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Sertraline, chlorprothixene, and 
chlorpromazine characteristically 
interact with the REST-binding site 
of the corepressor mSin3, showing 
medulloblastoma cell growth 
inhibitory activities
Jun-ichi Kurita1, Yuuka Hirao1, Hirofumi Nakano2, Yoshifumi Fukunishi3,4 & 
Yoshifumi Nishimura   1

Dysregulation of repressor-element 1 silencing transcription factor REST/NRSF is related to several 
neuropathies, including medulloblastoma, glioblastoma, Huntington’s disease, and neuropathic pain. 
Inhibitors of the interaction between the N-terminal repressor domain of REST/NRSF and the PAH1 
domain of its corepressor mSin3 may ameliorate such neuropathies. In-silico screening based on the 
complex structure of REST/NRSF and mSin3 PAH1 yielded 52 active compounds, including approved 
neuropathic drugs. We investigated their binding affinity to PAH1 by NMR, and their inhibitory activity 
toward medulloblastoma cell growth. Interestingly, three antidepressant and antipsychotic medicines, 
sertraline, chlorprothixene, and chlorpromazine, were found to strongly bind to PAH1. Multivariate 
analysis based on NMR chemical shift changes in PAH1 residues induced by ligand binding was used to 
identify compound characteristics associated with cell growth inhibition. Active compounds showed 
a new chemo-type for inhibitors of the REST/NRSF-mSin3 interaction, raising the possibility of new 
therapies for neuropathies caused by dysregulation of REST/NRSF.

Repressor-element 1 silencing transcription factor (REST) or neural restrictive silencer factor (NRSF)1,2 was orig-
inally identified as a fundamental repressor, which binds to repressor-element 1 (re1) or neural restrictive silencer 
element (nrse) of many neuronal genes3,4 in both non-neuronal cells and neuronal progenitor cells. Subsequently, 
it was found to be expressed in pancreatic beta cells5 and various cancers as a tumor suppressor or oncogenic 
factor depending on the cell types6,7. Overexpression of REST/NRSF and/or dysregulation of its cellular expres-
sion pattern is related to several neuropathies, including medulloblastoma8,9 (a malignant pediatric brain tumor 
that originates in the cerebellum or posterior fossa10), glioblastoma11,12, Huntington’s disease13–16, neuropathic 
pain17,18, and Parkinson’s disease19, as well as potentially autism20 and fibromyalgia21.

REST/NRSF mediates transcriptional repression by the recruitment of two corepressor complexes: mSin3 at 
its N-terminus, and CoREST plus the histone H3K9 methylase G9a at its C-terminus22. The mSin3 complex con-
tains two histone deacetylases, HDAC1 and HDAC223, and has been recently implicated in cancer as an important 
epigenetic regulator24. mSin3 contains four paired amphipathic helix domains (PAH1–PAH4), of which PAH1 
is responsible for interacting with the N-terminal repressor domain of REST/NRSF25. Although the repressor 
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domain is intrinsically disordered in the unbound state, NMR has shown that it forms a helix consisting of about 
ten amino acids after binding to the PAH1 domain of mSin3B25, an isoform of mSin3. In the NMR structure of 
the complex, the short helix of NRSF/REST is deeply buried in the hydrophobic groove of PAH1. Compounds 
that bind to the mSin3B PAH1 groove are presumably inhibitors of REST/NRSF function21,25, and thus potentially 
drug candidates to ameliorate disorders originating from up-regulation of REST/NRSF21,26–29.

Here, to develop new inhibitors with different chemo-types from those so far examined, we first performed 
in-silico drug screening of nearly 2 million commercially available compounds and approved neuropathic drugs 
that are expected to overcome blood–brain–barrier (BBB) limits, yielding 52 compounds that potentially bind to 
the mSin3 PAH1 domain. The binding ability of the 52 compounds was examined by NMR screening methods30, 
including two ligand-based screening methods, saturation transfer difference (STD)31,32 and WaterLOGSY33,34, 
and one protein-based screening method, heteronuclear single quantum coherence (HSQC), while their inhibitor 
activity was examined by using a medulloblastoma cell line, DAOY35–37.

Next, we tried to identify a correlation between the characteristic binding mode of a compound to REST/
NRSF and its DAOY cell growth inhibitory activity, using both principal component analysis (PCA)38–40, and 
sparse partial least square discriminant analysis (sPLS-DA)41. Lastly, we obtained the NMR-docking structures of 
two of the identified active compounds (sertraline and chlorpromazine), on the mSin3B PAH1 domain based on 
their chemical shift perturbations (CSPs) and compared them with the binding mode of sertraline to a serotonin 
transporter.

Results
In-silico screening for inhibitors of the mSin3–REST/NRSF interaction.  To identify potential inhib-
itors of the interaction between mSin3 and REST/NRSF, we performed two types of in-silico screening: ligand-
based drug screening (LBDS) to identify compounds similar to known active compounds; and structure-based 
drug screening (SBDS) based on the target protein structure to identify new active chemo-types (scaffolds) that 
differ from the chemo-types of known active compounds. We applied our software myPresto (freely available 
from https://www.mypresto5.jp/en/) to screen compounds from the KEGG DRUG database (http://www.kegg.jp/
kegg/drug/)42 of approved drugs, and approximately 2-million commercially available compounds selected from 
the LigandBox database. For the SBDS, a molecular dynamics simulation generated protein structures in water 
based on an initial structure obtained from the PDB (PDB ID:2CZY).

Among the approved drugs, we focused on drugs for the central nerve system (CNS) because these drugs 
penetrate the BBB, which can be a major obstacle in drug therapy. For the same reason, we restricted the molec-
ular weight of compounds from the LigandBox database to less than 350 Da because, in general, the transport 
of smaller compounds across the BBB is faster than that of larger compounds. Ultimately, the screening process 
yielded 52 compounds that were potential inhibitors of the REST/NRSF interaction with mSin3 (Supplementary 
Fig. S1) and the 52 compounds were commercially obtained (Supplementary Table S1). In Table S1, compounds 
1–23 and compounds 24–52 were from the LigandBox database and KEGG DRUG database, respectively.

Evaluation of PAH1 binding affinity by NMR titration.  The ability of the 52 compounds to bind to the 
mSin3B PAH1 domain were examined by using STD and WaterLOGSY NMR experiments. Because the mSin3B 
PAH1 domain has a small molecular weight that would not be expected to sufficiently transfer spin diffusion 
to the ligand, both experiments were performed with a GST fusion protein of PAH1. First, the binding activity 
was approximately evaluated by the ligand signal intensity ratio of each experiment to the bulk ligand intensity. 
Next, we performed an HSQC titration experiment to obtain more detailed information of the interaction at 
residue-specific resolution (Supplementary Fig. S2b) with reference to the HSQC spectrum of unbound PAH1 
with amino acid assignments (Supplementary Fig. S2a).

The HSQC spectra indicated that four compounds YN29, YN31, YN3, and YN28, have a strong affinity for 
the mSin3B PAH1 domain (Fig. 1). All four compounds showed significant signals in both WaterLOGSY and 
STD spectra (Fig. 1). It was difficult to estimate the Kd values for these compounds directly from HSQC titration 
experiments because of their relatively strong binding affinities. Thus, the Kd value for the specific binding of 
each ligand was obtained by WaterLOGSY titration experiments at a protein concentration of 1 μM and a ligand 
concentration ranging from 5 to 50 μM. Although these solution conditions are very dilute in terms of NMR, 
Kd values were obtained for YN28 (35 ± 11 μM), YN29 (15 ± 4.2 μM), and YN31 (39 ± 22 μM) (Supplementary 
Fig. S2(e)). However, the sensitivity of the WaterLOGSY spectrum of YN3 under such dilute conditions was too 
poor to obtain a Kd value. Weak but significant HSQC spectral changes were observed for seven compounds, 
YN25, YN26, YN37, YN38, YN39, YN40, and YN42. All seven compounds showed relatively strong signals 
in the WaterLOGSY spectra; however, only YN39, YN40, and YN42 showed clear signals in the STD spectra, 
and YN25, YN26, YN37, and YN38 did not (Supplementary Fig. S2). The mSin3B PAH1 domain has a shallow 
ligand-binding pocket, which water molecules can access. Thus, bound water molecules located around each 
bound ligand will contribute directly to enhancement of WaterLOGSY signals; in STD experiments, however, the 
bound water molecules will reduce magnetization saturation of the protein moiety because saturated bound water 
molecules exchange rapidly with bulk waters. For this reason, the relatively weak binding ligands, YN25, YN26, 
YN37, and YN38 showed significant WaterLOGSY signals but poor STD signals in H2O solution.

Structure–activity relationship of the active compounds.  The NMR experiments suggested that 
compounds YN29, YN31, YN3, and YN28 showed strong binding affinity, and compounds YN25, YN26, YN37, 
YN38, YN39, YN40, and YN42 showed moderate binding affinity to the mSin3B PAH1 domain. Figure 2 shows 
the structure–activity relationship (SAR) of these 11 compounds. Two pharmacophores were found to represent 
the different SARs: namely, pharmacophore A (panel A in Fig. 2), and pharmacophore B (panel B in Fig. 2). 
Pharmacophore A was a major SAR that was present in 12 compounds (YN25, YN26, YN28, YN29, YN31, YN37, 
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YN40, YN42, and compounds 1–4, which are active compounds previously reported by us using the same assay 
system as the present study29), whereas pharmacophore B was contained in only three compounds (YN3, YN38, 
and YN39). Thus, below we discuss only pharmacophore A.

All binding compounds consist of two rings except for compound 3, in which two chains extending from the 
amide may be folded to occupy a volume similar to that occupied by one 6-membered ring. Thus, all inhibitor 
compounds belonging to pharmacophore A are likely to maintain a common structural feature: that is, a struc-
ture consisting of two 6-membered ring groups connected by a short linker, as found in previous compounds. In 
many cases, the linker has a hydrogen-bond acceptor atom, and the two small ring systems have one or two small 
side chains. Some of the ligands have cationic amine nitrogen atoms, and some ligands have one nitrogen atom.

Except for this simple structural feature, there was no significant structural similarity between the inhibitors. 
The set of compounds showed a narrow SAR. We note that most approved drugs for CNS have amine nitrogen 

Figure 1.  NMR spectra of YN3, YN28, YN29, and YN31. (a) HSQC ligand titration experiment of mSin3B 
PAH1 with each compound. In each spectrum, black signals correspond to 100 μM free PAH1 domain, and blue 
and red signals correspond to the additions of 100 μM and 1 mM ligand, respectively. In the YN3 spectrum, the 
assigned amide signals of PAH1 are shown. (b) WaterLOGSY spectrum of each compound. (c) STD spectrum 
of each compound.
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atoms because they target the monoamine receptor and utilize cation transporters to penetrate the BBB. Thus, the 
CNS compound database shows bias toward amine nitrogen-containing compounds, we cannot draw conclusions 
on the importance of the amine nitrogen atom in the protein–ligand interaction.

3D growth inhibition assays of medulloblastoma.  NRSF/REST is expressed in various cancers and 
plays a role in medulloblastoma tumorigenesis by blocking the differentiation of stem-like cells8. Relative to 2D 
culture, tumor cells grown in three-dimensional (3D) culture have greater analogy to naturally occurring cells 
and show a phenotype of cancer stem cells43. Thus, we constructed a new forced-floating 3D culture method to 
generate spheroids of the DAOY human medulloblastoma cell line (ATCC)44. The 52 compounds were tested at a 
concentration of 10 μM against DAOY spheroids formed in 96-well culture plates (Fig. 3a). Compounds showing 
activity were tested at additional concentrations in a second assay (Fig. 3b).

Compounds YN28, YN29 and YN31, which had strong binding activity in the NMR experiments, showed 
strong DAOY growth inhibitory activity with IC50 values of 9.1 μM, 4.5 μM, and 5.1 μM, respectively. However, 
compound YN3, which has also had strong binding activity, did not show inhibitory activity on DAOY growth. 
In addition, compounds YN26, YN40, YN42 and YN45, which showed modest binding activity by NMR, 
showed relatively strong DAOY growth inhibitory activity with IC50 values of 18 μM, 15 μM, 16 μM, and 14 μM, 
respectively.

These findings suggest that the growth inhibitory activity of each compound is somewhat related to the bind-
ing activity observed in NMR experiments; however, the relation is not strict. For example, YN3 had a strong 
binding activity, but showed no DAOY inhibitory activity. Next, therefore, we examined in detail the PAH1 CSPs 
in each HSQC spectrum induced by ligand binding in a residue-specific manner in order to derive a plausi-
ble correlation between amino acid residues of PAH1 perturbed by a ligand binding and medulloblastoma cell 
growth inhibitory activity.

Correlation of CSPs and cell growth inhibitory activity by multivariate analysis.  Multivariate 
statistical analysis using amino acid CSPs as variables was applied to the HSQC CSPs of PAH1 induced by each 
ligand binding in order to clarify effective and ineffective ligands with respect to cell activity. For this purpose, we 
defined IC50 < 30 μM for effective and IC50 > 30 μM for ineffective ligands on the basis of the DAOY cells growth 
inhibitory assay.

Figure 2.  Structure–activity relationship of 11 potential mSin3 inhibitors. The top dashed box (A) represents 
pharmacophore A. R1 (green), R2 (green), A (blue), s1 (yellow), s2 (yellow), and + (orange) indicate two rings, 
hydrogen acceptor, two side chains, and positive charge, respectively. Dotted circles represent mismatch sites. 
The bottom dashed box (B) represents pharmacophore B.
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Unsupervised analysis.  Initially, we applied principal component analysis (PCA) to the CSPs of 55 amino acids 
of PAH1 as an unsupervised pre-processing step. In PCA, the first five components explained 58% of variance 
of the 55 variables. However, the defined effective and ineffective groups seemed to overlap considerably in the 
two-dimensional score plots of any pair of the first five components (Supplementary Figs S3 and S4a). In addition, 
it was difficult to differentiate the strong binding compounds with effective DAOY growth inhibitory activity 
(YN28, YN29 and YN31) from the strong binding compound with ineffective DAOY growth inhibitory activity 
(YN3) by PCA. It is noteworthy that YN28, YN29 and YN31 are approved CNS drugs but YN3 is not, and we have 
not tested whether YN3 can enter DAOY cell or not. Furthermore, it was difficult to analyze the dispersion factors 
in PCA, because almost all variables contributed to each dimension with small values.

As an alternative to PCA, the sparse vectors method can be applied to multivariate analysis41,45–47 to improve 
the separation between groups by eliminating non-essential variables that contribute to intra-group dispersion 
via lasso penalizations or similar. In sparse PCA (sPCA)45,46 (Supplementary Fig. S4b) with sparse loading vec-
tors (Supplementary Fig. S4c), however, the effective and ineffective groups were not separated clearly, although 
structural information could be obtained from sparse loading vectors.

Sparse loading plots, in which each component consists of contributions from variables corresponding to 
characteristic amino acid residues, were used to identify amino acids with contributions of more than 0.3 to each 
component. These amino acids were then mapped on the REST/NRSF contact surface of PAH1 (PDB code: 2CZY, 
Supplementary Fig. S4d). The main contribution to component 1 came from Met62, Leu59, Thr39, Lys66, and 
Arg77. These residues are on the REST/NRSF contact surface of mSin3B PAH1, suggesting that component 1 is 
characterized as strength of ligand binding to the pocket. However, the other components of sPCA provided no 
clear structural information.

Supervised analysis.  To overcome the considerable overlap between groups in the PCA and sPCA models, we 
performed sparse partial least square discriminant analysis (sPLS-DA)41 to differentiate between the effective 
and ineffective ligands in a supervised way. In this analysis, the two clusters were relatively well separated in the 
PC1/PC2 two-dimensional score plot (Supplementary Fig. S5), and more clearly separated in the PC1/PC2/PC3 
three-dimensional score plot (Fig. 4a) with sparse loading (Fig. 4b). This result was supported by the SAR; in 
other words, the compounds corresponding to pharmacophores A and B were contained in the major and minor 
clusters, respectively. Thus, the two clusters should correspond to the different pharmacophores of mSin3.

In addition, to evaluate this method, we performed a 7-fold cross validation with three different distance 
prediction methods: maximum distance, centroid distance, and Mahalanobis distance. In the maximum dis-
tance method, the estimate of the sPLS-DA classification error rate converged to about 8% in three dimensions 
(Supplementary Fig. S6), suggesting that sPLS-DA has sufficient prediction in three dimensions.

Sparse loading vectors of sPLS-DA and structural mapping.  Next, we mapped amino acids with contributions of 
more than 0.3 to each component in the sparse loading plots on the mSin3B PAH1–REST/NRSF complex (PDB 
code: 2CZY) (Fig. 5). The main contributions to component 1 came from Lys66, Met62, Ile76, Leu59, Phe48 
and Phe65. These residues are on the REST/NRSF-contact surface of PAH1, suggesting that, similar to sPCA, 

Figure 3.  Effect of YN compounds on 3D spheroid growth of DAOY medulloblastoma cells. DAOY cells were 
seeded at a density of 1000 cells in 100 μl of medium into ultra-low attachment 96-well U bottom plates. Next, 
10 µL of each YN compounds (300 μM in 3% DMSO), or medium was added to triplicate wells on day 1.  
Spheroid growth was monitored over time in a non-destructive way by a Cell3iMager scanner and scored 
as volume sum (volume and optical density of the single sphere). (a) Primary screening data illustrating the 
effect of 52 YN compounds at a concentration of 30 μM on 3D cell growth. (b) Secondary screening of active 
compounds at a concentration of 30, 10, 3 and 1 μM. Data after 6 days of incubation are shown.
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component 1 is characterized as strength of ligand binding to the pocket. In addition, these loadings were posi-
tively correlated with compound effectiveness in the cell growth inhibition assay.

By contrast, the main contribution to component 2 came from Glu28, Ile105, Asp88, Asp36, and Phe58, res-
idues that are located close to the tail or linker. The first three amino acids (Glu28, Ile105, and Asp88), which 
are positioned far from the REST/NRSF contact surface of PAH1, were negatively correlated with compound 
effectiveness in the cell growth inhibition assay, suggesting that component 2 is characterized as non-specific 
bindings to the mSin3B PAH1. In contrast, the last two residues (Asp36 and Phe58), which are located on the 
contact surface with the neighboring helix, were positively correlated with compound effectiveness in the cell 
growth inhibition assay suggesting that these two residues are involved in the rearrangement of helix I of PAH1. 
Thus, component 2 is characterized as a mixed indicator of helix rearrangement and non-specific binding to the 
mSin3B PAH1 domain.

The main contribution of component 3 came from Ile70, Leu89, and Ser69, which are located in the linker 
relatively close to the REST/NRSF-contact surface of PAH1, suggesting that this component is characterized as 
the structural changes of PAH1 after ligand binding. In addition, these residues were positively correlated with 
compound effectiveness in the cell growth inhibition assay, as in component 1.

In fact, two NMR structures (PDB code: 2CR7 and 2CZY) have revealed that the PAH1 domain of mSin3B 
shows a large structural change when it binds to REST/NRSF. In a previous prediction of CSPs due to this 

Figure 4.  Application of sPLS-DA to CSPs. (a) 3D score plot of sPLS-DA. Red solid circles and green solid 
circles indicate, respectively, the effective and ineffective compounds for DAOY cell growth inhibition.  
(b) Sparse loadings of first three components.
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structural change using SHIFTX248, we found that the perturbations around Ile70 were the largest21, which sug-
gests that the active compounds identified here cause structural changes in PAH1 similar to those caused by 
REST/NRSF.

NMR data-guided docking calculation.  We used NMR data-guided docking to clarify the differences in 
complex structure between effective and ineffective compounds that showed strong binding to mSin3B. YN29 
(chlorpromazine, an antipsychotic drug) and YN31 (sertraline, an antidepressant and serotonin reuptake inhibi-
tor) were selected as typical effective compounds, while YN3 was selected as a binding but ineffective compound. 
Each docking structure was calculated by using the HADDOCK/CNS docking protocol49–51 (Fig. 6).

The most significant difference between the DAOY cell-effective (chlorpromazine and sertraline) and 
cell-ineffective (YN3) complexes is the arrangement of helix I. In the case of the two effective compounds, helix I 
is oriented outwards, which opens the pocket, whereas in the case of the ineffective compound, helix I is oriented 
more inwards, closing the pocket. This suggests that the two effective compounds (chlorpromazine and sertraline) 
are bulkier than YN3 and cannot bind without rearrangement of helix I, consistent with the results of multivariate 
analysis. In addition, the docking pose of pharmacophore A was consisted with the SAR: Phe58, Tyr40, Phe65 
and Phe96 of PAH1 show π-π stacking with the two aromatic rings of the ligands. The carboxyl group of the 
main chain of Phe96 forms a hydrogen bond with the amine of the ligand. There are small cavities for s1 and s2 of 
pharmacophore A. Although chlorpromazine with its bulky three rings is buried in the pocket slightly deeper as 
compared with sertraline, both ligands bind to the pocket in a similar manner, including the spatial arrangement 
of the positive charges of the amine group and the aromatic rings. These complex structures suggest that both the 
mode of binding to the pocket and the rearrangement of helix I are important factors in the inhibition of DAOY 
cell growth.

Discussion and Conclusion
Our in-slico screening coupled with NMR titration identified several compounds that interact with the PAH 
domain of mSin3B. SAR analysis of these active compounds as well as SAR analysis of known active compounds 
were consistent with the present findings (Fig. 2). In other words, the active compounds contained at least two 
rings linked by one or two atoms, and the rings may have short branches and in most cases the linker contains 
an amino-type nitrogen atom, which might act as a hydrogen bond acceptor. The SAR analysis was further sup-
ported by our mSin3B–compound docking study, in which common features of the active compounds were 
found to interact with mSin3B. Thus, these compounds are likely to be active, although their chemo-type (scaf-
fold) is completely different from that of a previously reported active compound consisting of an α-helix peptide 
mimic middle molecule21.

Although we focused on pharmacophore A in the present study, we also observed a second pharmacophore, 
pharmacophore B (Fig. 2). The two SARs correspond to the clusters obtained by the sPLA-DA analysis. In other 
words, pharmacophores A and B should prompt different changes in protein structure corresponding to clusters 
1 and 2, respectively, in the sPLA-DA analysis. Our docking conformation analysis in the protein-ligand docking 
study further supported this assumption. In addition, the two clusters showed different biological phenotypes: com-
pounds in cluster 1 showed growth inhibition of DAOY cells, whereas those in cluster 2 did not inhibit cell growth. 
Collectively, these results suggest that the NMR-based sPLA-DA analysis might be useful as a functional assay.

Interestingly, antidepressant or antipsychotic medicines, including sertraline, chlorprothixene, and chlor-
promazine were found to strongly bind to PAH1; sertraline is a selective serotonin reuptake inhibitor that is 
known to be highly selective for the serotonin transporter (SERT). Notably, the major target protein of the 
approved drugs identified in this study was neither mSin3 nor REST/NRSF. Rather, the common targets of the 
active ligands were the sodium-dependent serotonin transporter and dopamine receptors, as reported and sum-
marized in DrugBank (https://www.drugbank.ca/)52. This observation suggests that these proteins may share 

Figure 5.  Sparse loadings of the first three components of sPLS-DA mapped on the PAH1–REST/NRSF 
complex (PDB code: 2CZY). (a–c) correspond to sparse loadings of components 1, 2 and 3, respectively. Sparse 
loadings with a positive correlation for DAOY growth inhibitory activity are shown in red; those with negative 
correlations are shown in green.

https://www.drugbank.ca/
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similar ligand-binding conformations. To our knowledge, however, there is no homology between mSin3 and the 
serotonin transporter or dopamine receptors.

Recently, mechanisms underlying the recognition of three antidepressants, sertraline, fluvoxamine, and par-
oxetine, by SERT have been reported on the basis of crystal structures53. We therefore compared the binding 
structures of sertraline to SERT and mSin3B as shown in Fig. 7.

Although no amino acid sequence homology between SERT and mSin3B PAH1 domain was identified, both 
binding pockets contained similar amino acids in similar positions. Sertraline interacts with Asp98, Tyr95 and 
Phe341 of SERT and with the Phe96 main chain and Phe93 of PAH1 via its amino group (+); with Tyr176 and 
Ile172 of SERT and with Tyr40, Phe58 and Phe96 of PAH1 via its R1 aromatic ring; with Phe335 of SERT and 
with Phe65 of PAH1 via its R2 ring. The antidepressant fluvoxamine binds strongly to SERT but not so strongly 
to PAH1. Fluvoxamine has no ring corresponding to R2, which might reduce its affinity for PAH1. Another 
antidepressant, paroxetine, binds strongly to SERT by a binding mode similar to that of sertraline; therefore, we 
examined the mSin3B binding activity of paroxetine. STD, WaterLOGSY, and HSQC experiments showed that 
paroxetine binds strongly to the PAH1 domain of mSin3B (Supplementary Fig. S7). Collectively, these findings 

Figure 6.  Structural comparison of PAH1–YN3, PAH1–chlorpromazine, and PAH1–sertraline interactions.  
(a) Superimpose docking structures of PAH1–YN3 (green), PAH1–chlorpromazine (orange), and PAH1–
sertraline (blue) complexes in cartoon representation. For these docking calculations, the PAH1 structure of 
2CZY was used as the initial structure. (b) Structural comparison of PAH1–chlorpromazine (right, orange) and 
PAH1–sertraline (left, blue). (c) Chemical schematic drawing of interactions in the PAH1–chlorpromazine and 
PAH1–sertraline complexes.
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reveal that some antidepressants that bind to SERT have affinity for the mSin3B PAH1 domain. Interestingly, 
several different types of epigenetic mechanisms, including key REST/NRSF effectors such as histone acetylation/
methylation and miRNAs, have been reported for antidepressants54.

Our data suggest that the currently approved CNS drugs, sertraline, chlorprothixene, and chlorpromazine are 
likely to have polypharmacological activity against the mSin3B PAH1 domain, which binds to REST/NRSF, whose 
dysregulation is related to glioblastoma, Huntington’s disease, and neuropathic pain in addition to medulloblas-
toma. Several studies have suggested that sertraline or chlorpromazine is effective against glioblastoma, either 
when used alone or when used as combinatorial chemotherapy with other drugs55–60. Although previous studies 
have proposed other mechanisms of tumor suppression by sertraline or chlorpromazine, our present findings 
may provide new clues for clinical research on sertraline or chlorpromazine against glioblastoma. Sertraline has 
also been reported to have positive effects in Huntington’s disease models via several different mechanisms61,62.

As far as we know, our study is the first to demonstrate the activities of these drugs against medulloblastoma 
cells. Medulloblastoma is the most common malignant brain tumor in children. Current therapies for medullo-
blastoma impose debilitating side effects on the developing child. We found here that several approved neuro-
pathic drugs induced NMR chemical shift change in the mSin3B PAH1 domain indicative of binding and also 
inhibited 3D spherical growth of the medulloblastoma cell line DAOY. In particular, sertraline and chlorprom-
azine showed strong binding to the PAH1 domain and high growth inhibition of DAOY cells. Collectively, our 
findings raise the possibility that drug repositioning might aid in the therapeutically unmet need for medullo-
blastoma, especially because approved neuropathic drugs have BBB permeability and human oral bioavailability.

Figure 7.  Structural comparison of the binding pockets of PAH1 and the serotonin transporter. (a) Docking 
structure of PAH1–sertraline represented as a ribbon model. Important residues in the interaction are 
represented as a stick model. Sertraline atoms are colored by type (yellow, carbon; white, hydrogen; blue, 
nitrogen; green, chlorine). (b) X-ray structure of the serotonin transporter (SERT)–sertraline complex 
(PDB code: 6AWO). Important residues in the interaction are represented as a stick model. Sertraline atoms 
are colored by type as in panel (a). (c) Binding site structure of the PAH1–sertraline docking calculation 
represented as a surface model using eF-surf 78, colored by default. (d–f) Binding site structures of 6AWO, 
6AWP and 6AWN, respectively, represented as a surface model using eF-surf, colored by default.
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Methods
In-silico screening.  For the SBDS, MolSite was used to select the ligand-binding sites of the mSin3 structure63.  
Next, based on the protein structure, multiple-target screening (MTS) was used to dock compounds selected 
from a database to proteins, including the target and other proteins, to generate a protein–compound affinity 
matrix64. A machine-learning MTS (ML-MTS) method approximates the binding affinity of each compound to 
the target protein by a linear combination of many docking scores from the reference proteins64. For the LBDS, 
molecular-dynamics maximum-volume overlap (MD-MVO) was used to select structurally similar compounds 
from a given compound database65.

The protein–compound docking scores used in the MTS and ML-MTS drug screenings were calculated by 
the protein–compound docking program Sievgene66. The computational setup was the same as in our previ-
ous study64. In brief, Sievgene generated up to 100 conformers for each compound, and the potential grid was 
60 × 60 × 60 for all proteins. Each edge length of the grid was about 35–45 Å. The docking-scoring function is 
based on the physical chemistry (accessible surface area, van der Waals potential, and electrostatic potential).

We performed a protein–compound docking simulation based on the soluble protein structures registered in 
the PDB. The probe protein set consisted of 188 arbitrarily selected protein structures, as in our previous study64. 
All of these structures were protein−ligand complexes. The structure of mSin3B (PDB code: 2CZY) was added to 
the protein set as the target protein25.

For the protein set used in the MTS and ML-MTS drug screening, complexes containing a covalent bond 
between the protein and ligand were removed, and all missing hydrogen atoms were added to form all-atom 
models of the proteins. All water molecules and cofactors were removed from the protein structures. All Asp and 
Glu residues were prepared as negatively charged forms, whereas Lys and Arg residues were prepared as positively 
charged forms. The atomic charges of the proteins were the same as those in AMBER parm9967. The docking 
pocket of each protein was indicated by the coordinates of the original ligand.

The 3D structures of the compounds were energy-optimized by cosgene/myPresto68 using the general AMBER 
force field (GAFF)69. The atomic charges were calculated by the MOPAC AM1 model using the Hgene program of 
the myPresto suite. Each functional group in all molecules was set to the dominant ionic form at pH 7.

Sample preparation.  mSin3B PAH1.  The PAH1 domain of mouse Sin3B (mSin3B PAH1; a.a. 28–107 
with a Met at the N-terminus) was obtained as described23,25. The coding region of PAH1 was subcloned 
into the pET28a vector (Novagen) to produce a His6-tagged protein with a recombinant thrombin protease 
recognition site. The protein was expressed in Escherichia coli strain BL21(DE3) grown at 37 °C in M9 min-
imal media containing 15NH4Cl (0.15%). When the absorbance at 600 nm reached 0.5–0.6, 1 mM isopropyl-1- 
thio-β-D-galactopyranoside (IPTG) was added to induce protein expression. After an additional 16 h growth at 
20 °C, the cells were harvested and resuspended in 50 mM sodium phosphate buffer (pH 8.0, 300 mM NaCl and 
10 mM imidazole). The cells were lysed by sonication on ice and centrifuged (39,000 g). The supernatant was 
loaded onto a nickel/nitrilotriacetic acid/agarose (Qiagen) column. The column was washed with 50 mM sodium 
phosphate buffer (pH 8.0, 300 mM NaCl and 10 mM imidazole), and the protein was eluted by a linear gradient 
from 10 to 250 mM imidazole. After a concentration step, the buffer was changed to 20 mM Tris-HCl buffer (pH 
8.0, 2.5 mM CaCl2 and 150 mM NaCl). The protein was digested with thrombin for 16 h at room temperature to 
remove the His6 tag, and purified by gel-filtration column chromatography (Superdex30; Pharmacia) with 20 mM 
potassium phosphate buffer (pH 7.5, 150 mM NaCl).

GST fusion mSin3B PAH1.  The coding region of mSin3B PAH1 was subcloned into the pGX-6P-1 vector (GE 
Healthcare) to produce a GST fusion protein with a recombinant PreScission protease recognition site by using 
Genscript’s gene synthesis service. The protein was expressed in Escherichia coli strain BL21(DE3) grown at 37 °C 
in LB medium. When the absorbance at 600 nm reached 0.5–0.6, 1 mM isopropyl-1-thio-β-D-galactopyranoside 
(IPTG) was added to induce the protein expression. After an additional 16 h growth at 15 °C, the cells were har-
vested and resuspended in 12 mM sodium phosphate buffer (pH 7.3, 650 mM NaCl 5 mM DTTand 10% glycerol). 
The cells were lysed by sonication on ice and centrifuged (39,000 g), and the supernatant was loaded onto tandem 
GSTrap (5 mL; GE Healthcare) columns. The column was washed with 12 mM sodium phosphate buffer (pH 7.3, 
1.15 M NaCl and 5 mM DTT), and the protein was eluted with 12 mM sodium phosphate buffer (pH 7.3, 650 mM 
NaCl, 5 mM DTT and 50 mM reduced glutathione). The protein was finally purified by gel-filtration (HiLoad 
26/60 superdex 200) column chromatography with 12 mM sodium phosphate buffer (pH 7.3, 650 mM NaCl, and 
5 mM DTT).

NMR experiments.  We used STD and WaterLOGSY bulk ligand observation experiments. Rapid exchange 
of the magnetization-transferred bound ligand in a protein with the bulk of unbound ligand was observed via 
saturated protein signals in STD and water signals in WaterLOGSY. An excess amount of ligand versus the PAH1 
domain was used to enable detection of the bulk of the unbound ligand by 1D-NMR. Because the PAH1 domain 
of mSin3B alone was too small to effectively transfer spin diffusions to each spin, the GST fusion system was used 
to increase the weight of PAH1 and effectively transfer spin diffusions to the ligand70.

NMR experiments were carried out at 298 K on a Bruker AVANCE700 with a cryoprobe. Spectra were pro-
cessed with TOPSPIN 3.2 software. The samples for 1H STD and WaterLOGSY contained 10 μM GST-mSin3B 
PAH1 and 400 μM ligand in a volume of 500 μl in100 mM phosphate buffer (pH 7.2) containing 5% DMSO. 
1H STD and WaterLOGSY spectra were recorded over 256 and 128 scans, respectively, in a spectral window of 
8389.26 Hz centered at 3253.60 Hz. For the STD experiments, the on-resonance and off-resonance frequency of 
the selective pulse was switched between 30 and −0.4 ppm, respectively, after every scan.

The samples for 1H-15N HSQC titration experiments contained 100 μM mSin3B PAH1 and 100 μM (1:1 ratio) 
or 1 mM (1:10 ratio) ligand in 100 mM phosphate buffer (pH 7.2) containing 5% DMSO. The experiments were 
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carried out at 298 K on a Bruker AVANCE700 with a cryo-probe. Spectra were processed with TOPSPIN 3.2 soft-
ware, NMRPipe71 and Olivia (M. Yokochi, S. Sekiguchi, & F. Inagaki, Hokkaido University, Sapporo, Japan). In 
2D 1H-15N HSQC spectra, CSPs were averaged as {(Δδ1H)2 + (Δδ15N/5)2}1/2 ppm, where Δδ1H is the 1H chemical 
shift change and Δδ15N is the 15N chemical shift change for each amino acid.

Multivariate analysis of CSPs.  For multivariate analysis, compounds with non-measurable IC50 above 
30 μM in the DAOY cell growth inhibition experiment were classified as “ineffective”, and those with a meas-
urable IC50 of 30 μM or less were classified as “effective”. The 52 compounds from in-silico screening with 55 
variables were divided into these two groups and used as data sets. PCA and sPCA were performed by using the 
MixOmics72,73 R package; sPLS-DA and 7-fold cross validation were performed by using MetaboanalystR74,75 and 
MixOmics, respectively. In sPCA and sPLS-DA, sparse loading vectors were calculated to remove irrelevant vari-
ables by using lasso penalizations, and 10 variables were selected in each dimension. In the 7-fold cross validation, 
a random sort of the data set was performed 20 times and cross validation was performed for each data set by 
using maximum distance, centroid distance, and Mahalanobis distance prediction methods.

NMR-guided docking calculations.  NMR-guided docking calculations of the mSin3B–sertraline, 
mSin3B–chlorpromazine and mSin3B–YN3 complexes were performed by using HADDOCK/CNS pro-
tocols49–51. For the initial structures, we used a complex structure of the mSin3B PAH1 domain (PDB code: 
2CZY) and energy-minimized structures of sertraline, chlorpromazine and YN3, which were generated and 
energy-minimized by using Avogadro76 with the UFF77 force field. For the sertraline docking calculation, Phe48, 
Met62, Phe65, Lys66, Ile70, Thr72, Val75, and Phe96 of mSin3B were defined as active residues, and neighbor-
ing residues were automatically defined as passive residues. Similarly, for chlorpromazine, Thr39, Leu59, Glu60, 
Met62, Lys66, Val91, and Phe96 of mSin3B were defined as active, and neighboring residues were defined as 
passive; and for YN3, Leu38, Ile46, Met62, Arg78, Phe83, Phe96, Leu97, and Tyr101 of mSin3B were defined as 
active, and neighboring residues were defined as passive. The rigid-body docking was performed with 1000 struc-
tures, the best 200 of which were refined first via semi-flexible molecular dynamics and then in explicit water. 
Root-mean-square-deviation (RMSD)-base clustering was performed with a cutoff of 2 Å. The NMR-guided 
docking structures were finally grouped in 11 clusters for sertraline, chlorpromazine and YN3, which com-
prised 72.5%, 50% and 63% of the water refinement structures, respectively. The top cluster of sertraline docking 
was cluster 1 with a HADDOCK score of –39.6 ± 1.0, cluster size of 48, RMSD of 1.4 ± 0.1 Å, and Z-score of 
−1.7. The top cluster of chlorpromazine was cluster 3 with a HADDOCK score of −41.5 ± 1.5, cluster size of 18, 
RMSD of 0.4 ± 0.3 Å, and Z-score of −1.8. The top cluster of YN3 was also cluster 1 with a HADDOCK score of 
−36.2 ± 1.9, cluster size of 31, RMSD of 1.5 ± 0.0 Å, and Z-score of −2.3.

Cell culture and cancer sphere assay.  The DAOY medulloblastoma cell line was obtained from the 
American Type Culture Collection and cultured in Dulbecco’s Modified Eagle’s medium (DMEM) high glucose 
with L-glutamine, supplemented with 10% fetal bovine serum (GIBCO Lot1706567), 50 U/ml of penicillin, and 
50 μg/ml of streptomycin (Sigma), unless otherwise specified. The DAOY cells were cultured in an incubator 
at 310 K in a 5% CO2/ 5% O2/90% N2 atmosphere with maximum humidity. They were seeded at a density of 
1 × 1000 cells in 100 μl in the above medium in ultralow attachment 96-well U bottom plates (SUMILON, Prime 
Surface MS-9096U). Assessment of spheroid size and morphology was monitored over time in a non-destructive 
way by using a Cell3iMager scanner (SCREEN Holdings, Kyoto, Japan). Sphere growth was scored as volume sum 
(volume and optical density of the single sphere).

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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