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Abstract

Background: Incorporation of polygenic risk scores and mammographic density into models to predict breast cancer incidence
can increase discriminatory accuracy (area under the receiver operating characteristic curve [AUC]) from 0.6 for models based
only on epidemiologic factors to 0.7. It is timely to assess what impact these improvements will have on individual counseling
and on public health prevention and screening strategies, and to determine what further improvements are needed.
Methods: We studied various clinical and public health applications using a log-normal distribution of risk.
Results: Provided they are well calibrated, even risk models with AUCs of 0.6 to 0.7 provide useful perspective for individual
counseling and for weighing the harms and benefits of preventive interventions in the clinic. At the population level, they are
helpful for designing preventive intervention trials, for assessing reductions in absolute risk from reducing exposure to
modifiable risk factors, and for resource allocation (although a higher AUC would be desirable for risk-based allocation).
Other public health applications require higher AUCs that can only be achieved with risk predictors 1.6 to 8.8 times as strong
as all those yet discovered combined. Such applications are preventing an appreciable proportion of population disease when
employing a high-risk prevention strategy and deciding who should be screened for subclinical disease.
Conclusions: Current and foreseeable risk models are useful for counseling and some prevention activities, but given the
daunting challenge of achieving, for example, an AUC of 0.8, considerable effort should be put into finding effective
preventive interventions and screening strategies with fewer adverse effects.

Models to predict the risk of developing cancer are used for
counseling, clinical management, and developing prevention
strategies (1). There has been considerable effort to increase the
discriminatory accuracy of models to predict breast cancer inci-
dence by including mammographic density (2–4) and single nu-
cleotide polymorphisms (SNPs) (5–14). It is timely, therefore, to
assess what progress has been made in comparison with what
is needed in various applications.

Methods

Absolute Risk and Types of Models Available

Absolute risk of invasive breast cancer is the probability that a
woman with defined risk factors and free of breast cancer at a
given age will be diagnosed with invasive breast cancer during

the risk projection interval. This risk is reduced by the chance
that the woman may die from other causes. Methods to esti-
mate absolute risk are described, for example, in Chapters 4 and
5 of Pfeiffer and Gail (1). “Pure” risk is the hypothetical risk that
would ensue if competing causes of mortality could be elimi-
nated. Some models (eg, Claus [15], BOADICEA [16–18], an option
in IBIS [19]) predict the “pure” risk of breast cancer. Pure risk
approximates absolute risk over short projection intervals but
can be appreciably larger over long intervals. Because compet-
ing causes of mortality cannot be eliminated, absolute risk is
more relevant in practice.

Several models are available for projecting breast cancer risk
(see, eg, [20–22]). Some models are based on genetic theory and
extensive family history (15–19,23,24). Of these, some allow for
residual genetic familial aggregation in addition to an autoso-
mal dominant component (16–19). Models based on genetic
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theory are widely used for women in high-risk clinics. Some
models, like the National Cancer Institute’s Breast Cancer Risk
Assessment Tool (BCRAT) (25–29), are based on empirical
regressions. BCRAT includes reproductive history, biopsy his-
tory, and family history and is tailored to the general popula-
tion. Some models include modifiable risk factors, such as body
mass index (BMI), hormone replacement therapy, and alcohol
intake (7,19,30,31). Others include mammographic density (2–4)
and SNPs (7,9,11).

Calibration, Discriminatory Accuracy,
and Log-Normal Risk

Various criteria are useful for evaluating risk models (1,32), but
calibration and discriminatory accuracy are very important. A
model is well calibrated if it accurately predicts the number of
breast cancers that arise in an independent validation cohort. If
the ratio of the number events predicted by the model to the ob-
served count is near 1.0, both overall and in subgroups, the
model is well calibrated. All the applications described below,
except ranking individuals for resource allocation, require good
calibration.

Discriminatory accuracy refers to how well separated the
distribution of risk is in case patients (who develop breast can-
cer) from the distribution in noncase subjects. The AUC is the
probability that a randomly selected case patient has a higher
projected risk than a randomly selected noncase subject. There
is considerable overlap in the risk distributions of case patients
and noncase subjects for an AUC of 0.6, and even for an AUC of
0.8 (Figure 1A).

Several breast cancer risk models based on standard epide-
miologic risk factors have AUCs near 0.6. Tremendous effort to
increase the AUC by combining SNPs, mammographic density,
and epidemiologic risk factors can increase the AUC to 0.68
(Table 1) (33). Sixty-five recently established SNPs (14) could in-
crease that AUC to 0.69 (Supplementary Materials, available on-
line). The improvement from an AUC of 0.6 to an AUC of 0.69 is
still inadequate for some applications.

To understand the challenge, we relate AUC to the variance,
r2, of a lognormal risk distribution (Supplementary Materials,

available online) (36). Pharoah et al. (36) showed that the AUC
depends only on r2, and not the mean, of the lognormal risk dis-
tribution. r2 measures the discriminatory information in all the
risk factors. An AUC of 0.7 corresponds to a r2 of 0:550 (Figure
1B).AUCs of 0.6, 0.8, 0.9, and 0.95 correspond to r2 of 0.128, 1.417,
3.285, and 5.411. The discriminatory information r2 that is
needed to achieve an AUC of 0.8 is 1.417/0.550, or 2.6 times that
needed to achieve an AUC of 0.7, which is the foreseeable goal.
To achieve an AUC of 0.9 or 0.95 requires, respectively, 6.0 and
9.8 times the information required to achieve an AUC of 0.7.

Figure 1. Illustration of discriminatory accuracy (area under the curve [AUC]) and plot of AUC against the log-normal variance. A) Normal densities of log (absolute risk)

for case patients (dashed line) and noncase subjects (solid line) for an AUC of 0.6 (green upper A panel) and an AUC of 0.8 (blue lower A panel). B) AUC is plotted against

the variance, r2, of lognormally distributed risk in the population. AUC ¼ area under the curve; BCRAT ¼ Breast Cancer Risk Assessment Tool.

Table 1. AUC values for various breast cancer risk models*

Risk model factors AUC Comments with references

7 SNPs 0.574 First proven SNPs; SNP log odds from lit-
erature combined theoretically (5)

77 SNPs 0.622 Empirical estimates of SNP log odds and
resulting AUC estimated from 33 673
cases and 33 381 controls (12)

92 SNPs 0.623 24 empirical SNP log odds estimates
from 17 171 cases and 19 862 controls
plus 68 SNP log odds ratios from liter-
ature combined by imputation to esti-
mate AUC (7)

BCRAT 0.580 Evaluation in Nurse’s Health Study (34)
0.603, Case-weighted average of age-specific

AUCs (35)
0.607 Theoretical calculation based on BCRAT

(5)
BCRAT þ 7 SNPs 0.632 Theoretical calculation based on BCRAT

and SNP literature (5)
Epi þ 76 SNPs 0.670 Theoretical combination of log odds ra-

tios from 11 published epidemiologic
risk factors and 76 SNPs (33)

Epi þ 76
SNPs þMD

0.680 Theoretical combination of log odds ra-
tios from 11 published epidemiologic
risk factors, 76 SNPs, and MD (33)

*AUC ¼ area under the curve; BCRAT ¼ Breast Cancer Risk Assessment Tool; Epi

¼ epidemiologic risk factors in reference (33); MD ¼ mammographic density;

SNP ¼ single nucleotide polymorphism.
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Thus, only predictors dramatically more informative than all
currently foreseeable predictors can push the AUC to 0.8 or
higher. We now consider various applications of risk models
and their requirements for discriminatory accuracy.

Results

Individual Counseling

Risk models can provide the counselee with a realistic estimate
and perspective. Thus, a woman who thought she had a 50%
risk of developing breast cancer by age 80 years might be reas-
sured to know her risk was 10%. To provide such perspective,
the model must be well calibrated.

Consider a white woman age 40 years whose mother
and sister had breast cancer. The 2016 screening
mammography recommendation of the US Preventive Task
Force (https://www.uspreventiveservicestaskforce.org/Page/
Document/RecommendationStatementFinal/breast-cancer-
screening1) was: “The decision to start screening mammogra-
phy in women prior to age 50 years should be an individual one.
Women who place a higher value on the potential benefit than
the potential harms may choose to begin biennial screening be-
tween the ages of 40 and 49 years.” This recommendation
makes no reference to breast cancer risk. From BCRAT, the five-
year risk of breast cancer for this woman, who has no other
BCRAT risk factors, is 2.5%, whereas a white woman age 50
years with no risk factors has a risk of 0.6%. Yet the US
Preventive Task Force recommends screening for women age 50
to 74 years. Knowing that her risk is fourfold higher than that of
a woman age 50 years for whom screening is recommended,
this 40-year-old counselee might well choose to begin screening
mammography. Formal comparisons of harms (such as need-
less biopsies) and benefits from screening in younger women
with risks comparable to older women indicate that this would
be a wise choice (37,38). In the United States, 74% (11.4 million)
of white women age 40 to 49 years had estimated risks as high
as a woman age 50 years without BCRAT risk factors (39).

Risk models that include modifiable risk factors, such as al-
cohol consumption or hormone replacement therapy (7,30,31),
may provide perspective on risk reductions from avoiding such
exposures.

Knowing one’s breast cancer risk also informs formal assess-
ments of the harms and benefits of an intervention. Both ta-
moxifen and raloxifene warrant consideration for
chemoprevention against breast cancer (40). Yet both have ad-
verse effects that offset the benefit of breast cancer prevention,
including increased risk of stroke, pulmonary emboli, and, for
tamoxifen, increased risk of endometrial cancer. Because the
risks of stroke and endometrial cancer increase with age, higher
breast cancer risks are required for the interventions to have a
net benefit in older women. For women in their fifties with
uteri, the five-year risk threshold for net benefit is 4.5% for ta-
moxifen but 2.0% for raloxifene, which does not increase endo-
metrial cancer risk (41). Thus, well-calibrated risk estimates,
even from models with modest discriminatory accuracy, can
aid in deciding whether to have an intervention that has risks
and benefits.

The models we have been discussing apply to women in the
general population. Genetically oriented models are useful in
high-risk clinics both to guide testing for mutations and to proj-
ect risk based on genetic tests and pedigree data (20). A young
woman who carries a BRCA1 mutation has a risk to age 70 years

near 50% if she is from the general population and even higher
if she is from a family with many breast cancer cases. Because
BRCA1 mutations are rare, however, they contribute little to dis-
criminatory accuracy in the general population. In the
Supplementary Materials (available online), we show that the
addition to r2 from BRCA1 is 0.0061, or 1.1% of the information
needed for an AUC of 0.7. Recent test versions of BOADICEA
have incorporated more common, but less penetrant, truncat-
ing mutations (42), such as CHEK2. This mutation adds only
0.0062 to r2: Thus, measuring highly and moderately highly
penetrant mutations will not increase the AUC much in the gen-
eral population (Figure 1B). Such measurements are very useful,
however, for advising the rare women carrying such mutations,
who might be concentrated in high-risk clinics.

Risk Models for Population-Level Cancer Prevention

Designing Preventive Intervention Trials
Absolute risk models help determine how many subjects are
needed and how long they should be followed to achieve the re-
quired statistical power. Power depends on the number of inci-
dent breast cancers, which is proportional to average absolute
risk. For example, among the 5969 women in the control arm of
the Breast Cancer Prevention Trial (or P-1 Trial) of tamoxifen
(43), BCRAT predicted 159 incident invasive breast cancers, in
close agreement with the 155 observed. Thus, BCRAT was well
calibrated and provided useful guidance for sample size and
trial duration.

Risk models are also used to define eligibility. In designing
the P-1 trial, investigators were aware of the adverse effects of
tamoxifen. They believed, however, that the five-year risk of in-
vasive breast cancer was high enough (1.66%) in women age 60
years to warrant their inclusion in the trial. Younger women
were included in the trial only if their five-year risks were at
least 1.66%.

Good calibration overall and in subgroups with varying lev-
els of risk is essential for designing intervention trials; modest
discriminatory accuracy (eg, AUC ¼ 0.5–0.7) is adequate.

Estimating Absolute Risk Reduction in the Population From
Preventive Interventions
Some models for absolute breast cancer risk include modifiable
risk factors (7,30,31). Petracci et al. (30) developed such a model
for Italian women and estimated the absolute risk reduction
over 20 years that would result from eliminating alcohol con-
sumption, lack of exercise, and BMI of 25 kg/m2 or greater in
women age 55 years (Table 2). In the entire study population,
the 20-year risk is 6.5%, but intervention reduces it by 1.6% to
4.9%. The fractional reduction, 100%(1.6%/6.5%) ¼ 24%, is analo-
gous to attributable risk. For women with risks in the top
decile of risk, the 20-year risk is 18.5% before intervention and
18.5%–4.4% ¼ 14.1% after intervention, a fractional reduction of
24%.

The high absolute risk reduction of 4.4% in the top decile
group (Table 2) results from two sources. The joint relative risks
from modifiable and nonmodifiable risk factors are the product
of the separate relative risks. Thus, a given reduction in modifi-
able risk factors causes more reduction in absolute risk in
women with high levels of nonmodifiable risk factors, who con-
centrate in the high-risk group (7). Second, women in the top
decile of risk are enriched with elevated modifiable risk factors;
thus, intervention induces more risk modification.
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Changes in absolute risk give a different perspective than
fractional reduction. In 100 000 women age 55 years, interven-
tion potentially prevents 1600 breast cancers over 20 years. If in-
stead the intervention were applied to the 10 000 women in the
top decile, then only 4.4%�10 000 ¼ 440 breast cancers would be
prevented.

These calculations assume that there is a practical interven-
tion that reduces the exposures, that women will comply with
it, and that the risk factor changes will instantaneously have
the effects estimated from observational data. Moreover, in the
previous example, it is impossible to change a current drinker
into a never drinker; one must imagine instead a counterfactual
population in which women never drank. Thus, there is consid-
erable potential for systematic error in these calculations,
which rely on well-calibrated risk models, but not on highly dis-
criminating ones.

“High-risk Prevention Strategy” for Interventions
With Adverse Effects
Rose (44) compared the general population strategy of disease
prevention with the high-risk strategy. If an intervention is safe
enough to be applied broadly, more disease can be prevented by
applying it to the entire population than by intervening only on
a high-risk subset.

The high-risk strategy prevents less disease because most of
the population risk is usually not concentrated in the high-risk
subgroup. Nonetheless, one is sometimes forced to restrict
interventions to high-risk subsets. If the intervention has ad-
verse effects, it should only be given to those with high enough
risk that the benefits of preventing the disease outweigh the ad-
verse effects. Table 3 depicts the expected numbers of life-
threatening events in one year in 100 000 white US women with
uteri age 50 to 59 years. Absent tamoxifen, 246.6 invasive breast
cancers and 589.6 life-threatening events are expected to occur.
Giving tamoxifen to the entire population reduces breast can-
cers and hip fractures, but increases endometrial cancer,
strokes, and pulmonary emboli, resulting in 833.5 life-
threatening events. Thus, the general population prevention
strategy cannot be used. Only the 1% of women with breast can-
cer risks above 774.3/105 per year have a net benefit (45). Unless
most of the breast cancer incidence is concentrated in this 1%,
the high-risk strategy cannot prevent much disease. If one uses
BCRAT to identify women with yearly risk exceeding 774.3/105,
only 1.4 life-threatening events are prevented per year, leading
to 589.6–1.4 ¼ 588.2 events. If a perfectly discriminating model
was used instead, it would identify the 246.6 women destined to
develop breast cancer (Table 3), and tamoxifen could be given to
them alone. There would be very few adverse events, while
nearly half the breast cancers would be prevented, thus pre-
venting 119.9 life-threatening events (45).

How discriminating must a breast cancer risk model be to
prevent a substantial number of life-threatening events with an
intervention that has clinically significant adverse effects in
white women with uteri, age 50 to 59 years? Very high AUC val-
ues are needed (Figure 2). Preventing 20 events requires an AUC
of 0.79, well above the foreseeable AUC of 0.7. If the intervention
has fewer side effects, it can be given to a larger high-risk sub-
group. For example, if tamoxifen did not increase endometrial
cancer risk (like raloxifene), nearly 17 events could be prevented
each year, even with current models with an AUC of 0.6
(Figure 2). With foreseeable models with an AUC of 0.7, 35 life-
threatening events could be prevented. If, in addition, there was
no excess stroke risk associated with tamoxifen, 70 events could
be prevented with an AUC of 0.7 and 67 with an AUC of 0.6. To
prevent 100 life-threatening events with any of these interven-
tion scenarios would require an AUC greater than 0.94, which is
not foreseeable.

The most effective way to improve the high-risk strategy is
to decrease the side effects of the intervention so that it can be
applied more widely (Figure 2). Improving the efficacy of the
intervention from, say, 50% prevention of breast cancer to 80%
could also be beneficial. The value of improving the discrimina-
tory accuracy of risk models for the targeted disease depends on
the intervention. Improving AUC from 0.6 to 0.7 (Figure 2) saves
few additional lives for an intervention with many side effects,
like tamoxifen, or for an intervention with few side effects (eg, ta-
moxifen but without excess endometrial cancer or stroke risk).
However, increasing AUC from 0.6 to 0.7 reduces deaths apprecia-
bly for a drug with intermediate side effects, like raloxifene (or ta-
moxifen but without endometrial cancer risk) (Figure 2).
Improvements in AUC above 0.7 avert more life-threatening
events, but require new risk factors 1.6 to 8.8 times more informa-
tive than all those in foreseeable models (Figure 1B). A fourth

Table 3. Numbers of life-threatening events in one year in 100 000
white US women age 50–59 years with uteri if none get tamoxifen
and if all get tamoxifen*

Health outcome
Relative

risk

Events
without

tamoxifen
Events if all

get tamoxifen

Invasive breast cancer 0.51 246.6 125.8
Hip fracture 0.55 101.6 55.9
Endometrial cancer 4.01 81.4 326.4
Stroke 1.59 110 174.9
Pulmonary embolism 3.01 50 150.5
Total � 589.6 833.5

*Relative risk compares tamoxifen with placebo. From Gail (45), based on Fisher

et al. and Gail e al. (43,46).

Table 2. Potential reductions in 20-year absolute breast cancer risk from eliminating alcohol consumption, lack of exercise, and body mass in-
dex at or above 25 kg/m2 in Italian women age 55 years*

Population
Absolute risk without

intervention, %
Reduction in absolute

risk from intervention, %
Fractional reduction

in risk, %

Entire population 6.5 1.6 24
Women with positive family history 13.7 3.2 23
Women with risk in the top decile (top 10%) of risk 18.5 4.4 24

*This table presents estimated risk reductions in Petracci et al. (30) for Italian women if all current drinkers had been never drinkers, all women who exercised less

than two hours per week exercised at least two hours per week, and all women age 50 years and older maintained a body mass index lower than 25 kg/m2. In addition

to these modifiable risk factors, the risk model contained nonmodifiable risk factors such as age at first live birth (30).
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approach is to use risk models for the other outcomes affected by
the intervention, such as stroke, in addition to the main outcome
to be prevented. Previous calculations have assumed that stroke
risk depended on age and ethnicity only (41,46), but finer assess-
ment can improve the high-risk strategy modestly (47).

Allocating Preventive Resources Under Monetary or Medical
Constraints
The high-risk strategy may also be used when there are insuffi-
cient resources to intervene in an entire population (eg, [48]).
Suppose that there is only enough money for one-time screen-
ing mammograms for half the adult female population. Under
random allocation, one expects to prevent half the deaths that
could be prevented by screening the entire population. If one
first performed a risk assessment on the entire population and
then allocated mammograms to those at highest risk, one might
prevent more deaths. It costs money to perform the risk assess-
ment, however, which reduces resources for mammography.

Figure 3 plots the fraction of lives saved, compared with
screening the entire population, as a function of AUC for various
ratios k of the cost of risk assessment to the cost of a screening
mammogram (k ¼ 0.02, 0.05, 0.1, 0.2, 0.3). If mammography costs
$100 and contacting a woman and obtaining answers for BCRAT
costs $2, then k¼ 0.02. Calculations in Figure 3 assume the log-
normal risk model but otherwise follow Gail (49)
(Supplementary Materials, available online). For an AUC near
0.6, there is no benefit from risk assessment with a k of 0.2 or

0.3, but with a k of 0.02, risk assessment improves the fraction
of lives saved to 63%, compared with 50% with random alloca-
tion. For foreseeable models with an AUC of 0.7, the fraction of
lives saved increases to 75%, with a k of 0.02. Thus, foreseeable
risk models can improve resource allocation, provided the cost
of risk assessment is small enough. Even more lives could be
saved with models with nonforeseeably higher AUCs (Figure 3).

These are best-case calculations because they assume that
everyone accepts a risk assessment and that those recom-
mended for intervention take it.

Screening for Prevalent Subclinical Disease
Models with high AUCs could identify high-risk women to screen
for prevalent breast cancer, thereby sparing other women from
needless follow-up exams, anxiety, and biopsies following false-
positive screens (50,51), while detecting most disease. Models for
breast cancer incidence do not estimate prevalence. However,
data from the Breast Cancer Screening Consortium (http://www.
bcsc-research.org/statistics/performance/screening/2009/rate_
age_time.html) indicate that prevalence is proportional to inci-
dence in previously unscreened women. Assuming prevalence is
proportional to incidence, one can use incidence models to deter-
mine who should receive screening. Here we consider a single
screen to detect prevalent disease.

Suppose one performs a risk assessment on all members of
the population and screens only individuals in the 100p% of
the population at highest prevalence risk, namely those with

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
AUC

0

20

40

60

80

100

120
Li

fe
-tr

ea
te

ni
ng

 e
ve

nt
s 

av
er

te
d 

pe
r 1

00
 0

00
 p

er
 y

ea
r

Tamoxifen
No endometrial cancer risk (like raloxifene)
No stroke or endometrial cancer risk

Forseeable

Figure 2. Life-threatening events averted each year by breast cancer chemoprevention in 100 000 white women age 50 to 59 years as a function of area under the curve.

Only a high-risk subset is given the intervention. Three intervention scenarios are tamoxifen, tamoxifen but with no increased risk of endometrial cancer (like raloxi-

fene), tamoxifen but with no increased stroke or endometrial cancer risk. AUC ¼ area under the curve.
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risks above the ð1� pÞth quantile of risk. Pfeiffer and Gail (52)
call the proportion of all prevalent cases contained in this
high-risk group the “proportion of cases followed,” PCFðpÞ.
Assuming an AUC of 0.67, Park et al. (8) calculated the PCFðpÞ
for breast cancer in women age 50 to 54 years as .255 for a p of
.1 and .539 for a p of .3. In other words, even with a risk model
more discriminating than those in current use, 74.5% of the
prevalent cases would be missed if one only screened the top
10% of the population, and 46.1% would be missed if one
screened the top 30%.

PCFðpÞ increases with AUC for ps of .1, .2, .3, .5, and .9 for
lognormally distributed risk (Figure 4). With a p of .1, the AUC
would need to be 0.97 to capture 90% of the cases. With a p of
.3, the AUC would need to be 0.90. Even screening the half of
the population with risk above the median risk (p ¼ .5) would
require an AUC of 0.82 to capture 90% of the cases, and nearly
23% of prevalent cases will be missed with an AUC of 0.7
(Figure 4). Thus, foreseeable models will miss many prevalent
cases in screening only a high-risk group. If the 10% of the
population at lowest risk were not screened (p ¼ .9), with an
AUC of 0.7, only 2% of cases would be missed.

The proportion of cases followed, PCF(p), is related to the
positive predictive value, PPV(p) ¼ pPCF(p)/p, where p is the prev-
alence of screen-detectable disease. PPVðpÞ is the proportion of
the high-risk group with prevalent screen-detectable disease.
Assuming an AUC of 0.67, PCF(.1) ¼ 0.255, and p¼ 0.0031 for
women age 50 to 54 years (8), PPV(.1) ¼ pPCF(.1)/.1 ¼ 0.00791. The

number needed to screen to detect one case is
NNS ¼ 1þ ð1� PPVÞ=PPV¼ 126.5. Choosing an acceptable num-
ber needed to screen (NNS) below which screening is recom-
mended is tantamount to assigning relative costs to false-
positive and false-negative screening results.

Figure 5 plots NNS against AUC for women age 50 to 54 or
40 to 44 years and for screening the top 10% (p ¼ .1) or top 30%
(p ¼ .3) at highest risk. NNS is higher for the younger women
(blue loci), who have a lower prevalence (p¼ 0.0016). Among
women age 50 to 54 years, NNS is 227 for a p of .3 and 184 for a
p of .1 with an AUC of 0.6. With an AUC of 0.7, NNS decreases
to 165 and 108, respectively. Among women age 40 to 44 years,
NNS is 435 for a p of .3 and 350 for a p of .1 with an AUC of 0.6.
With an AUC of 0.7, these NNS values decrease to 319 and 223,
respectively, and with an AUC of 0.8, to 250 and 127. Even
though these higher AUC values can lower the NNS, particu-
larly for a p of .1, many prevalent cases would be missed with
a p of .1 (Figure 4).

Discussion

Considerable progress has been made or is foreseeable for in-
creasing AUC from 0.6 to 0.7 for breast cancer risk models.
Provided the models are well calibrated, they provide useful
perspective in individual counseling and for weighing the risks
and benefits of preventive interventions. They are helpful for
designing preventive intervention trials and estimating

Figure 3. Fraction of lives saved by risk-based allocation of mammograms, compared with giving screening mammograms to all women, as a function of area under

the curve when there is only enough money to give mammograms to half the population. Results are shown for various ratios k of the cost of risk assessment to the

cost of a mammographic screen. AUC ¼ area under the curve.
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decreases in absolute risk from reducing exposure to modifiable
risk factors. For allocating limited preventive resources, such
models are potentially useful, but higher AUC would be
desirable.

Other public health applications require higher discrimina-
tory accuracy that can only be achieved with predictors much
stronger than those yet discovered. Such applications include
employing the high-risk prevention strategy and deciding who
should not be screened for disease.

The usefulness of a risk model for disease prevention
depends on the specific intervention. An intervention with few
side effects benefits a larger portion of the population, thereby
requiring less discriminatory accuracy (Figure 2). An interven-
tion with more side effects requires high discriminatory accu-
racy to concentrate population risk into a small high-risk
subset.

If one can only offer an intervention like screening mam-
mography to half the population, low-cost (k < 0.1) risk-based
allocation is preferable to random allocation (Figure 3) or to age-
based allocation (53), even with an AUC of 0.6. However, nearly
23% of prevalent cases will be missed even with an AUC of 0.9
(Figure 4 with p = 0.5).

Our study has limitations. These calculations are based on
the previously used log-normal distribution of risk (36) and are
justified in the Supplementary Materials (available online), but
our conclusions likely hold for other reasonable risk distribu-
tions. Our analysis treated only a single prevalence screen; cur-
rent risk models may be adequate to address related questions,
for example, when to start screening, frequency, and use of

supplemental modalities (54). The ratio k of risk assessment to

intervention costs may be lower if a single risk assessment (eg,
genetic test) serves for multiple screenings or health outcomes.
We did not consider the harms from false-positive screening ex-
plicitly, but these are implicit in choosing an acceptable number
needed to screen.

Improving disease prevention by developing more discrimi-
nating risk models is daunting. Achieving an AUC of 0.8 will re-
quire risk factors 1.6 times as powerful as all those currently at
hand. Thus, considerable effort should be put into finding pre-
ventive interventions and screening strategies with fewer ad-
verse effects.
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