
1SCIENTIFIC ReportS |  (2018) 8:13757  | DOI:10.1038/s41598-018-32037-6

www.nature.com/scientificreports

Fucosylated oligosaccharides in 
mother’s milk alleviate the effects 
of caesarean birth on infant gut 
microbiota
Katri Korpela1,2, Anne Salonen   1, Brandon Hickman1, Clemens Kunz3, Norbert Sprenger4, 
Kaarina Kukkonen5, Erkki Savilahti6, Mikael Kuitunen6 & Willem M. de Vos1,7

One of the most abundant components in human milk is formed by oligosaccharides, which are poorly 
digested by the infant. The oligosaccharide composition of breast milk varies between mothers, and 
is dependent on maternal secretor (FUT2) genotype. Secretor mothers produce milk containing α1-2 
fucosylated human milk oligosaccharides, which are absent in the milk of non-secretor mothers. Several 
strains of bacteria in the infant gut have the capacity to utilise human milk oligosaccharides (HMOs). 
Here we investigate the differences in infant gut microbiota composition between secretor (N = 76) and 
non-secretor (N = 15) mothers, taking into account birth mode. In the vaginally born infants, maternal 
secretor status was not associated with microbiota composition. In the caesarean-born, however, 
many of the caesarean-associated microbiota patterns were more pronounced among the infants of 
non-secretor mothers compared to those of secretor mothers. Particularly bifidobacteria were strongly 
depleted and enterococci increased among the caesarean-born infants of non-secretor mothers. 
Furthermore, Akkermansia was increased in the section-born infants of secretor mothers, supporting 
the suggestion that this organism may degrade HMOs. The results indicate that maternal secretor 
status may be particularly influential in infants with compromised microbiota development, and that 
these infants could benefit from corrective supplementation.

Infants are adapted to obtaining all of their nutrition from human milk during the first months of life. In addi-
tion to nutrients for the infant, breast milk contains a diverse mixture of complex oligosaccharides, termed 
human milk oligosaccharides (HMOs), at an abundance of approximately 10 g/l1. These oligosaccharides are 
poorly digested by the infant, but are favoured growth substrates for intestinal bacteria that have the appropriate 
enzymatic degradation capacity. The oligosaccharide composition and abundance in breast milk is dependent 
on maternal genetics, particularly the FUT2 gene, which encodes an enzyme responsible for the addition of 
fucose at the α1-2 position on a backbone of abundant glycans containing galactose1. The breast milk of mothers 
with a functional FUT2 allele, the so-called secretors, contains a large amount of α1-2 fucosylated HMOs, most 
abundantly 2′fucosyllactose (2′FL), and in lesser amounts lactodifucotetraose (LDFT), lacto-N-difucohexaose I 
(LNDFH I) and lacto-N-fucopentaose I (LNFP I)1,2. The breast milk of non-secretor mothers lacks or has only 
traces of these α1-2 fucosylated oligosaccharides, thus containing a lower total amount of HMOs1,2, although this 
lack may be partly compensated by higher abundances of lacto-N-tetraose (LNT), LNFP II, and III and LNDFH 
II1. The abundance of 2′FL in breast milk has been shown to be a reliable indicator of secretor status2.

Maternal secretor phenotype has been recently linked with reduced risk of atopic dermatitis in a cohort of 
caesarean-born infants3, and individual HMOs were related to reduced risk of cow’s milk allergy4. Although 
HMOs are reported to have immunomodulatory effects, these are mainly restricted to sialylated HMOs5,6, which 
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are not dependent on maternal secretor status. Although some fucosylated HMOs like 2′ FL can bind the den-
dritic cell receptor DC-SIGN7 and modulate inflammation via CD148, it is not known whether this leads to direct 
allergy-related immunological effects.

One likely manner in which maternal secretor status influences the infant’s immune system development is 
via the gut microbiota. The α1-2 fucosylated oligosaccharides are degraded by enzymes of the glycosyl hydrolase 
family 95, possessed by strains of bifidobacteria commonly observed in infants (strains of B. longum infants, B. 
bifidum, B. breve) as well as Bacteroides spp.9–13. The abundance of these bacteria is associated with birth mode, 
being commonly reduced in caesarean-born infants14. We therefore hypothesise that the impact of maternal 
secretor status on infant microbiota may depend on birth mode. Here we investigate the differences in infant gut 
microbiota composition between secretor and non-secretor mothers, taking into account birth mode.

Results
We analysed the association between microbiota composition in infants and the presence of 2′FL in maternal 
breast milk (secretors), stratifying the infants by birth mode. The stratification of the samples into groups based 
on birth mode and the presence of 2′FL in maternal breast milk explained 19% the inter-individual variation in 
phylum-level microbiota composition (Fig. 1A). The maternal secretor phenotype was not associated with the 
overall microbiota composition among the vaginally born infants (Fig. 1A; permutational multivariate ANOVA, 
p = 0.98). Among the caesarean born infants, however, the maternal secretor phenotype was associated with an 
overall shift in the total microbiota composition, which was close to statistical significance (Fig. 1A, p = 0.07). The 
caesarean-born infants of secretor mothers had a more modest deviation in microbiota composition, compared 
to those of non-secretor mothers (Fig. 1A,B).

Among the vaginally born infants, there were no significant differences between infants of secretor and 
non-secretor mothers in the relative abundance of bacterial taxa, after adjustment for full or partial breastfeeding 
and at the FDR-corrected p-value level 0.1 (Supplementary Table 1). All caesarean-born infants had significant 
reductions in the relative abundance of Bacteroidetes (non-secretors, 500-fold reduced, p < 0.0001; secretors, 
200-fold reduced, p < 0.0001, mainly genera Bacteroides and Parabacteroides) and an increase of Firmicutes 
(non-secretors, 3.8-fold, p = 0.002; secretors 2.6-fold, p = 0.0002, mainly Bacilli) in their gut microbiota, com-
pared to the vaginally born infants of secretor mothers. The magnitude of these effects was higher in the infants of 
non-secretor mothers (Supplementary Table 1, Fig. 2), who also showed a significant reduction in Actinobacteria 
(3.7-fold, p = 0.001, mainly Bifidobacterium) and a 13-fold increase in Enterococcus (p = 0.003). The reduction 
in bifidobacteria was largely due to the absence of Bifidobacterium bifidum and B. breve (Fig. 3A), while the 
increase in enterococci was attributable to a bloom of Enterococcus lactis and two uncultured Enterococcus species; 
Enterococcus faecium levels were comparable (Fig. 3B). In addition, there was a non-significant trend towards 
higher Proteobacteria abundance in the caesarean-born infants of non-secretor mothers (Fig. 2, Supplementary 
Table 1), and the caesarean-born infants of secretor mothers had significantly increased relative abundance 
(approximately ten-fold) of Verrucomicrobia (Akkermansia muciniphila, Fig. 2, Supplementary Table 1).

In addition to the differences in relative abundance, we observed differences in the sequence-level diversity 
of several genera, indicating variation in the diversity of species and strains. The diversity (number of unique 
sequences assigned to the particular genus) of bifidobacteria and bacteroides was significantly reduced in the 
caesarean-born infants, especially clearly in the infants of non-secretor mothers (Fig. 4A,B), while the diversity of 
enterococci and Lachnospiraceae incertae sedis showed the opposite pattern (Fig. 4C,D).

Figure 1.  Overall infant microbiota composition by birth mode and maternal secretor status. (A) PCoA using 
Bray-Curtis dissimilarities. (B) Average relative abundance of the most abundant families per group.
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Discussion
Our results indicate that infants of non-secretor mothers are particularly vulnerable to the effects of caesarean 
section on the early microbiota development. The combination of caesarean birth and lack of milk 2′FL appear to 
profoundly alter the infant’s microbiota.

Figure 2.  Relative abundance of the bacterial phyla by birth mode and maternal secretor status. The asterisks 
indicate the significance of the difference to the vaginally born infants of secretor mothers: **p < 0.01, ***p < 0.001.

Figure 3.  Average relative abundance of (A) Bifidobacterium species and (B) Enterococcus species by 
birth mode and maternal secretor status. “Uncultured” means that the species has not been cultured and 
characterised, and therefore has not been named.
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A few previous studies have investigated the association between maternal secretor status and infant micro-
biota. Low abundance of bifidobacteria has been reported in infants of non-secretor mothers15, corresponding to 
our observations among the caesarean-born infants, but these associations are not universal. Wang et al. report a 
negative correlation between 2′FL and LDFT in breast milk and the relative abundance of bifidobacteria in infant 
faeces, but a positive correlation with Bacteroides16. This suggests that the principal degraders of fucosylated 
HMOs may vary between cohorts, depending on the composition of the microbiota. In our cohort, maternal 
secretor status had no impact on the microbiota composition among the vaginally born infants, indicating that 
maternal secretor status may be an important factor mainly among infants with otherwise compromised micro-
biota development. Curiously, the overall abundance of bifidobacteria in the cohort of Lewis et al. (2015) was 
similar to that of the caesarean-born infants in our cohort. The HMO degradation capacity of bifidobacteria is not 
restricted to the α1-2 fucosylated HMOs17,18. Perhaps a high diversity of bifidobacteria ensures that the commu-
nity is able to adapt to the available HMOs, reducing their dependence on specific HMO types.

In the caesarean-born infants, the only taxon appearing to benefit from the lack of α1-2 fucosylated HMOs 
was Enterococcus (member of Lactobacillales), particularly Enterococcus lactis. E. lactis is a non-pathogenic, orig-
inally dairy-derived bacterium with strong antimicrobial activity against other Gram-positive bacteria, such 
as other enterococci and clostridia19,20. It is possible that this organism, which utilises lactose and galactose19, 
can opportunistically take advantage of the available niche in the infant gut when the abundance of normally 
dominant bacteria is low and successfully outcompete other similar bacteria. Instead of enterococci, Lewis et 
al. discovered an increased abundance of streptococci, also belonging to the class Lactobacillales, in the infants 
of non-secretor mothers15, while Underwood et al. report a reduced abundance of Lactobacillales in premature 
infants of non-secretor mothers21. Most lactobacilli do not degrade complex HMOs22, so the latter result is likely 
due to indirect effects of the HMOs on other bacteria.

In infants of non-secretor mothers there seems to be a trend towards increased abundance of enterobacte-
ria15,21, which we also observed in the caesarean born infants. Many members of enterobacteria are inflammatory, 
some even pathogenic. Fucosylated oligosaccharides are decoy receptors for many pathogenic bacteria, including 
members of enterobacteria; hence, they have a potential to reduce their adhesion to the gut, thus protecting the 
infant23–25. In addition, fucosylated HMOs bind enterotoxin produced by E. coli and inhibit its effects on intes-
tinal cells26, and reduce LPS-induced inflammation in gut epithelium8. Fucosylated HMOs may thus reduce the 
colonisation ability of enterobacteria as well as their inflammatory effects in the infant gut, particularly among 
prematurely born infants.

A novel finding in our study was the increased abundance of Akkermansia in the caesarean-born infants of 
secretor mothers. Akkermansia muciniphila is able to degrade HMOs27, and thus may benefit from the presence 
of 2′FL in the situation in caesarean-born infants where normally abundant HMO-degrading members of the 

Figure 4.  Sequence-level diversity (richness) within selected genera. The p-values represent the significance 
of the difference to the vaginally born infants of secretor mothers (“Vaginal +”), from negative binomial 
regression.
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community, bifidobacteria and bacteroides, are depleted. Akkermansia strengthens the gut barrier and likely con-
tributes positively to infant gut health28.

Low total abundance of bifidobacteria, and low abundance of typical infant-type bifidobacteria, in infancy has 
been associated with allergic disease29–31, which may explain the observed associations between maternal secretor 
status and infant allergy risk3,4. Several bifidobacterial strains have immunomodulatory effects32–36. Consequently, 
supplementation with bifidobacteria has been shown to reduce the incidence of allergic diseases in infants37.

Our results show that caesarean birth may be especially detrimental to the microbiota of infants fed by 
non-secretor mothers, potentially leading to increased risk of allergic diseases3,4. Screening for FUT2 genotype or 
2′FL in the breast milk of mothers giving birth by caesarean section would allow these at-risk infants to be iden-
tified and treated. These infants would most likely benefit from specific interventions, such as supplementation 
with bifidobacteria, bifidogenic 2′fucosylated HMOs like 2′FL, or other compounds that could be effective in 
reducing their allergy incidence.

Methods
We collected breast milk samples on postpartum day 3 and infant faecal samples at age 3 months during a probi-
otic intervention trial38. The study was approved by the medical ethical board of Helsinki and Uusimaa Hospital 
District, Finland and was conducted according to the Declaration of Helsinki. Parents provided written informed 
consent. For this study, we selected a subset of the original cohort with the following criteria: both samples availa-
ble, infant breastfed (exclusively or partially) at the time of faecal sample collection, placebo treatment during the 
trial (no probiotic given to infant or mother), and no antibiotics given to the infant prior to faecal sample collec-
tion. In total we included 76 infants of secretor mothers (58 vaginally born, 62% fully breastfed, and 18 caesarean 
born, 33% fully breastfed) and 15 infants of non-secretor mothers (10 vaginally born, 70% fully breastfed, and 5 
caesarean born, 67% fully breastfed).

Breast milk samples were assigned to a group (i) with FUT2 dependent milk oligosaccharides (FUT2 pos-
itive) and (ii) without FUT2 dependent milk oligosaccharides (FUT2 negative) using 2 independent methods, 
as described earlier3,39. Briefly, skimmed breast milk samples were analysed using MALDI-TOF (matrix assisted 
laser desorption/ionization - time of flight) mass spectrometry (MS) profiling and liquid chromatography to 
quantify 2′fucosyllactose (2′FL) and by high performance anion exchange chromatography (HPAEC) with a 
CarboPac PA1 analytical column coupled to a pulsed amperometry detector (ICS3000, Thermo Fischer Dionex, 
Sunnyvale, USA). The distribution of 2′FL values was close to normal. The mean ± sd level of 2′FL in the milk of 
secretor mothers was 5664 ± 2048 mg/l (vaginal birth) and 3810 ± 1183 mg/l (Caesarean birth). The amount was 
significantly lower in the Caesarean group (ANOVA, p = 0.0003). The mean amount in the milk of non-secretor 
mothers was below 50 mg/l.

Faecal samples were analysed for microbiota composition by 16S rRNA amplicon sequencing. DNA was 
extracted from the faecal samples using a repeated bead-beating protocol40. The library preparation was per-
formed essentially according to the protocol by Illumina, except that the 16S rRNA gene amplification and bar-
coding was performed in a single reaction. The PCR reaction comprised 1 ng/μl template, 1X Phusion® Master 
Mix (ThermoFisher, catalog number: F-531L), 0.25 μM V3-V4 locus specific primers and 0.375 μM TruSeq 
dual-index primers. The PCR was run under the following settings: 98 °C for 30 s, 27 cycles of 98 °C for 10 s, 62 °C 
for 30 s, 72 °C for 15 s and finally 10 min at 72 °C, where after the samples were stored at 4 °C. The PCR clean-up 
was performed with AMPure XP beads (Beckman Coulter, Copenhagen, Denmark) and confirmation of the 
correct amplicon size (ca. ~640 base pairs) was performed on a Bioanalyzer DNA 1000 chip (Agilent Technology, 
Santa Clara, CA, USA). The pooled libraries were sequenced with an Illumina MiSeq or HiSeq2500 in Rapid Run 
mode. The median number of reads obtained per sample was 46 260 (range 4260-137 400). The samples were 
randomly assigned to the different sequencing platforms. To make sure the results don’t suffer from technical bias, 
we sequenced three artificial communities of known composition on both platforms and compared the results 
(Supplementary Fig. 1). No systematic difference was observed between the different sequencing platforms. The 
sequencing platform did not explain a significant amount of variation in the real data (p = 0.3, multivariate per-
mutational anova).

Statistical analysis was conducted in R, using the package mare41, with tools from packages vegan42, MASS43, 
and nlme44. Although paired-end sequencing was conducted, we only used the forward reads truncated to 150 
bases, as we have observed using artificial communities of known composition that longer reads provide unre-
liable results45. Taxonomic annotation was performed using USEARCH46 by mapping the reads to the SILVA 
16S rRNA reference database version 11547, restricted to gut-associated taxa (available through the R package 
mare41). We did not rarefy the data, but instead used the number of reads per sample as the offset in the models. 
We adjusted for full or partial breastfeeding in the models. Due to multiple testing, we considered FDR-corrected 
p < 0.1 as significant, but report uncorrected p-values in the text for clarity. Both corrected and uncorrected 
p-values are presented in Supplementary Table 1. For reliable results, it is extremely important that the data follow 
the underlying assumptions of the statistical test (particularly independence and normal distribution of residu-
als). The R-package mare addresses this issue by iteratively finding the most suitable model for each taxon. For 
this reason, the statistical test is not the same for all taxa, as the distribution of the data varies between taxa. Very 
commonly, there are patterns in the residuals that must be adjusted for. In these cases, generalised least squares 
models are used that allow for the residual variation to be modelled separately.

Data Availability
The DNA sequencing data are available at ENA (http://www.ebi.ac.uk/ena) under the accession number PR-
JEB27325.

http://www.ebi.ac.uk/ena
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