Real time medical
image consultation system through internet,” Journal of
Healthcare Engineering, vol. 1, no. 1, pp. 141-154, 2010.

[2] P. J. Slomka, E. Edwards, and A. A. Driedger, “Java-based

remote viewing and processing of nuclear medicine images:

toward ‘the imaging department without walls’,” Journal of

Nuclear Medicine, vol. 41, no. 1, pp. 111-118, 2000.

P. Knoll, K. Holl, S. Mirzaei, K. Koriska, and H. Kohn,

“Distributed nuclear medicine applications using World

Wide Web and Java technology,” European Radiology, vol. 10,

no. 9, pp. 1483-1486, 2000.

[4] H. K. Choi, S. M. Park, J. H. Kang, S. K. Kim, and H. M. Choi,
“Tele-medical imaging conference system based on the web,”
Computer Methods and Programs in Biomedicine, vol. 68,
no. 3, pp. 223-231, 2002.

[5] H. Zeng, D. Y. Fei, C. T. Fu, and K. A. Kraft, “Internet

(WWW) based system of ultrasonic image processing tools

for remote image analysis,” Computer Methods and Programs

in Biomedicine, vol. 71, no. 3, pp. 235-241, 2003.

E. Kaldoudi and D. Karaiskakis, “A service based approach for

medical image distribution in healthcare Intranets,” Com-

puter Methods and Programs in Biomedicine, vol. 81, no. 2,

pp. 117-127, 2006.

[7] R. Mongeau, M. A. Casu, L. Pani et al.,, “Building a virtual
archive using brain architecture and Web 3D to deliver
neuropsychopharmacology content over the Internet,”
Computer Methods and Programs in Biomedicine, vol. 90,
no. 2, pp. 124-136, 2008.

[8] A. W. C. Kamauu, S. L. DuVall, R. H. Wiggins, and

D. E. Avrin, “Using applet-servlet communication for opti-

mizing window, level and crop for DICOM to JPEG con-

version,” Journal of Digital Imaging, vol. 21, no. 3,

pp. 348-354, 2008.

C. Costa, J. L. Oliveira, A. Silva, V. G. Ribeiro, and J. Ribeiro,

“Design, development, exploitation and assessment of a car-

diology web PACS,” Computer Methods and Programs in

Biomedicine, vol. 93, no. 3, pp. 273-282, 2009.

[3

[6

[9

Journal of Healthcare Engineering

[10] S. E. Mahmoudi, A. Akhondi-Asl, R. Rahmani et al., “Web-
based interactive 2D/3D medical image processing and vi-
sualization software,” Computer Methods and Programs in
Biomedicine, vol. 98, no. 2, pp. 172-182, 2010.

[11] H. Shen, D. Ma, Y. Zhao et al., “MIAPS: a web-based system
for remotely accessing and presenting medical images,”
Computer Methods and Programs in Biomedicine, vol. 113,
no. 1, pp. 266-283, 2014.

[12] L. Qiao, Y. Li, X. Chen et al., “Medical high-resolution image
sharing and electronic whiteboard system: a pure-web-based
system for accessing and discussing lossless original images in
telemedicine,” Computer Methods and Programs in Bio-
medicine, vol. 121, no. 2, pp. 77-91, 2015.

[13] P. T. Looney, K. C. Young, and M. D. Halling-Brown,
“MedXViewer: providing a web-enabled workstation envi-
ronment for collaborative and remote medical imaging
viewing, perception studies and reader training,” Radiation
Protection Dosimetry, vol. 169, no. 1-4, pp. 32-37, 2016.

[14] P. Xiberta and 1. Boada, “A new e-learning platform for ra-
diology education (RadEd),” Computer Methods and Pro-
grams in Biomedicine, vol. 126, pp. 63-75, 2016.

[15] T. Doel, D. 1. Shakir, R. Pratt et al., “GIFT-Cloud: a data

sharing and collaboration platform for medical imaging re-

search,” Computer Methods and Programs in Biomedicine,

vol. 139, pp. 181-190, 2017.

N. Jiang, Y. Zhuang, and D. K. W. Chiu, “Multiple transmission

optimization of medical images in recourse-constraint mobile

telemedicine systems,” Computer Methods and Programs in

Biomedicine, vol. 145, pp. 103-113, 2017.

[17] Q.Huang, X. Huang, L. Liu et al., “A case-oriented web-based
training system for breast cancer diagnosis,” Computer
Methods and Programs in Biomedicine, vol. 156, pp. 73-83,
2018.

[18] K. R. Goeg, R. K. Rasmussen, L. Jensen et al., “A future-proof
architecture for telemedicine using loose-coupled modules
and HL7 FHIR,” Computer Methods and Programs in Bio-
medicine, vol. 160, pp. 95-101, 2018.

[19] TypeScript, September 2017, http://www.typescriptlang.org/
docs/home . html.

[20] C.M. Mendes, D. R. Drees, L. Silva, and O. R. Bellon, “A study
on the conversion of VRML to X3D in a highly complex and
detailed Web3D world,” International Journal of Computer
Science Issues, vol. 14, no. 1, pp. 41-47, 2017.

[21] HTML5.2: editor’s draft” September 2017, http://w3c.github.
io/html/.

[22] S. Ringe, R. Kedia, A. Poddar, and S. Patel, “HTML5 based
virtual whiteboard for real time interaction,” Procedia
Computer Science, vol. 49, pp. 170-177, 2015.

[23] S. Yuan, H. C. S. Chan, and Z. Hu, “Implementing WebGL
and HTML5 in macromolecular visualization and modern
computer-aided drug design,” Trends in Biotechnology,
vol. 35, no. 6, pp. 559-571, 2017.

[24] E. J. M. Monteiro, C. Costa, and J. L. Oliveira, “A DICOM
viewer based on web technology,” in Proceedings of 2013 IEEE
15th International Conference on e-Health Networking, Ap-
plications and Services (Healthcom 2013), pp. 167-171, Por-
tugal, Lisbon, October 2013.

[25] E. J. M. Monteiro, C. Costa, J. L. Oliveira, D. Campos, and
L. B. Silva, “Caching and prefetching images in a web-based
DICOM viewer,” in Proceedings of 2016 IEEE 29th In-
ternational Symposium on Computer-Based Medical Systems
(CBMS), pp. 241-246, Dublin, Ireland, June 2016.

[26] D.Haak, C. E. Page, and T. M. Deserno, “A survey of DICOM
viewer software to integrate clinical research and medical

(16

11

imaging,” Journal of Digital Imaging, vol. 29, no. 2,
pp. 206-215, 2016.

[27] P. J. Pickhardt, “Three-dimensional endoluminal CT colo-
nography (virtual colonoscopy): comparison of three com-
mercially available systems,” American Journal of
Roentgenology, vol. 181, no. 6, pp. 1599-1606, 2003.

[28] P. J. Pickhardt, A. D. Lee, A. J. Taylor et al., “Primary 2D
versus primary 3D polyp detection at screening CT colo-
nography,” American Journal of Roentgenology, vol. 189, no. 6,
pp. 1451-1456, 2007.

[29] WebGL 2.0 Specification, September 2017 , https://www.
khronos.org/registry/webgl/specs/latest/2.0/.

[30] S. Ortiz, “Is 3d finally ready for the web?,” Computer, vol. 43,
no. 1, pp. 14-16, 2010.

[31] M. Zorrilla, A. Martin, J. R. Sanchez, I. Tamayo, and
I. G. Olaizola, “HTML5-based system for interoperable 3D
digital home applications,” Multimedia Tools and Applica-
tions, vol. 71, no. 2, pp. 533-553, 2014.

[32] J. Jiménez, A. M. Lope, J. Cruz et al., “A web platform for the
interactive visualization and analysis of the 3D fractal di-
mension of MRI data,” Journal of Biomedical Informatics,
vol. 51, pp. 176-190, 2014.

[33] J. Y. Xia, B. J. Xiao, D. Li, and K. R. Wang, “Interactive
WebGL-based 3D visualizations for EAST experiment,” Fu-
sion Engineering and Design, vol. 112, pp. 946-951, 2016.

[34] F.Shahzad, T. R. Sheltam, E. M. Shakshuki, and O. Shaikh, “A
review of latest web tools and libraries for state-of-the-art
visualization,” Procedia Computer Science, vol. 98, pp. 100—
106, 2016.

[35] A. Evans, M. Romeo, A. Bahrehmand, and J. Blat, “3D
graphics on the web: a survey,” Computers & Graphics, vol. 41,
pp. 4361, 2014.

[36] D. Cantor-Rivera and T. Peters, “Pervasive medical imaging
applications—current challenges and possible alternatives,” in
Proceedings of IEEE Conference on E-Health, Networking,
Application and Services, Lyon, France, 2010.

[37] D. Cantor-Rivera, R. Bartha, and T. Peters, “Efficient 3D
rendering for web-based medical imaging software: a proof of
concept,” in Proceedings of Medical Imaging 2011: Visuali-
zation, Image-Guided Procedures, and Modeling, Article ID
79643A, Orlando, FL, USA, March 2011.

[38] W. E. Lorensen and H. E. Cline, “Marching cubes: a high
resolution 3D surface construction algorithm,” ACM Siggraph
Computer Graphics, vol. 21, no. 4, pp. 163-169, 1987.

[39] K. Clark, B. Vendt, K. Smith et al, “The cancer imaging
archive (TCIA): maintaining and operating a public in-
formation repository,” Journal of Digital Imaging, vol. 26,
no. 6, pp. 1045-1057, 2013.

[40] S. A. A. Wahid and Z. K. Khoon, “Rich internet application
(RIA) new dimension with HTML5, CSS3 and javascript
technology,” International Journal of Advances in Computer
Science & Its Applications, vol. 5, pp. 172-177, 2015.

[41] E.]J.C. Arguifiarena, J. E. Macch, P. P. Escobar et al., “Dcm-ar:
a fast flash-based Web-PACS viewer for displaying large
DICOM images,” in Proceedings of 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology,
pp. 3463-3466, IEEE, Buenos Aires, Argentina, August 2010.

[42] Q. Min, Z. Wang, and M. Wu, “An evaluation of adobe flash
for remote access medical imaging applications,” in Pro-
ceedings of 2016 IEEE 9th International Congress on Image and
Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), pp. 645-650, Datong, China, October 2016.

[43] Java Platform, “Standard edition deployment guide,” March
2018, https://docs.oracle.com/javase/10/deploy/toc.htm.

http://www.typescriptlang.org/docs/home.html
http://www.typescriptlang.org/docs/home.html
http://w3c.github.io/html/
http://w3c.github.io/html/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://docs.oracle.com/javase/10/deploy/toc.htm

