Skip to main content
. 2018 Sep 13;14(9):e1007582. doi: 10.1371/journal.pgen.1007582

Table 2. Assessment of possible hypernucleosome formation by archaeal histones.

Dimer–dimer interfacea Stacking interfaceb Potential
stacking interactionsc
Hypernucleosome formation Histone
features
Heimdall LC_3 HA ± + 3 (E14-R48, K26-E57, R41-E45) ± N-terminal tail
Heimdall LC_3 HB + + 5 (E30-K61, Q14-R48, R13-Q18, K27-E57, K37-E45) +
Heimdall LC_3 HC ± + 3 (N34-R65, T15-K41, Y14-Q53) ±
Loki GC14_75 (HLkE) + 2 (D14-R48, K34-E45) Truncated C-term
Loki CR_4 + + 2 (Q14-D48, Q41-Q41) +
Odin LCB_4 + 3 (K30-Q61, K14-E18, E38-R41) ±
Thor SMTZ1-45 + + 5 (Q30-D61, E34-K65, K14-E48, E37-R41, E26-K58) +
Woese CG1_02_33_12 + + 4 (R14-T48, R34-E61, E26-K57, E37-R41) +
Pace CG1_02_31_27 + + 4 (S30-K61, E34-K65, K14-T48, E37-K45) +
Huber CG_4_9_14_3_um_filter_31_125 (HA) ± + 2 (E14-K48, E14-K18) ±
Huber CG_4_9_14_3_um_filter_31_125 (HB) + + 2 (N30-R61, K34-E65) + N-terminal tail
Diaphero CG_4_10_14_0_2_um_filter_31_5 ± ± 4 (E33-R48, E37-R41, E37-R48, E27-K61) ±
Aenigm CG1_02_38_14 + + 5 (E30-K61, D34-R65, E14-H48, A15-K41, E37-K41) +
Micr M. acidiphilum ARMAN-2 + + 3 (E30-K61, K34-Q65, Y2-K48) +
Nanohalo Haloredivivus sp. G17 ± 2 (E27-R61, Q37-E45) Truncated N-term
Nanohalo Nanosalina sp. J07AB43 (HA) + + 5 (Q30-K61, D34-R65, K14-E48, K14-E18, Q37-Q45) +
Nanohalo Nanosalina sp. J07AB43 (HB) ± 2 (Q30-R61, D14-K18)
Nano N. equitans Kin4-M + + 4 (E30-R61, Q14-K48, Q14(bb)-R41, K37-E45) +
Kor
ARK-16 (HA)
± ± 7 (R30-E61, Q14-K48, K15-E41, E26-R58, E27-R57, E33-K48, R38-E41) ±
Kor ARK-16 (HB) + + 3 (Y30-E61, D14-K48, R27-E61) +
Thaum N. gargensis Ga9.2 + + 4 (E34-K65, K14-E18, E27-R61, E37-K41) +
Bathy B23 ± ± 4 (R14-V44, E34-K61, E37-R41, E26-R58) ± N-terminal tail
Bathy B24 + + 3 (E34-R65, K14-E18, E27-R61) + Truncated N-term
Bathy SMTZ-80 + + 3 (E34-K65, K41-E45, E27-R61) +
Cren C. maquilingensis IC-167 + + 4 (D30-K61, N34-R65, K14-E18, Y37-K48) +
Cren T. pendens Hrk5 + + 4 (E30-K61, S14-R48, R37-E45, R13-E18) +
Cren V. distributa DSM14429 + + 4 (D30-K61, Y34-R65, K14(bb)-R48, K14-E18) +
Eury M. wolinii (HA) ± + 4 (N30-E61, E34-K65, E14-K48, K41-E45) ±
Eury M. wolinii (HB) + + 5 (E30-K61, E34-K65, N14-R48, N14-Q18, Q41-Q41) +
Eury M. jannaschii DSM2661 + 4 (N30-K61, Q14-R48, K37-Q45, D26-R58) ± C-terminal tail
Eury M. methylutens ± 2 (D30-K61, S14-E18)
Eury T. kodakarensis KOD1 (HTkB) + + 4 (E30-K61, E34-K65, K14-Q48, K26-E58) +
Eury M. fervidus DSM2088 (HMfB) + + 3 (K30-E61, E34-R65, D14-R48) +

Dimer–dimer interactions in the tetrameric interface are expected to be essential for hypernucleosome formation. Absence of bulky residues in the first loop and a high number of potential hydrogen bonds in the stacking interface will enhance the compactness and stability of the hypernucleosome. Likely, uncertain and unlikely stacking ability is indicated with +, ±, and −, respectively.

a Dimer–dimer interface includes residues at positions 46, 49, 59, and 62.

b Stacking interface includes residues at positions 15–17.

c For all potential stacking interactions, residue numbering of HMfB was used according to the alignment in Fig 3.

Abbreviations: HA, Histone A; HB, Histone B; HLkE, Histone E from Lokiarchaeota; HMfB, Histone B from Methanothermus fervidus; HTkB, Histone B from Thermococcus kodakarensis.