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and Lanying Zeng1,2,5,8,*
SUMMARY

Cellular decision-making arises from the expression of genes along a regulatory cascade, which leads

to a choice between distinct phenotypic states. DNA dosage variations, often introduced by replica-

tion, can significantly affect gene expression to ultimately bias decision outcomes. The bacteriophage

lambda system has long served as a paradigm for cell-fate determination, yet the effect of DNA repli-

cation remains largely unknown. Here, through single-cell studies and mathematical modeling we

show that DNA replication drastically boosts cI expression to allow lysogenic commitment by

providing more templates. Conversely, expression of CII, the upstream regulator of cI, is surprisingly

robust to DNA replication due to the negative autoregulation of the Cro repressor. Our study exem-

plifies how living organisms can not only utilize DNA replication for gene expression control but also

implement mechanisms such as negative feedback to allow the expression of certain genes to be

robust to dosage changes resulting from DNA replication.
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INTRODUCTION

Cellular decision-making often relies on the output of its gene regulatory networks, which are sensitive to

intra- and extracellular signals (Balazsi et al., 2011; Perkins and Swain, 2009). In some cases, the gene

network senses and responds to these signals by up- or downregulating the expression levels of certain

genes to optimize the organism’s survival (Kramer, 2010). In other cases, however, it is preferable for the

cell’s phenotype to remain insensitive (robust) to perturbations (Alon et al., 1999; Stelling et al., 2004;

von Dassow et al., 2000). There are a great variety of perturbations that gene networks must mitigate,

such as changes in physical conditions (e.g., temperature), the abundance of environmental toxins or nu-

trients, and the fluctuation of intracellular protein and toxin levels. In particular, one such perturbation to

gene networks is DNA copy number fluctuation (e.g., by DNA replication), which virtually all living organ-

isms must experience. Gene copy number changes can potentially affect gene expression to cause signif-

icant phenotypic changes (Baumgart et al., 2017; Kemkemer et al., 2002; Pollack et al., 2002; Rancati et al.,

2008; Seidman and Seidman, 2002). For example, highly amplified genes in cancer cells often show

elevated expression (Pollack et al., 2002), whereas inactivation of a single allele in diploid organisms can

reduce expression and lead to diseases (Seidman and Seidman, 2002). Theoretical modeling also reveals

that a number of commonly observed gene regulatory subnetworks, or network motifs, are sensitive to

gene copy number changes due to interactions via a common pool of transcription factors in the dupli-

cated networks (Mileyko et al., 2008).

Organisms can also develop strategies to deal with gene dosage changes and their cognate effects. A

recent study reveals that in budding yeast, Saccharomyces cerevisiae, the expression of a large fraction

of genes is significantly reduced when the gene dosage is halved, whereas some genes have unaltered

expression (Springer et al., 2010). This suggests that there may exist mechanisms and control structures

keeping a small number of genes robust to gene dosage variations. Indeed, some studies have reported

network structures allowing gene expression insensitivity to DNA dosage changes (Acar et al., 2010;

Song et al., 2014). However, those observations are most often based on gene deletions or insertions,

and the effects of replication-associated temporal DNA copy number changes remain largely unknown.

Given the prevalence of DNA replication and the fluctuation of DNA levels during cell growth, it is nat-

ural to ask how gene networks can cope with or take advantage of DNA replication to choose the

optimal cell fate.
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To understand the effect of DNA copy number fluctuations on gene expression and network level outputs,

we use phage lambda as a model system to study how ongoing viral replication affects the lysis-lysogeny

decision. The genetic components involved in this lysis-lysogeny decision have been well-characterized

(Hendrix, 1983; Oppenheim et al., 2005; Ptashne, 2004). The default lytic pathway for lambda infection is

executed by the transcription and translation of the lysis and phage morphological genes, which lead to

the bursting of the cell and release of hundreds of phage progeny. These events are triggered when the

anti-terminator protein, Q, reaches a threshold, allowing transcription from promoter pR0 to bypass the

downstream terminator, tR0 (Cortes et al., 2017; Kobiler et al., 2005; Roberts et al., 1998). The alternative

lysogenic pathway culminates in the integration of phage DNA into the E. coli chromosome, and the inhi-

bition of gene transcription from the two major promoters pR and pL by repressor CI (Oppenheim et al.,

2005). The master viral regulator, CII, plays a central role in controlling CI production by activating the

pRE promoter. The choice between lytic and lysogenic development is therefore shaped by the cascade

of regulatory genes expressed early in the infection process. After a decision is made, it is enforced by

CI to establish the lysogenic pathway, or by cell destruction through lysis to complete the lytic pathway.

Phage DNA replication starts shortly after the infection, causing a radical change in DNA copy number

concordant with the expression of lysis-lysogeny decision-making genes. Here, we examine the effect of

gene dosage change on the expression of two highly important decision regulators, CII and CI.

An alternative source of DNA copy number variation in the lambda infection system is the different MOI

(Multiplicity of Infection, or number of infecting phages per cell), which determines the initial concentration

of intracellular phage DNA. Current experimental evidence and theoretical models of phage lambda suggest

that lysogenization is preferred at a higher MOI, i.e., higher initial DNA concentration (Cortes et al., 2017; Joh

and Weitz, 2011; Kourilsky, 1973; Weitz et al., 2008; Zeng et al., 2010). A deterministic model of the CI/Cro

bistable switch predicts that a high CI, low Cro state becomes the dominant attractor state when viral concen-

tration is high (Weitz et al., 2008) because higher MOI leads to a higher transient spike in CII levels, causing an

overshoot of CI via CII activation of the pRE promoter. This allows the CI/Cro bistable switch to flip to the direc-

tion of high CI and low Cro levels even if Cro was initially high, consistent with the lysogenic development

(Kobiler et al., 2005). A quasi-stochastic version of this model indicated that this trend holds true even if lytic

and lysogenic decisions are determined by threshold crossing of Q and CI, respectively, as opposed to steady

state attractors (Joh andWeitz, 2011). Notably, these two models kept the viral DNA level constant throughout

the dynamics by leaving outDNA replication, and just varied the infectionMOI. Later, DNA replicationwas intro-

duced in other models, which suggests that DNA replication promotes lysogeny by increasing DNA concentra-

tion similar to higher MOI (Cortes et al., 2017; Robb and Shahrezaei, 2014). However, thorough experimental

interrogation of the regulation of decision-making by DNA replication is still lacking.

In this work, we experimentally characterize the role of DNA replication in the lysis-lysogeny decision of

lambda phage and discover that CII levels remain robust to DNA replication, especially during the early

infection period. Combined with mathematical modeling, our work suggests that negative feedback by

Cro plays an important role in keeping CII expression robust to DNA replication. On the contrary, expres-

sion of cI, the downstream target gene of cII, is extremely sensitive to DNA copy number variations, thereby

affecting the lysis-lysogeny decisions. Overall, we show that different elements of a gene network respond

distinctly to copy number variations and demonstrate the potential of negative feedback regulation to

encode phenotypic robustness against extremely variable DNA copy numbers.
RESULTS

Lack of DNA Replication Leads to Failure in Lytic and Lysogenic Development

To understand how DNA replication may affect the lysis-lysogeny decision, we studied phage infection

outcomes in the absence of replication. For this, we investigated how the DNA replication-defective

lP- mutant (see Transparent Methods and Tables S1–S4 for more strain information) differs in its ability

to make decisions compared with the wild-type (WT) laboratory strain lWT. The lysogenization frequency

of lP- has been reported (Kourilsky, 1973) to be lower than that of lWT at low APIs (average phage input,

calculated as plaque-forming unit [PFU]/colony-forming unit [CFU]). We confirmed this earlier finding (Fig-

ure S1A). In addition, the lysogenic response (percentage of lysogeny) of lP- phage to API follows a Pois-

son distribution of n R 3, indicating that lysogenization requires 3 or more lP- phages on average,

compared with n R 2 for lWT (Figure S1B). This suggests that lysogenic decisions are possible in the

absence of DNA replication, but more initial phage inputs are required to cause the same level of

lysogenization.
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Figure 1. More than One Copy of Phage DNA Is Required for Lysogenic Establishment

(A) Representative images showing lytic and lysogenic events by lWT. Top: a cell is apparently infected by one lWT

phage (blue dot at 0 min), and subsequently gpD-mTurquoise2 expression (blue) is observed. Cell lysis is observed at

195 min. Bottom: a cell is apparently infected by one lWT phage (blue dot at 0 min). cI reporter expression (yellow) and

cell division are observed, indicating a successful lysogenization event.

(B) Representative images of lysogenic and failed infection by lP-. Top: a cell is apparently infected by 3 lP- phages (blue

dots at 0 min). The cell divides, and expression of the cI reporter (yellow) is observed, indicating lysogenization. Bottom: a

cell is apparently infected by one lP- phage (blue dot at 0 min). The cell does not divide, and only minimal expression of

gpD-mTurquoise2 is detected, indicating that the phage failed to reach either the lytic or lysogenic decision.

(C) Lysogenization frequency of lWT and lP-. For both phages, the lysogenization frequency increases with MOI. lP- has

lower lysogenization frequencies at MOI% 3, and reaches a similar level at MOI = 4. At MOI = 1, no lysogenization events

(0 of 35 infections) are observed for lP-. Error bars denote SEM.

Scale bars denote 2 mm. See also Figures S1 and S2.
To quantitatively detect the differences in decision-making behaviors in the presence and absence of

phage DNA replication, we utilized our established lytic-lysogenic reporter systems (Trinh et al., 2017)

to study the decision-making of lP- phage at the single-cell/single-phage level. Briefly, a fluorescent

protein (mKO2) is inserted downstream of cI on the phage genome to report cI transcription activity,

corresponding to lysogenic events by lWT infections (Figures 1A and S2). Another fluorescent protein

(mTurquoise2) was fused to the C terminus of the phage capsid decoration protein, gpD. Thus,

mTurquoise2 fluorescence reports lytic development up until host cell lysis for lWT infections (Figure 1A).

This method also allows the quantification of MOI for each infection (Figure 1A, blue dot at 0 min). Overall,

the lP- phage lysogenized less frequently than lWT (Figure 1C), as predicted by bulk experiments (Fig-

ure S1). Remarkably, lP- phage infections showed no lysogenic events at MOI = 1 (Figure 1C, 0 of 35 cells).

In the lysogenic cells of MOI > 1, the cI reporter signal was lower than in lWT infections (Figures 1A

and 1B), suggesting that cI transcription levels are lower in the absence of DNA replication. In addition,

DNA replication is also required for cell lysis, as we only observed very low levels of the lytic reporter

expression (Figure 1B). Accordingly, lysis did not occur within the time window of our time-lapse movies

(4 hr) as opposed to lWT, where cells lysed at 114 G 16 min (mean G SD, N = 243). Overall, our data sug-

gest that the decision-making network outputs, CI and the lysis genes, are severely compromised in the

absence of DNA replication. The expression of these genes is regulated by their corresponding transcrip-

tion factors, CII and Q, respectively. Therefore, we next sought to quantify how DNA replication affects the

expression of these transcription factors from the pR promoter using single-molecule fluorescence in situ

hybridization (smFISH).

Single-Molecule Characterization of pR Transcription Activity after Phage Infection

Most of the key lysis-lysogeny-determining genes, including cII and Q, are located on the pR transcript

(Figure 2A). Therefore, to determine the overall expression of cellular decision-controlling regulators,

we quantified the level of pR transcription at the single-cell level using smFISH (see Transparent Methods

and Table S5 for more details), by targeting the cII gene and its neighboring region, as an initial step to

uncover the molecular mechanism of the decision-making process. In these experiments, we controlled

the MOI by infecting with an API of 0.1–0.2. As the distribution of the number of phage particles per

cell follows a Poisson distribution (Zeng et al., 2010), the estimated percentages of infected cells (cells

with R1 infecting phages) at an API of 0.1 and 0.2 were 9.5% and 18.1%, respectively. Correspondingly,

the estimated percentages of MOI = 1 infections within infected cells were 95.1% and 90.3%. Indeed,

we observed that the percentage of cells showing cII signals ranges from 10.8% to 15.2% in multiple
iScience 6, 1–12, August 31, 2018 3
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Figure 2. Schematic of Lambda Lysis-Lysogeny Decision-Making and the Characterization of cII mRNA Expression

(A) The pR transcript includes the cro, cII, O, P, and Q genes. Cro and CI both repress the pR promoter. O and P are required for phage DNA replication.

CII activates the expression of CI from the pRE promoter, whereas it represses Q through paQ. Q allows transcription of the lysis and morphogenesis genes

from pR0.
(B) Percentage of cells showing cII expression after infection. Data frommultiple experiments were shown. A plateau is reached after 2 min of infection, when

samples were taken every 2 min (Exp4). Overall, between 10.8% (Exp3, averaged over 6–40 min) and 15.2% (Exp5, averaged over 6–24 min) of the cells show

cII expression in multiple experiments, consistent with an API of 0.1–0.2. Error bars denote SEM.

(C) Representative images showing cells from the negative and positive samples. Top: cells without phage infection. None of the cells show cII signal.

Bottom: cells with lWT infection at API = 0.2. Images were taken at 0 min. One cell shows a distinct focus (red). The other two cells do not show foci either

because they have not started the mRNA expression, or they are not infected.

(D) Representative images showing cII mRNA expression at 6 min. cII mRNA appeared as clusters instead of punctate foci.

(E) Average cII levels (calculated as the average of all cells pooled from all 5 experiments) over time after lWT infection. Data from multiple experiments

(dots) and the mean (black line) are shown. Only infected cells with cII expression were included in the calculation. cII expression reaches a peak at around

6–12 min after infection and subsequently drops.

(F) Distribution of cII mRNA levels at different time points. Combined data from Exp1, Exp3, and Exp5 (as in panels D and E) are shown. The cII mRNA

distributions at 6 and 12 min are similar and gradually shift to the lower end after 18 min.

Scale bars denote 2 mm. See also Figures S3 and S4.
experiments (Figure 2B), indicating that the infection API is within the range of 0.1–0.2. Under these exper-

imental conditions, most infections are at anMOI of 1. This minimized the effect of MOI, an important factor

affecting the lysogenization frequency (Kourilsky, 1973), and therefore allowed us to focus on the role of

DNA replication for cell-fate decisions by one single infecting phage. At 0 min after lWT phage infection,

a small fraction of cells displayed one cII focus (Figure 2C), which likely corresponds to one single mRNA or

a few mRNAs clustering together. At later time points, i.e., 6 min as shown in Figure 2D, the cIImRNA clus-

ters become larger and brighter, indicating that cIImRNA level increases in cells over time. The percentage

of cells showing cII transcription quickly reaches a plateau within the first 2 min of infection, indicating that

gene expression closely follows phage infection (Figure 2B). To validate our mRNA detection method, we

quantified the mRNA numbers from smFISH (see details in Transparent Methods and Figure S3) and then

compared the average expression levels with data obtained by qRT-PCR. The data obtained from the two

methods were in good agreement (Figure S4). Overall, the average cII mRNA level quickly peaked at

around 6–12min after infection, and subsequently dropped (Figure 2E), reflecting the repression of pR pro-

moter by either CI or Cro (Kobiler et al., 2005; Oppenheim et al., 2005). Moreover, cII levels in different cells
4 iScience 6, 1–12, August 31, 2018
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Figure 3. Early cII Expression Is Not Affected by DNA Replication

(A) Average cII levels comparing lWT, lP-, and lcro-P- infections. Data from multiple experiments are shown, and solid

lines represent the mean of all cells pooled from different experiments. In the first 18 min, lWT and lP- have similar cII

levels. After 24 min of infection, average lWT cII level is higher compared with lP-. Average cII expression for lcro-P-

infection is higher throughout the infection.

(B) Distribution of cII mRNA levels at 6, 12, and 18 min after infection. lWT and lP- have similar cII distributions, whereas

lcro-P- infection shows higher cII expression levels.

(C) Average DNA level after infection. Fold change is calculated as the ratio of phage DNA to E. coli DNA normalized to time

0 and further normalized to the mean of lP- and lcro-P- data at the corresponding time point. For lWT and lcro- infection,

phage DNA level increases by 256 G 7-fold and 29 G 5-fold, respectively, after 40 min of infection. Error bars denote SEM.

See also Figure S5.
showed a wide population distribution (Figure 2F). For example, at 6 min, the number of cII molecules per

cell has a mean of 38.8 and a coefficient of variation of 0.47.

cII Expression Is Robust to Gene Dosage Changes Arising from DNA Replication

Having validated the smFISH method under our experimental settings, we proceeded to investigate the

effect of DNA replication on the expression of transcription factor cII. Unexpectedly, lWT and lP- dis-

played similar levels of cII mRNA expression on average, especially through the first 18 min (Figure 3A).

As these smFISH experiments were performed in lysogeny broth (LB) medium, where cell lysis typically oc-

curs at�60min and lysogenic decisions are reached within the first 20 min, the data suggest that cII expres-

sion is not affected by DNA replication in the time window when lysogenic decisions are processed. After

24 min, the cII level for lWT remains higher, whereas lP- seems to dropmore rapidly and reach a lower level

(Figure 3A). The reasons for the difference in cII level at the late time points can be complicated as different

decisions are reached and different feedback regulations are in place. We therefore focused on the early

time points (0–18 min) and asked if cII expression dynamics are altered in the absence of DNA replication to

result in the decreased lysogenic frequency that we observed through live-cell movies (Figure 1C) and bulk
iScience 6, 1–12, August 31, 2018 5
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Figure 4. Normal pRE Activation without DNA Replication

(A) Representative images of lytic and lysogenic events by lWT infections at MOI = 1. Top: expression of gpD-EYFP

(green) is observed and the cell lyses at 95 min. Bottom: increase of mCherry (red) expression and normal cell division is

observed, indicating a successful lysogenic event.

(B) Representative images showing lP- infections at MOI = 1. Top: increase in mCherry expression is observed, indicating

the activation of pRE promoter. Low levels of gpD-EYFP expression are also detected in the cell. Bottom: only a very low

level of gpD-EYFP expression is observed. Division is inhibited, and the cell keeps growing longer without lysing. Same

contrast was applied to the images in (A) and (B) at 65 and 95 min. At 0 min, a different contrast if applied to see the green

phage particles.

(C) Percentages of cells with pRE activation at different MOIs. Both phages show similar levels of pRE activation at

different MOIs. Error bars denote SEM.

Scale bars denote 2 mm.
lysogenic assays (Figure S1A). Surprisingly, we did not observe significant differences in the distribution of

cII mRNA between lWT and lP- either (Figure 3B).

To rule out the possibility that phage DNA replication simply does not occur until after 18 min, we

quantified the phageDNA level using qPCR. As shown in Figure 3C (see TransparentMethods and Figure S5

for more details), the relative number of phage DNA to E. coli genome increases by 16.5G 5 (meanG SEM)

fold at 18 min after lWT infection, indicating that phages undergo a substantial amount of DNA replication

within this time frame.On the contrary, lP- infection had no detectable replication, as expected (Figure 3C).

Altogether, our results suggest that cII expression is robust to the gene dosage variations resulting from

DNA replication during the early infection time window.

Having shown that lP- infection leads to the same levels of cII mRNA expression during the decision-mak-

ing time window, we next wanted to confirm that the CII protein concentration in the lP- strain is also suf-

ficient for the activation of the pRE promoter. We used a multi-copy plasmid, pRE-mCherry, to report the

activation of pRE promoter by CII (Kobiler et al., 2005; Zeng et al., 2010). This system artificially increases

the copy number of pRE promoter without affecting the decision-making of lWT phage (Zeng et al.,

2010). We used EYFP-labeled fluorescent phages (green dots in Figures 4A and 4B) to quantify the

MOI. We found that at MOI = 1, 62.9% (N = 835) of lP- and 50.5% (N = 101) of lWT infections were

able to activate this reporter (Figure 4), further confirming that a single lP- DNA is capable of producing

a sufficient amount of CII protein to activate the pRE promoter, an essential step in establishing lysogeny.

In fact, the percentage activation by lP- was slightly higher than that of lWT infections, which might be

due to additional effects of DNA replication on the expression of other genes that also affect the decision

outcomes.

cI Expression Responds Strongly to Gene Dosage Changes Arising from DNA Replication

So far, our data suggest that the main effect of DNA replication during phage lysogenization is on down-

stream processes of cII expression. To understand why the lack of DNA replication decreases the lysogenic

frequency, we next compared cI expression in the presence and absence of DNA replication. By simulta-

neously detecting cII and cI mRNA, we found that whereas 33.4 G 1.7% (averaged over time points 24,

36, and 48 min, with N = 152, 126, and 152, respectively) lWT-infected cells show cI expression, very few

lP--infected cells (0, 1, 2, 0, and 0 out of N = 62, 157, 111, 102, and 61 cells at time points 0, 12, 24, 36,

and 48 min, respectively) express cI mRNA at API % 0.2 (Figure 5A). Moreover, in those rarely observed

cI-expressing cells infected by lP-, the expression level is very low (%2 cI mRNA per cell), confirming a

severe deficiency in cI expression in the absence of DNA replication.
6 iScience 6, 1–12, August 31, 2018
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Figure 5. Low cI Expression without DNA Replication

(A) Percentage of infected cells with cI expression. After 24 min, 33.4 G 1.7% (averaged over 24, 36 and 48 min) of lWT

infection leads to cI expression, which is higher than lcro-P-. Frequency of cI expression in lP- infection is very low. Error

bars denote SEM.

(B) Comparison of average cI expression level. Only cells with cI expression are included for calculation. cI level for lWT

peaks at around 12–24 min. lcro-P- has delayed cI peak time at 40 min with a lower peak level. Error bars denote SEM.

See also Figure S1.
To further dissect the mechanism of lysogenic establishment, we tested a lcro-P- double mutant. Due to

the absence of the repressor Cro, this double mutant has much higher cII mRNA levels compared with

lWT (Figures 3A and 3B). With this mutant, we characterized how a single phageDNA responds to elevated

cII levels. We found that cells infected by this mutant phage showed cI mRNA expression less frequently,

despite having higher cII levels than the lWT infections (Figure 5A). The average cI expression level for

lcro-P- is also lower (Figure 5B), suggesting that this phage cannot effectively carry out the lysogenic de-

cision despite having ample expression of cII. Our bulk lysogenization assay also showed that lcro-P- does

not lysogenize as frequently as lWT (Figure S1C). Altogether, the data suggest that CII is not the only key

factor regulating cI expression and lysogenic decisions, and that a single phage DNA is generally incom-

petent at consummating lysogeny. An increase in DNA copy number is important to enable the production

of additional cI transcripts to boost CI levels.
Cro Negative Feedback Enables cII Expression Robustness against Replication-Associated

Gene Dosage Variations

To systematically understand how the viral gene network encodes cII robustness to viral DNA replication,

we computationally simulated the network behavior in the infection process by adapting a published

model (Cortes et al., 2017). This model includes the key components of the decision-making network,

namely, Cro, CI, and CII and their interactions, as well as DNA replication (Figures 2A and S6, Tables S6

and S7). The goal of the model is to capture the important behaviors of the true network, not to account

for all of its known features. This model simulates transcription of pR mRNA, which is then translated

into CII and Cro proteins. CII activates the pRE promoter, driving the transcription and translation of the

cI gene. We phenomenologically modeled the repression of the pR promoter by CI and Cro using Hill func-

tions (Cortes et al., 2017; Joh and Weitz, 2011; Robb and Shahrezaei, 2014; Weitz et al., 2008). Likewise, we

used Hill functions to model the CI activation and Cro repression of pRM promoter. As we focused on the

early decision-making phase of infection when CI is not highly expressed, we did not include the CI repres-

sion on pRM promoter for simplicity. We also modeled viral DNA replication and its effects on CI, CII, and

Cro expression. Lastly, we phenomenologically modeled the repression of CI on DNA replication using a

Hill function. The cII expression level predicted by this model agreed closely with the experimental data

(Figure 6A), indicating that the interactions in the model were sufficient to capture the robustness of CII

levels to DNA replication. We have also built a more complex model where the binding and unbinding re-

actions of transcription factors to their cognate promoters are simulated in detail. This model has similar

performance to the simplified model that we presented above (see Transparent Methods, Figure S7,

Tables S8 and S9 and Data S1 for more details), therefore, only the results of the simplified model will

be further discussed here.

We next sought to understand which network features or components give rise to the cII expression robust-

ness to DNA replication. Examining this network, we found two network features regulating pR mRNA
iScience 6, 1–12, August 31, 2018 7
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Figure 6. Cro Is Important for the Robustness of cII Expression to DNA Replication

(A) The model prediction of the mean cII level in comparison with the experimental data. The model captures the average

cII expression for lWT, lP-, and lcI-. Both experimental quantification and model prediction show that lcI- mutant has

similar cII expression levels to lWT and lP- at the early infection period (0–20 min).

(B) Model prediction of the relative pR and pRE mRNA levels under different replication rates. Under the model

assumptions, pR transcription level shows minimal changes as the replication rate varies between 0- and 1-fold of the

original replication rate, whereas the pRE level varies greatly, agreeing with experimental observations.

(C) Model prediction of the sensitivity of pR mRNA levels for lcro- and lcI- mutants. Removing Cro from the model gives

rise to pR transcription sensitivity to DNA replication, whereas removing CI does not cause significant changes.

(D) Experimental validation of the role of Cro in cII expression robustness to DNA replication. In the cro- background,

removing DNA replication (lcro-P-) causes a decrease of cII level at 18 and 24 min.

(E) cII expression sensitivity to DNA replication. The sensitivity is calculated as the absolute difference in cII level between

lWT and lP- (with Cro) or lcro- and lcro-P- (without Cro) at each time point divided by the DNA number difference within

each group. In the absence of Cro, the cII expression sensitivity to DNA replication greatly increases, as shown at 18 and

24 min.

See also Figures S6 and S7.
transcription: the Cro negative feedback regulation and CI negative feedback regulation (Figure 2A).

Negative feedback is a network motif that has been shown to possess properties such as reducing gene

expression noise and linearizing gene expression level to the input signal (Becskei and Serrano, 2000; Ne-

vozhay et al., 2009). To determine whether any of these two negative feedback regulatory links alone is

responsible for cII mRNA expression robustness, we systematically removed the effect of CI and Cro on

pR transcription and DNA replication to generate computational mutants with compromised feedback

regulation. To examine the sensitivity of mRNA expression to different rates of DNA replication for the

various computational mutants, we first calculated for each time point t from 6 to 24 min the average

fold change, F ( 3, t), defined as the ratio of mRNA levels at replication rate 3,r (for 0 % 3% 1) versus

mRNA levels at the WT replication rate r. Then, we calculated the time-average of this quantity, F(ε), to

get the sensitivity over all time points. In the WT background, the model successfully predicted the cII

expression robustness to DNA replication (Figure 6B). Moreover, CI removal did not compromise the

robustness of cII expression to a wide range of replication rates (Figure 6C). On the contrary, removing

Cro significantly increases the sensitivity of cII expression to DNA replication (Figure 6C), indicating the

importance of Cro for the robustness of cII expression to DNA replication.

To validate these theoretical predictions, we then experimentally probed the expression of cII in different

mutant backgrounds. As expected, cII expression was similar among the lcI-, lP-, and lWT infections (Fig-

ure 6A), suggesting that CI is not essential for cII expression robustness under our experimental settings.

We further tested the role of Cro negative feedback by comparing cII expression level between lcro- and
8 iScience 6, 1–12, August 31, 2018



lcro-P-. As shown in Figure 6D, lcro-P- infection leads to lower cII levels at 18 and 24 min compared with

lcro-. As the replication rate of lcro- phage is lower compared with lWT, we then calculated the cII expres-

sion sensitivity as the mean cII level change per extra DNA (Figure 6E), which indicated robustness. Alto-

gether, our data suggest that Cro can overcome the variations of gene dosages to result in cII expression

robustness. To understand the difference between the contributions of CI and Cro to the cII expression

robustness, we examined the timing and expression of CI versus Cro. CI is only expressed in cells entering

the lysogenic state (33.4% for lWT at MOI = 1, Figure 5A), whereas Cro is present in all cells. Moreover, by

the time DNA replication starts (�6 min), there is most likely a substantial amount of Cro present already,

since Cro is one of the first two genes to be expressed during infection. On the contrary, cI expression only

starts when CII protein reaches a certain threshold. It is therefore possible that the different contributions of

CI and Cro to cII expression robustness are due to their difference in the timing and magnitude of expres-

sion, yet further experimentation is needed to provide more support.
DISCUSSION

The lysis-lysogeny decision-making of bacteriophage lambda has long served as a paradigm for studying

stochastic cell-fate selection, due to the well-established genetic networks involved (Oppenheim et al.,

2005). Following decades of studies, researchers have characterized the effects of most genetic compo-

nents (Hendrix, 1983) and built models to understand this process systematically (Arkin et al., 1998; Joh

and Weitz, 2011; Weitz et al., 2008). However, due to the limit of resolution in previous experimental ap-

proaches, the effect of DNA copy number changes resulting from DNA replication on the decision-making

process has been largely neglected, which may have obscured important aspects of this process. Here, we

provided more quantitative measurements of their effects on gene expression, decision-making, and the

enforcement of the cell-fate decisions.

Gene expression and DNA replication are both partly stochastic processes (Elowitz et al., 2002; Kaern et al.,

2005; Raj and van Oudenaarden, 2008), and in the lambda network, DNA replication and the expression of

genes, such as Cro, can affect each other. O and P, proteins required for phage DNA replication, are under

the control of pR promoter, and their expression is affected by Cro and CI. In addition, replication initiation

seems to require active pR transcription (Dove et al., 1969; Mensa-Wilmot et al., 1989), whereas Cro and CI

both repress pR promoter activities. On the other hand, pR transcription goes in the opposite direction of

DNA replication, originating from lori located at the O gene region. As head-on collisions between

transcription and replication have been shown to slow replication (Merrikh et al., 2012; Pomerantz and

O’Donnell, 2010; Soultanas, 2011), pR transcription and phage DNA replication might be constantly

affecting each other as well. This dynamic interplay may have interesting impacts on the level of gene

expression and DNA replication. Due to the limit of our experimental approaches, we cannot follow the

copy number changes of phage DNA simultaneously with the expression of genes. As a result, the exact

cellular concentrations of phage DNA and cII and cImRNAs at the time of lysogenic establishment are un-

known. Future experiments with higher resolutions are needed to allow the examination of the correlations

of DNA copy number with cell-fate selection.

Increasing the copy number of promoters can titrate transcription factors and lead to complex dosage

response (Lee and Maheshri, 2012; Rydenfelt et al., 2014). Using a simple repression regulatory architec-

ture, researchers have found that at a high transcription factor:promoter ratio, the gene expression

response is similar to that of a single isolated copy of the gene (Brewster et al., 2014). Networks invariant

to gene dosage have also been reported. In Saccharomyces cerevisiae, the activity of the galactose

signaling network (GAL network) was invariant to the network dosage changes when the gene copy number

was halved (Acar et al., 2010). The finding was further generalized by mathematical simulations to conclude

that for any N-component network, containing a 2-component subnetwork with an activator, an inhibitor, as

well as a 1:1 stoichiometry interaction between the activator and inhibitor is both necessary and sufficient

for the network to be dosage compensated (Acar et al., 2010; Song et al., 2014). An alternative mechanism

that provides robustness to DNA copy number changes is an incoherent feedforward loop with DNA copy

number as its source node (Segall-Shapiro et al., 2018).

Notably, in these studies, the copy number changes are usually introduced through deletion and insertion

of genes, or changing the plasmid copy numbers, and it is possible that the effects of dosage variations

resulting from DNA replication can be different. In the lambda system, both MOI and DNA replication

affect decision-making by affecting the DNA concentration, although the response of cII expression to
iScience 6, 1–12, August 31, 2018 9



these two factors seems to be different. Experimentation and theoretical modeling have suggested that

the difference might be due to Cro. Specifically, increasing the MOI leads to the introduction of more

copies of DNA into a cell in which Cro is not present yet. On the contrary, by the timeDNA replication starts,

Cro has been expressed to a certain level such that negative feedback by Cro counteracts the effect of

increasing template number on cII expression.

Strategies such as negative feedback are commonly utilized by gene regulatory networks to increase gene

expression stability (Becskei and Serrano, 2000), or to linearize the input-output response of the genes (Ne-

vozhay et al., 2009). By reducing the gene expression noise, networks can achieve more ordered, ‘‘deter-

ministic’’ outcomes, as reliability is important for many cellular processes. For phage lambda, as a

repressor, Cro has been shown to performmultiple important roles in the development of the lytic pathway

(Court et al., 2007; Johnson et al., 1978; Ptashne et al., 1980; Svenningsen et al., 2005). Interestingly, by ar-

tificially inserting Cro onto the E. coli chromosome and placing Cro under the control of pR with one single

operator binding site, oR1 (as opposed to three: oR1, oR2, and oR3, in the native lambda genome), re-

searchers observed oscillations of Cro expression, synchronized to the cell cycle and the associated

gene copy changes (Hensel and Marquez-Lago, 2015). However, the period of these oscillations were

several fold longer than the time frame of lambda phage decision-making right after infection. Here, our

work suggests that Cro-mediated negative feedback can stabilize the activity of the pR promoter against

DNA copy number variations resulting from DNA replication, thus creating conditions wherein the early

decision-making process is not affected by DNA replication. Since Cro plays twomajor roles in the network,

both to repress pR promoter activity and to modulate the rate of DNA replication, these two functions may

seem convoluted in providing cII expression robustness. However, it is hard to decouple the two roles of

Cro both experimentally and theoretically due to the complex interplay between Cro and DNA replication

as discussed. Future work to elucidate the mechanism of regulation on DNA replication by Cro as well as

the development of mutants to separate the two functions of Cro will be of great interest.

Whether or not transcription factor expression robustness to network dosage changes confers any evolu-

tionary advantages to the lambda decision-making circuit remains unknown. Due to the different physio-

logical state or growth phase of the host cell, the levels of DNA replication may be different in different

cells. The resource level, i.e., the available DNA polymerase, may fluctuate in response to different environ-

mental stimuli to result in changes in the rate of DNA replication. To address these potential changes,

lambda seems to adapt by allowing its effector (cI) expression to respond to the DNA copy number

changes rather than altering the actual decision-making (cII expression) behavior. Recent studies showed

that dosage-compensating networks can act as a noise reduction module to reduce the effects of extrinsic

noise on the network output (Peng et al., 2016). In the lambda system, the behavior of the decision-making

circuit in response to fluctuations in different cellular factors remain unknown.

Overall, our study has shown that the lambda decision-making process is composed of an intricate network

where both MOI changes and replicating DNA can significantly affect the outcomes. However, the lambda

network is far more complicated than what we described here. CIII is also an important factor for lysogenic

establishment by promoting CII stability (Herman et al., 1997; Hoyt et al., 1982), and its expression might

also be affected by DNA replication, yet it is neglected in our models for simplicity. The anti-terminator N is

critical for phage development by allowing the transcription to go beyond N and Cro production at the

immediately early stage, and possibly regulates the temporal progression of gene expression as well as

decision-making (Oppenheim et al., 2005). On the other hand, the fate-determining genes on the pR tran-

script, although promoted from the same promoter, are in fact separated by several terminators, tR1–4

(Casjens and Hendrix, 2015; Oppenheim et al., 2005). Although N can allow transcription to go past those

terminators, the efficiencies may vary (Gusarov and Nudler, 2001). This adds another layer of regulation,

and a more systematic examination of gene expression is required to fully understand the lambda

decision-making network.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, seven figures, nine tables, and one data file and

can be found with this article online at https://doi.org/10.1016/j.isci.2018.07.006.
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Supplemental figures and legends 

 

Figure S1. DNA replication is important for lambda lysogenization. Related to Figure 1C 
and Figure 5A.   

(A) The lysogenization frequency of cells after λWT and λP- infections at different APIs. Combined 
data of two experiments are shown. The λP- phage infection leads to lower lysogenization 
frequencies at the low APIs, and has the same level as λWT at high APIs.  

(B) The data from (A) were shifted to fit into the curves of Poisson distribution. λWT follows the 
Poisson distribution of n≥2, indicating that 2 or more phages are required to lysogenize the cell 
on average. λP- follows n≥3, indicating that the lack of DNA replication leads to different patterns 
of lysogenic response. 

(C) At high APIs, λWT phage has only slightly higher lysogenization frequencies compared to that 
of λcro-P-. As API drops, the lysogenization frequency of λcro-P- is only 0.16 ± 0.06 fold of λWT. 
Error bars denote standard error of the mean.  



 

Figure S2. Representative images showing phage decision-making under the microscope. 
Related to Figure 1A&B.  

This figure shows the same cells as in Figure 1A&B but with separate fluorescent channels. Top 
left: the cell is infected by one λWT phage (blue dot at 0 min), and subsequently gpD-
mTurquoise2 expression (blue) is observed. Cell lysis is observed at 195 min. mKO2 expression 
is not detectable. Top right, the cell is infected by one λWT phage (blue dot at 0 min). cI reporter 
expression (yellow) and normal cell division are observed, indicating a successful lysogenization 
event. gpD-mTurquoise2 expression is not detectable. Bottom left: the cell is infected by one λP- 
phage (blue dot at 0 min). The cell divides, and only minimal expression of gpD-mTurquoise2 is 
detected, indicating that phage failed to reach either the lytic or lysogenic decision. mKO2 
expression is not detectable. Bottom right: the cell is infected by 3 λP- phages (blue dots at 0 
min). The cell divides normally, and expression of the cI reporter (yellow) is observed, indicating 
cell lysogenization. Same contrast is applied to images at 95 min and 195 min for both phages. 
At 0 min, a different contrast in the D-mTurquoise2 channel is applied to allow the visualization 
of the phage particles infecting the cell. Scale bars denote 2 μm.  



 

Figure S3. Calculation of single mRNA intensity for cII. Related to Figure 2.  

(A) Calculation of the mean fluorescence intensity in the negative sample. On the x axis, 
fluorescence intensity is calculated as the total cell fluorescence intensity in the cII channel (Cy5) 
subtracted the background fluorescence in the non-cell area. The negative samples have a mean 
intensity of 11867.1143 A.U. determined by fitting to a multi-Gaussian function.  

(B) Calculation of the mean fluorescence intensity in the positive sample. The fluorescence 
intensity of cells in the 0 min infection sample that had distinct foci were used to fit into a multi-
Gaussian function, and the peak intensity was shown to be 23606.8527 A.U.. The single mRNA 
intensity was then approximated by subtracting 11867.1143 A.U. calculated in (A) from the 
23606.8527 calculated here.   



 

 

 

 

 

 

 

Figure S4. Comparison of average cII mRNA level by qRT-PCR and smFISH. Related to 
Figure 2.  

For smFISH, only the cells with fluorescent cII signal were analyzed, and the average mRNA 
numbers at different time points for different phages were shown. For qRT-PCR, the average cII 
mRNA numbers were calculated using ihfB gene expression as a reference, and further 
normalized to the number obtained at 0 min. The correlation coefficient is 0.96, indicating a good 
agreement between smFISH and qRT-PCR data. Error bar denotes the standard error of the 
mean.   



 

Figure S5. Phage DNA level over time detected by qPCR after infection. Related to Figure 
3C. 

(A) λP- and λcro-P- DNA levels over time after infection. The fold change is calculated as the ratio 
between phage DNA and E. coli DNA detected by qPCR and further normalized to the ratio at 0 
min. Due to the deficiency of both phages in replication and the ongoing replication of E. coli DNA, 
the fold change drops over time after infection. 

(B) λWT and λcro- DNA levels over time after infection. The fold change is calculated in the same 
way as (A). Since the phage DNA fold change shown here is also affected by E. coli DNA 
replication, we further normalized the λWT and λcro- numbers to the average fold change of λP- 
and λcro-P- calculated in (A), respectively, to obtain the relative phage DNA number increase. The 
results are shown in Figure 3C in the main text. 

(C) λWT and λcro- DNA levels over time after infection at 42 oC. As all four mutants used in this 
experiment carries the temperature sensitive cI857 allele, performing the experiment at 42 oC 
abolishes the function of CI protein. Removing CI activity from the λcro- background does not 
restore the same level of DNA replication compared to λWT, suggesting that the difference in 
replication rate observed in (B) is not entirely due to the increased cI expression in λcro- infections.   



 
Figure S6. Model schematic of the simulated lambda decision-making network. Related to 
Figure 6.  

The model includes DNA replication, pR and pRE transcription, and Cro, CII and CI translation. 
Cro represses pR transcription, yet its role in regulating DNA replication remains unknown. CII 
activates transcription from pRE. CI represses pR promoter and activates pRM promoter. This 
model is simulated stochastically using both simple and detailed approaches (see Mathematical 
and Computational Models section above).  



 

Figure S7. Detailed model performance and prediction. Related to Figure 6A-C.  

(A) Prediction of the mean cII level from the detailed model in comparison with the experimental 
data. The model captures the average cII expression for λWT, λP- and λcI-, especially in the first 
24 min. Both experimental quantification and the model prediction shows that λcI- mutant has 
similar cII expression levels to λWT and λP-.  

(B) Prediction of the average ratio of pR and pRE mRNA levels averaged over the first 24 mins 
under different replication rates in different strain backgrounds from the detailed model. In the WT 
background, pR transcription level shows minimal changes as the replication rate varies between 
0 to 1 fold of the original replication rate, whereas the pRE level varies greatly, agreeing with 
experimental observations. Removing Cro (λcro-) from the model gives rise to pR transcription 
sensitivity to DNA replication while removing CI (λcI-) does not cause significant changes.   



Supplemental tables  

Table S1. Bacterial strains used in this work. Related to Figure 1-6. 

Strain Name Relevant Genotype Source/Reference 
MG1655 sup0 Lab collection 
LE392 supE, supF Lab collection 

 

Table S2. Phage strains used in this work. Related to Figure 1-6. 

Strain Name Relevant Genotype Source/Reference 
λWT λ cI857 bor::KanR Lab collection 
λLZ618 λ cI857 Pam80 Ryland Young 
λP- λ cI857 Pam80 bor::KanR This work 
λLZ1367 λ D-mTurquoise2 cI857-mKO2 bor::CmR Lab collection 
λLZ1460 λ D-mTurquoise2 cI857-mKO2 Pam80

 bor::CmR This work 
λLZ641 λ D-eyfp cI857 bor::KanR This work 
λLZ646 λ D-eyfp cI857 Pam80

 bor::KanR This work 
 

Table S3. Plasmids used in this work. Related to Figure 1-6. 

Plasmid Name Relevant Genotype Source/Reference 

pRE-mCherry mCherry under the control of λ pRE promoter, 
AmpR  

(Kobiler et al., 
2005) 

pBR322-pPLate*D 
gpD under the control of λ late promoter, 
AmpR , for producing the mosaic λLZ641 and 
λLZ646 

(Zeng et al., 2010) 

pACYC177-pPLate*D 
gpD under the control of λ late promoter, AmpR, 
for producing the mosaic WT and P- phage with 
double reporters 

Lab Collection 

pBR322-Pam80 For recombination to make P- phages This work 

pER157 For recombination to make bor::KanR (Zhang and Young, 
1999) 

  



Table S4. Primers used in this work. Related to Figure 1-6. 

Primer Name Primer Sequence Source/Reference 
ihfB-forward 5'-ACCACGTACCGGACGTAATC (Shao et al., 2017) 
ihfB-reverse 5'-ATCGCGCAGTTCTTTACCAG (Shao et al., 2017) 
cII-forward 5'-GCAGATCAGCAGGTGGAAGA (Shao et al., 2017) 
cII-reverse 5'-AATCGAGCCATGTCGTCGTC (Shao et al., 2017) 
E-for 5'- CTGGGTGAACAACTGAACCG This work 
E-rev 5'- ATCCGTGTCATCAAGCTCCT This work 
dxs-for 5'- CGAGAAACTGGCGATCCTTA (Lee et al., 2006) 
dxs-rev 5'- CTTCATCAAGCGGTTTCACA (Lee et al., 2006) 

 

Table S5. Sequences of the probes for detecting the lambda cII mRNA. Related to Figure 
2. 

cII_1 5’-CGTTTGTTTGCACGAACCAT cII_25 5’-CCACAGAAAGGTCGTTTTCT 
cII_2 5’-TCTCGATTCGTAGAGCCTCG cII_26 5’-TGAATTGCAGCATCCGGTTT 
cII_3 5’-GCGATTTTGTTAAGCAACGC cII_27 5’-ATGTCAAACATCCACTCTGC 
cII_4 5’-TGTCTTCTCAGTTCCAAGCA cII_28 5’-TGATGGTGCGATAGTCTTCA 
cII_5 5’-GCTGATCTGCGACTTATCAA cII_29 5’-CATCAGGCGGATATCGTTAG 
cII_6 5’-AGAACTTTGGAATCCAGTCC cII_30 5’-TTACCGGACCAGAAGTTGTC 
cII_7 5’-CCCATTCAAGAACAGCAAGC cII_31 5’-TCCACTTATCGCGGAGTTTG 
cII_8 5’-AATCGAGCCATGTCGTCGTC cII_32 5’-TTTGGTTTGCTGGCTGTCAC 
cII_9 5’-AATCGCAGCAACTTGTCGCG cII_33 5’-ATAGATCCACCCCGTAAATC 
cII_10 5’-CCGGGCGTTTTTTATTGGTG cII_34 5’-TCTGCTCACGGTCAAAGTTA 
cII_11 5’-GATTTGTTCAGAACGCTCGG cII_35 5’-CTTTTCGTCGTACTGTTCCG 
cII_12 5’-AATGACCTCAGAACTCCATC cII_36 5’-GAACACACCGTTGATGATCT 
cII_13 5’-TGACTCCTGTTGATAGATCC cII_37 5’-TTCGTTCTGGTCACGGTTAG 
cII_14 5’-ATCGAGATCTGCCACATTAC cII_38 5’-TTTTCCCGAAAAGCCAGAAC 
cII_15 5’-TTGATAGTCTGGCGTAACCA cII_39 5’-CGTTAACCTGTTCCATCGTG 
cII_16 5’-GAATAAGCCTCAAGCAGCAT cII_40 5’-AGAAATGGTCGATTCTGCCG 
cII_17 5’-AACTGTCGCTTGGTCAGATC cII_41 5’-ATATCAACCAGCTCGCTGAC 
cII_18 5’-CAGAATGGCAAGCAGCACTT cII_42 5’-CTTCCGGCAATACTCGTAAA 
cII_19 5’-ATCGGTGATTCTGTCCATTG cII_43 5’-AGTAGTGCGCGTTTGATTTC 
cII_20 5’-TTGCACCGTTTGACAGGTAA cII_44 5’-CTGATACAGGTTGGTAACCA 
cII_21 5’-GACGAGTTCTAACTTGGCTT cII_45 5’-GTAATTCCGCATCAGTAAGC 
cII_22 5’-TTTTGAGGGATGCACCATTC cII_46 5’-CTCACCACGGTTAATTCTCG 
cII_23 5’-CTCGTTTTAGGGGATTTTCC cII_47 5’-GTGCACGATTTAGAGGTCTA 
cII_24 5’-ATTCGCCAGAATTCTCTGAC cII_48 5’-CATACACTTGCTCCTTTCAG 

  



Table S6. Reactions for the simple stochastic model. Related to Figure 6. 

Reaction Reaction rates 𝜈 
[𝑋] denotes the concentration of 𝑋. 

Description 

𝐷𝑁𝐴
()→ 𝐷𝑁𝐴

+ 𝑅𝑁𝐴-. 
𝜈/ = 𝑘23 ⋅ 5

𝜅-..[𝐶𝐼𝐼]9:;;
1 + 𝜅-..[𝐶𝐼𝐼]9:;;

= 
Transcription of cI 

from pRE 
promoter 

𝐷𝑁𝐴
(>→ 𝐷𝑁𝐴

+ 𝑅𝑁𝐴-. 
𝜈? = 𝑘2@ ⋅ 5

𝜅-.[𝐶𝐼]9:;
1 + 𝜅-.[𝐶𝐼]9:; + 𝜅-2A[𝐶𝑟𝑜]9:DE

= 
Transcription of cI 

from pRM 
promoter 

𝑅𝑁𝐴-.
(F→ 𝜙 𝜈H = 𝑑2JK:; 

Degradation of 
pR mRNA  

𝑅𝑁𝐴-.
(L→ 𝑅𝑁𝐴-.

+ 𝐶𝐼 
𝜈M = 𝜎-. 

Translation of CI 
protein 

𝐶𝐼
(O→ 𝜙 𝜈P = 𝑑-. 

Degradation of CI 
protein 

𝐷𝑁𝐴
(Q→ 𝐷𝑁𝐴

+ 𝑝𝑅 
𝜈S = 𝑘2 ⋅ 5

1
1 + 𝜅-.[𝐶𝐼𝐼]9:; + 𝜅-2A[𝐶𝑟𝑜]9:DE

= 

Transcription of 
pR mRNA from 

unbound pR 
promoter.  

𝑝𝑅
(T→ 𝜙 𝜈U = 𝑑V2 

Degradation of 
pR mRNA  

𝑝𝑅
(W→ 𝑝𝑅 + 𝐶𝐼𝐼 𝜈X = 𝜎-.. 

Translation of CII 
protein 

𝑝𝑅
(Y→ 𝑝𝑅 + 𝐶𝑟𝑜 𝜈Z = 𝜎-[\ 

Translation of Cro 
protein 

𝐶𝐼𝐼
()]_̂ 𝜙 𝜈/` = 𝑑-.. 

Degradation of 
CII protein 

𝐶𝑟𝑜
())_̂ 𝜙 𝜈// = 𝑑-[\ 

Degradation of 
Cro protein 

𝐷𝑁𝐴
()>_̂ 2	𝐷𝑁𝐴 

 

𝜈/?

=

⎩
⎪
⎨

⎪
⎧𝑟 ⋅ 𝐷𝑁𝐴 ⋅

1

1 + (𝜅-.hJK[𝐶𝐼])
9:;jkl

⋅
1

1 + m𝑡𝑇p
9q , if	Cro	is	nonfunctional

𝑟�[\ ⋅ 𝐷𝑁𝐴 ⋅
1

1 + (𝜅-.hJK[𝐶𝐼])
9:;jkl

⋅
1

1 + m𝑡𝑇p
9q 				if	Cro	is	functional

 

 

Viral DNA 
replication rate 

  



Table S7. Optimal parameters for simple stochastic model. Related to Figure 6. 

Parameter description Parameter 
symbol Parameter value Units 

Transcription from pRE 𝑘23  1.06 𝑚𝑖𝑛�/ 
Transcription from pRM 𝑘2@ 0.128 𝑚𝑖𝑛�/ 
Transcription from pR 𝑘2 8.92 𝑚𝑖𝑛�/ 

CII-pRE association constant 𝜅-.. 1/172 𝑛𝑀 
CI-pRM/R association constant 𝜅-. 1/49 𝑛𝑀 

Cro-pRM/R association constant 𝜅-[\ 1/23 𝑛𝑀 
Degradation of pR transcripts 𝑑V2 0.033 𝑚𝑖𝑛�/ 
Degradation of CI transcripts 𝑑2JK:; 0.119 𝑚𝑖𝑛�/ 
Degradation of CI proteins 𝑑-. 0.040 𝑚𝑖𝑛�/ 

Degradation of Cro proteins 𝑑-[\ 0.018 𝑚𝑖𝑛�/ 
Degradation of CII proteins 𝑑-.. 0.43 𝑚𝑖𝑛�/ 

Translation rate of CI 𝜎-. 0.28 𝑚𝑖𝑛�/ 
Translation rate of CII 𝜎-.. 0.50 𝑚𝑖𝑛�/ 
Translation rate of Cro 𝜎-[\ 0.266 𝑚𝑖𝑛�/ 

Hill function sensitivity parameter for 
CI binding to DNA 𝑛-. 3.33 Dimensionless 

Hill function sensitivity parameter for 
Cro binding to DNA 𝑛-[\ 3.68 Dimensionless 

Hill function sensitivity parameter for 
CII binding to DNA 𝑛-..  3.13 Dimensionless 

Rate of viral DNA replication when 
Cro is nonfunctional 𝑟  0.3 𝑚𝑖𝑛�/ 

Rate of viral DNA replication when 
Cro is functional 𝑟�[\ 0.16 𝑚𝑖𝑛�/ 

Concentration of CI at which CI 
causes replication rate to drop by 

50% 
𝜅-.hJK 23 

𝑛𝑀 

Hill function sensitivity parameter for 
CI’s downregulation of viral 

replication 
𝑛-.hJK 4.30 

Dimensionless 

CI threshold for lysogeny 𝐶𝐼� 21 𝑛𝑀 
Time for the onset of DNA replication 𝑇 3.8 mins 
Parameter controlling onset of DNA 

replication  𝑛� 4 Dimensionless 

  



Table S8. Reactions and formulas for the detailed stochastic model. Related to Figure 6. 

Reaction Reaction rates 𝜈 
[𝑋] denotes the concentration of 𝑋. 

Description 

𝜙
()→ 𝜙 + 𝑅𝑁𝐴-. 𝜈/ = 𝛼 ⋅ 𝑘23 ⋅ 𝑃𝑅𝐸(𝐶𝐼𝐼M) 

Transcription of cI 
from pRE 
promoter 

𝜙
(>→ 𝜙 + 𝑅𝑁𝐴-. 

𝜈? = 𝛼 ⋅ 𝑘2@ ⋅ [𝑂𝑅(0, 𝐶𝐼?,0) + 𝑂𝑅(0, 𝐶𝐼?, 𝐶𝑅𝑂?)
+ 𝑂𝑅(0, 𝐶𝐼?,𝐶𝐼?)] 

Transcription of cI 
from pRM 
promoter 

𝑅𝑁𝐴-.
(F→ 𝜙 𝜈H = 𝑑2JK:; 

Degradation of pR 
mRNA  

𝑅𝑁𝐴-.
(L→ 𝑅𝑁𝐴-. + 𝐶𝐼 𝜈M = 𝜎-. 

Translation of CI 
protein 

𝐶𝐼
(O→ 𝜙 𝜈P = 𝑑-. 

Degradation of CI 
protein 

𝜙
(Q→ 𝑝𝑅 𝜈S = 𝛼 ⋅ 𝑘2 ⋅ [𝑂𝑅(0,0,0) + 𝑂𝑅(𝐶𝑅𝑂?, 0,0) + 𝑂𝑅(𝐶𝐼?,0,0)] 

Transcription of 
pR mRNA from 

unbound pR 
promoter.  

𝑝𝑅
(T→ 𝜙 𝜈U = 𝑑V2  

Degradation of pR 
mRNA  

𝑝𝑅
(W→ 𝑝𝑅 + 𝐶𝐼𝐼 𝜈X = 𝜎-.. 

Translation of CII 
protein 

𝑝𝑅
(Y→ 𝑝𝑅 + 𝐶𝑟𝑜 𝜈Z = 𝜎-[\ 

Translation of Cro 
protein 

𝐶𝐼𝐼
()]_̂ 𝜙 𝜈/` = 𝑑-.. 

Degradation of CII 
protein 

𝐶𝑟𝑜
())_̂ 𝜙 𝜈// = 𝑑-[\ 

Degradation of 
Cro protein 

𝐷𝑁𝐴
()>_̂ 2	𝐷𝑁𝐴 

 

𝜈/?

=

⎩
⎪
⎨

⎪
⎧𝑟 ⋅ 𝐷𝑁𝐴 ⋅

1

1 + (𝜅-.hJK[𝐶𝐼])
9:;jkl

, if	Cro	is	nonfunctional

𝑟�[\ ⋅ 𝐷𝑁𝐴 ⋅
1

1 + (𝜅-.hJK[𝐶𝐼])
9:;jkl

,				if	Cro	is	functional
 

 

Viral DNA 
replication rate 

2𝐶𝑟𝑜
𝜈/H
⇄
𝜈/M

𝐶𝑟𝑜? 

𝜈/H = 𝛾-[\\9  
 

𝜈/M = 𝛾-[\
\��  

 

Cro dimerization 

2𝐶𝐼
𝜈/P
⇄
𝜈/S

𝐶𝐼? 

𝜈/P = 𝛾-.\9 
 

𝜈/S = 𝛾-.
\��  

 

CI dimerization 



2𝐶𝐼𝐼
𝜈/U
⇄
𝜈/X

𝐶𝐼𝐼? 

𝜈/U = 𝛾-..\9  
 

𝜈/X = 𝛾-..
\��  

 

CII dimerization 

2𝐶𝐼𝐼?
𝜈/Z
⇄
𝜈?`

𝐶𝐼𝐼M 

𝜈/Z = 𝛾-..\9  
 

𝜈?` = 𝛾-..
\�� 

 

CII dimer 
undergoing 
dimerization 

𝐶𝐼𝐼M + 𝑃𝑅𝐸(0)𝜈?/
⇄
𝜈??

𝑃𝑅𝐸(𝐶𝐼𝐼M) 

𝜈?` = 𝛿-..\9 
 

𝜈?/ = 𝛿-..
\�� 

 

CII tetramer 
binding to pRE 

promoter  

𝛼 
1

1 + 𝜀𝐷𝑁𝐴 

Proportionality 
factor which 

reduced 
transcription rate 

per DNA 

𝑜𝑅 region binding 
reactions 

Not explicitly written out, but described below in notes 
for Table S8 

 

 

Notes for Table S8: 

The reactions and variables are similar to those in Table S7, but with some modifications that 
come in from the detailed model. The number of pRE promoters bound by CII tetramers is given 
by 𝑷𝑹𝑬(𝑪𝑰𝑰𝟒) and the amount not bound by CII tetramers is given by 𝑷𝑹𝑬(𝟎). The notation we 
used in the model for the number of DNAs with a certain oR binding configuration is 𝑶𝑹(𝒙,𝒚, 𝒛) 
where 𝒙,𝒚, 𝒛 can each assume a value of 𝟎, 𝑪𝑰𝟐, or 𝑪𝒓𝒐𝟐 to denote what is currently bound to 
operator site 3, 2, and 1 respectively. For example, 𝑶𝑹(𝟎,𝑪𝑰𝟐, 𝑪𝒓𝒐𝟐) is equal to the number of 
DNAs which have operator site 3 empty, operator site 2 bound by CI dimer, and operator site 1 
bound by Cro dimer. The value of 0 here denotes an empty operator site. A typical reaction 
involving the binding of the oR region is given below: 

𝑪𝒓𝒐𝟐 + 𝑶𝑹(𝟎, 𝟎, 𝑪𝒓𝒐𝟐)
𝜹𝑪𝒓𝒐𝒐𝒏

⇄
𝜹𝑪𝒓𝒐
𝒐𝒇𝒇

𝑶𝑹(𝟎, 𝑪𝒓𝒐𝟐, 𝑪𝒓𝒐𝟐) 

The code for this detailed simulation is uploaded separately as Data S1.   



Table S9. Optimal parameters for detailed stochastic model. Related to Figure 6. 

Parameter description Parameter symbol Parameter value Units 
Transcription rate from 

pR 
𝑘2 13.7 𝑚𝑖𝑛�/ 

Transcription rate from 
pRM 

𝑘2@ 0.36 𝑚𝑖𝑛�/ 

Transcription rate from 
pRE 

𝑘23  0.26 𝑚𝑖𝑛�/ 

Translation rate of Cro 𝜎-[\ 4.37 𝑚𝑖𝑛�/ 
Translation rate of CII 𝜎-.. 0.27 𝑚𝑖𝑛�/ 
Translation rate of CI 𝜎-. 1.82 𝑚𝑖𝑛�/ 

CI dimerization on rate 𝛾-.\9  0.023 𝑚𝑖𝑛�/ 
CI dimerization off rate 𝛾-.

\��  0.0036 𝑚𝑖𝑛�/ 
Cro dimerization on 

rate 
𝛾-[\\9  0.0016 𝑚𝑖𝑛�/ 

Cro dimerization off 
rate 

𝛾-[\
\��  0.0076 𝑚𝑖𝑛�/ 

CII dimerization on rate 𝛾-..\9  0.0031 𝑚𝑖𝑛�/ 
CII dimer off rate 𝛾-..

\��  0.0061 𝑚𝑖𝑛�/ 
CI dimer oR operator 

on rate 
𝛿-.\9 0.0057 𝑚𝑖𝑛�/ 

CI dimer oR operator 
off rate 

𝛿-.
\�� 0.015 𝑚𝑖𝑛�/ 

Cro dimer oR operator 
on rate 

𝛿-[\\9  0.0089 𝑚𝑖𝑛�/ 

Cro dimer oR operator 
off rate 

𝛿-[\
\�� 0.0083 𝑚𝑖𝑛�/ 

CII dimer DNA on 
binding rate 

𝛿-..\9  0.0107 𝑚𝑖𝑛�/ 

CII dimer DNA off 
binding rate 

𝛿-..
\�� 0.0049 𝑚𝑖𝑛�/ 

cI mRNA degradation 
rate 

𝑑V23 0.45 𝑚𝑖𝑛�/ 

cII mRNA degradation 
rate 

𝑑V2 0.032 𝑚𝑖𝑛�/ 

Degradation rate of 
Cro 

𝑑-[\ 0.043 𝑚𝑖𝑛�/ 

Degradation rate of CI 𝑑-. 0.041 𝑚𝑖𝑛�/ 
Degradation rate of CII 𝑑-.. 0.074 𝑚𝑖𝑛�/ 

DNA replication rate 
when Cro is mutated 

𝑟  0.155 𝑚𝑖𝑛�/ 

DNA replication rate 
when Cro is not 

mutated 

𝑟-[\ 0.2 𝑚𝑖𝑛�/ 

Onset of DNA 
replication parameter  

𝑇 5 𝑚𝑖𝑛 



Parameter controlling 
onset of DNA 

replication  

𝑛� 0.55 Dimensionless 

Threshold for lysogeny 𝐶𝐼� 25 Dimensionless 
Parameter controlling 

DNA-copy number 
dependence on 

transcription rate per 
gene 

𝜀 0.037 Dimensionless 

  



Transparent methods 

Plasmid, bacterial and phage strains  

The λP- phage (λ cI857 Pam80 bor::KanR) was constructed using protocols as previously described 

(Shao et al., 2015) by recombining the parental strain (λ cI857 Pam80, gift of Ryland Young) with 

plasmid pER157 (Zhang and Young, 1999) to replace the nonessential bor gene region with a 

Kanamycin resistance cassette. The fluorescent λP- phage bearing double reporters, λLZ1460, 

was constructed by crossing the WT phage λLZ1367 (Trinh et al., 2017) with plasmid pBR322-

Pam80. This plasmid carries a fragment of the lambda genome which covers part of the P gene, 

with the CAG encoding Q at the 69 AA position mutated to an amber stop codon TAG, 

corresponding to the Pam80 mutation. λLZ1367 was titered on LE392 carrying plasmid pBR322-

Pam80 to produce confluent plates with connecting plaques. The phages collected from this plate 

were then used to screen for the recombinant strain λD-mTurquoise2 cI857-mKO2 P- bor::KanR 

(λLZ1460). The amber mutation in the P gene allows the phages to propagate on suppressor strain 

LE392 but not on non-suppressor strain MG1655. Therefore, a mixture of LE392 and MG1655 

cells at exponential phase was used for titering and the phages that form turbid plaques were 

then selected and further confirmed by sequencing.   

The EYFP labeled fluorescent WT phage (λLZ641) was obtained by crossing phage λeyfp (λcI857 

D-eyfp Sam7) (Alvarez et al., 2007) with a plasmid pER157 (Zhang and Young, 1999), which 

contains WT S gene and bor::KanR. The resulting lysate was then screened for the ability to 

grow on Kanamycin plates after lysogenization on the non-suppressor strain, MG1655. The 

resulting lysogens were then further tested for the ability to lyse after induction, resulting in 

phage λLZ641 (λcI857 D-eyfp bor::KanR). The EYFP labeled λP- phage (λLZ646) was obtained by 

crossing phage λLZ641 with another phage (λ cI857 P-
 bor::KanR), and screened for smaller plaques 

on LE392, as fluorescently labeled phages are unstable and usually form smaller plaques 

compared to non-fluorescent phages. This phage strain was confirmed as P- by its inability to 

form plaques on MG1655 and by sequencing. 

As fluorescently labeled phages are unstable, we transformed plasmid pLate*D into the 

lysogens before induction, to create stable mosaic phages containing a mixture of wild type gpD 

(from the plasmid) and gpD-EYFP (from the phage genome). The phages were then purified 

following protocols described in (Zeng et al., 2010) and used for live-cell imaging. Specifically, 

lysogenic cells were diluted from an overnight culture into 500ml of LBM (LB + 10 mM MgSO4) 

and grown at 30 oC to OD = 0.6 with mild shaking at 180 rpm. The lysogens were then induced 

in a 42 oC water bath with shaking for 20 min and then transferred to a 37 oC shaker. Culture 



lysis typically occurs within 1 hr of induction and the resulting lysate was treated with 2% CHCl3, 

and then centrifuged to remove cell debris and chloroform. The phage lysate was next treated 

with 1 μg/ml of DNase and RNase, and precipitated with 10% wt/vol PEG8000 and 1M NaCl. 

The phage/PEG precipitant was then resuspended in SM buffer. After that, CHCl3 was used to 

partition the PEG from the phages. This concentrated phage lysate (5-10 ml) was 

ultracentrifuged using a CsCl step gradient, extracted, and subjected to CsCl equilibrium 

centrifugation. The band corresponding to lambda phages were then extracted, and the lysate 

was then dialyzed in SM buffer prior to use in subsequent experiments. 

The bacterial, phage strains, plasmids and primers are listed in Table S1, S2, S3, and S4, 

respectively. 

RNA smFISH 

We used cI probes reported in ((Zong et al., 2010), ordered pre-labeled with TAMRA from 

Biosearch Technologies. pR (cII) probes are designed (the sequences can be found in Table 

S5), synthesized and labeled with Cy5 (GE Healthcare Life Sciences, #PA15000) following 

protocols described (Skinner et al., 2013). Briefly, we pooled 7.5 μl of each of the oligo solutions 

(48 oligo in total for pR, 100 μM each) and added 40 μl of 1 M sodium bicarbonate, pH 8.5. We 

then added dye solution (1 mg of Cy5 dissolved in 2.5 μl of DMSO and 25 μl of 0.1 M sodium 

bicarbonate, pH 9.0) to the oligo mixture, incubated it in the dark, overnight at 37 oC. The next 

day, we mixed 47 μl of 3 M sodium acetate, pH 5.2, into the solution, and then added 1180 μl of 

100% ethanol and incubated the sample -80 oC for 3 hr to precipitate the oligos. The oligos 

were then spun down and washed twice more by dissolving the pellet in 45 μl of DEPC-treated 

water, 5 μl of 3 M sodium acetate, pH 5.2, and 125 μl of 100% ethanol. After the washing steps, 

the probes were resuspended in 250 μl of 1× TE resulting in a 10× probe stock solution. The 

probe solution was diluted with 1× TE to make the 1× probe solution upon usage, and the 

labelling efficiency of the probes was determined using the NanoDrop to be 99%.         

To detect the mRNA level after infection, non-suppressor strain MG1655 was used as the host 

for infection. The overnight culture MG1655 was diluted 1:1000 into fresh LBMM (LB 

supplemented with 0.2% maltose and 10 mM MgSO4) and grown at 37 oC with shaking at 265 

rpm until OD600 ~0.4. The cells were then collected by centrifugation at 2000 ×g for 15 min and 

re-suspended in 1/10 volume of pre-chilled LBMM. For each sample to be collected, 1 ml of 

concentrated cells were used for infection. An appropriate amount of phages was added to 

reach an API of 0.1-0.2 and mixed well. For the negative control, we added the same volume of 



SM buffer (phage buffer, 100 mM NaCl, 10 mM MgSO4, 0.01% gelatin, 50 mM Tris-Cl, pH 7.5) 

to the sample. We incubated the samples on ice for 30 min to allow phage adsorption, then 

transferred the samples to a 35 oC water bath for 5 min to allow phage DNA ejection. After this 

step, we transferred 750 μl of each sample to 7 ml of pre-warmed LBGM (LB supplemented with 

0.2% glucose and 10 mM MgSO4) and incubated it in a 30 oC water bath with mild shaking at 

225 rpm. As all our phage strains except for λcI- carry the temperature sensitive cI857 allele, 

whose gene product is unstable at 37 oC or above, this infection step is performed at 30 oC for 

all our experiments unless otherwise stated. At each time point, we poured the sample into a 50 

ml tube with 860 μl of 37% formaldehyde (final concentration 3.7%) for quick fixation, and 

incubated the mixture for 30 min at room temperature on a nutator. The samples were then 

treated following protocols described (Skinner et al., 2013). Briefly, after fixation, each sample 

was washed three times with 1× PBS to remove excess formaldehyde. The cells were then 

permeabilized in 70% ethanol for 1 hr at room temperature and spun down subsequently. The 

cell pellet was resuspended in wash solution (40% (wt/vol) formamide, 2× SSC) and incubated 

at room temperature for 5 min and spun down again. For hybridization, the cells were 

resuspended in 25 μl of hybridization solution (40%(wt/vol) formamide, 2× SSC, 1 mg/ml E. coli 

tRNA, 2 mM ribonucleoside-vanadyl complex and 0.2 mg/ml BSA) with each probe at a final 

concentration of 1 μM. Samples were then incubated in a 30 oC water bath for overnight. 

Following that, samples were washed three times by incubating the cells in wash solution for 30 

min in a 30 oC water bath. After the third repeat of washing, 10 μg/ml DAPI was added to the 

wash solution to stain the E. coli and phage DNA. Cells were resuspended in 2× SSC and 

imaged immediately. The detailed microscopy settings can be found in the Microscopy section. 

qPCR for quantifying phage DNA and RNA levels 

Phage infections were set up following the same procedure as for RNA smFISH but with 0.5× 

volume. At each time point, samples were taken and prepared for qRT-PCR to detect the cI and 

cII mRNA levels following our previously established protocols (Shao et al., 2017). Briefly, at each 

time point, samples were immediately poured into 5 ml ice-cold methanol. Samples were then 

spun down at 4000×g for 4 minutes, at 4 oC. The cell pellet was resuspended in 1 ml of RNA 

protect Bacteria Reagent (Qiagen, 76506), followed by incubation for 5 minutes at room 

temperature. Afterwards, the cells were spun down at 5000×g for 5 minutes at room temperature. 

After discarding the supernatant, the cells were kept at -20 oC until all samples were collected. 

RNA extraction was done using the RNeasy Mini Kit (Qiagen, 74104), followed by DNA digestion 

with the TURBO DNA-free kit (Ambion, AM1907) for a total of 80 minutes. Reverse transcription 



was then performed using the High Capacity RNA-to-cDNA kit (Applied Biosystems, 4387406). 

The resulting cDNA was then quantified using the SYBR Green PCR master mix. The ihfB mRNA 

was used as a reference gene to allow the comparison of cI and cII mRNA levels over time. To 

detect the phage DNA number, the samples were taken following the similar procedures as for 

qRT-PCR. After the cold-methanol step, the samples were frozen and we extracted DNA at this 

step using the UltraClean Microbial DNA Isolation Kit (MO BIO Laboratories, #12224-50). The 

DNAs were then diluted and used for qPCR using primers targeting the phage genome. The E. 

coli DNA number was used as a reference using primers targeting the dxs gene (Lee et al., 2006). 

Microscopy 

To image the smFISH samples, after the suspension of the cells in 2×SSC, 1 μl of the sample is 

placed on a cover slip and topped with a piece of 1.5% agarose pad (prepared with 1×PBS). 

The sample was then imaged immediately on an inverted microscope (Ti-E, Nikon, Tokyo, 

Japan). Images were taken using 100× objective (Plan Fluo, NA 1.40, oil immersion) with 

standard filter sets and a cooled EMCCD camera (iXon 3 897, Andor, Belfast, United Kingdom). 

A series of 5 z-stack images with spacing of 300 nm in the Cy5 (for cII, 200 ms exposure, Cy5 

filter, Nikon 96366), and TAMRA (for cI, 200 ms exposure, Cy3 filter, Nikon 96323) channels 

were taken, while one image was taken at the focal plan for the phase contrast (100 ms 

exposure) and DAPI (30 ms exposure, DAPI filter, Nikon 96310) channels. 

The real-time live-cell imaging of the double reporter λWT and λP- phage infection are 

performed as described (Trinh et al., 2017). Briefly, overnight MG1655 cells grown in M9M (M9 

supplemented with 0.4% maltose) were diluted 1:100 into fresh M9M medium and grown to 

OD600~0.4. The cells were then harvested and concentrated by 10 fold by resuspending in 1/10 

volume of M9M. The cells were then infected with phages at different APIs, following an 

incubation on ice for 30 min, and 5 min in a 35 oC water bath. The cells were then diluted and 

placed on a coverslip, and topped with 1.5% agarose pad made with M9M.  To observe the 

phages infecting each cell at the beginning of the infection, a series of 9 z-stack images with 

spacing of 300 nm in the mTurquoise2 channel (200 ms exposure, CFP filter, Nikon 96361) 

were taken, while images were also taken at the focal plane in the phase contrast (100 ms 

exposure) and the mKO2 channel (100 ms exposure, custom filter, Chroma 49309). After that, 

time-lapse movies were set up without z-stacks to track the progression of phage infection by 

imaging every 5 min in the phase contrast (100 ms exposure), mTurquoise2 (40 ms exposure) 

and mKO2 (100 ms exposure) channels, for a total length of 4 hrs.  



The real-time live-cell imaging of the EYFP labeled λWT and λP- phages were done following 

protocols as described in (Zeng and Golding, 2011). Briefly, overnight MG1655[pRE-mCherry] 

cells grown in LBMM were diluted 1:1000 into fresh LBMM medium until OD600~0.4. The cells 

were then harvested by centrifugation and resuspended in 1/10 volume of fresh LBMM. The 

infections were done following the same protocols, and the samples were imaged using a 1.5% 

agarose pad made with LBM (LB supplemented with 10 mM MgSO4) (Zeng and Golding, 2011). 

To observe the phages infecting each cell at the beginning of the infection, a series of 9 z-stack 

images with spacing of 300 nm in the YFP (400 ms exposure, YFP filter, Nikon 96363) were 

taken, while images were also taken at the focal plane in the phase contrast (100 ms exposure) 

and the mCherry channel (100 ms exposure, TexasRed filter, Nikon 96365). After that, time-

lapse movies were set up to track the progression of phage infection by taking images every 5 

min in the phase contrast (100 ms exposure), YFP (100 ms exposure) and mCherry (100 ms 

exposure) channels, for a total length of 4 hrs. 

mRNA number quantification 

Microscope images were first processed using Schnitzcells, which recognizes and segments 

individual cells. The total cell fluorescence intensity was calculated by summing the intensities 

within the cell boundaries and subtracting the background fluorescence. The average intensity 

of the cell was calculated by dividing the total intensity by the cell size. At 0 min after infection, a 

small subpopulation of cells displayed a low level of cII mRNA expression, typically as a single 

focus, distinct from the negative samples, which lack phage infection. Because cII mRNA forms 

clusters under our experimental conditions, those single foci may correspond to either a single 

mRNA or multiple mRNAs clustered together. The total fluorescence intensities of those cells 

and the cells from the negative samples were fitted into multi-Gaussian functions (Figure S3), 

and the differences between them are designated as the intensity for a single cII mRNA. The 

same calculation method was applied to calculate the single mRNA intensity of cI, where the 

cells with low expression of cI, typically at 6 min, were used. Once the single mRNA intensity 

was obtained, the number of mRNA in each cell was calculated by (T-m*S)/A, where T is the 

total intensity of the cell, m is the median of the average intensity of the cells from the negative 

sample, S is the size of the cell, and A is the intensity of one mRNA calculated as described 

above.   

  



Mathematical and Computational Models 

To understand why cII mRNA expression is insensitive to DNA replication, we developed two 

models at different levels of detail. The major difference between the two models is in how the 

regulation of transcription was modeled. In the simple model, we assumed that the total regulation 

of viral promoters by transcription factor levels could be described by a general Hill function with 

Hill-parameters determined by fitting to the data. Alternatively, in the detailed model we explicitly 

simulated the on and off binding of transcription factors to the operator sites of the viral promoters 

to regulate transcription. Both modeling approaches led to consistent results, and are described 

in the following sections.  

The Simple Stochastic Model 

Results from this model are shown in the main text. The model uses Hill functions to describe 

the response of promoters to the transcription factors instead of explicitly simulating the on/off 

binding of transcription factors, and it is therefore referred to as the simple model. The model 

schematic is shown in Figure S6, the reactions are summarized in Table S6 and the rate 

constants are summarized in Table S7.Overall, our model is heavily based on prior models of 

the phage lambda gene regulatory network (Joh and Weitz, 2011; Robb and Shahrezaei, 2014; 

Weitz et al., 2008), and is most similar to the model in (Cortes et al., 2017). This model is 

simulated using the Gillespie Algorithm (Gillespie, 1976, 2007). To avoid repeating the details of 

other works, the reader is directed to the relevant references where these modeling approaches 

were more explicitly described. Nevertheless, we discuss the major features of the model below.  

Transcription reactions 

The general form of transcription reactions is as follows: 

transcription	rate = 𝑘 ⋅ 𝛼 ⋅ 𝐷 

Where 𝐷 is the number of the transcribing promoters (equal to the number of DNA molecules 

since we have 1 promoter of each type per DNA molecule), 𝛼 describes the activity of the 

promoters, and 𝑘 is a proportionality constant. Next, we will describe the transcription of various 

mRNAs in more detail.  

cI mRNA is transcribed from both the pRE and pRM promoters. Transcription of cI mRNA from 

the pRE promoter depends on the promoter being activated by CII. Thus, we take the activation 

𝛼V23 of pRE to be a Hill function which increases from 0 to 1 as the concentration of CII 



increases. Essentially, we are phenomenologically modeling CII activation of pRE according to 

the following equation: 

𝛼V23 =
𝜅-..[𝐶𝐼𝐼]9:;;

1 + 𝜅-..[𝐶𝐼𝐼]9:;;
 

Where [⋅] denotes the level of CII. The variables 𝜅-.. and 𝑛-..  parameterize this function and 

were determined by fitting to experimental data. The proportionality constant from the general 

form of transcription reactions here is 𝑘23 . Thus, the final reaction rate describing transcription 

of cI mRNA from pRE is 𝑘23𝛼V23𝐷. The major advantage of this phenomenological approach is 

that it makes few assumptions about the underlying mechanistic details while still capturing the 

general behavior of transcription from this promoter.  

cI mRNA can also be expressed from promoter pRM which is regulated by both CI and Cro.  

There are 3 operator sites located between the pRM and pR promoters. CI and Cro dimers are 

known to compete and bind to these operators to regulate the transcriptional activity of both 

pRM and pR. Depending on the binding configuration of CI and Cro, pRM will either be 

repressed or activated, similarly for pR. This turns out to be consistent with recent published 

models (Cortes et al., 2017; Joh and Weitz, 2011; Robb and Shahrezaei, 2014; Weitz et al., 

2008), which treat the operator region as one single binding site to which CI and Cro 

competitively bind. This results in a mixed-Hill function formula which describes the activity of 

the pRM and pR promoters. The formula we use for the activation of pRM is: 

𝛼V2@ =
𝜅-.[𝐶𝐼]9:;

1 + 𝜅-.[𝐶𝐼]9:; + 𝜅-[\[𝐶𝑟𝑜]9:DE
 

This formula captures the fact that cI transcription increases as the concentration of CI 

increases and decreases as Cro concentration decreases. The variables 𝑛-., 𝑛-[\ , 𝜅-., 𝜅-[\ 

parameterize the activation function and are determined by fitting to experimental data. At very 

high CI levels, expression from pRM actually drops because CI binds to the oR3 operator and 

blocks RNA polymerase from pRM. This feature is neglected in this simple model, but it is 

present in the more detailed model presented later on.  

cII mRNA is transcribed from the pR promoter when pR is not bound by Cro or CI. Therefore, 

the activation/repression factor for cII transcription is: 

𝛼V2 =
1

1 + 𝜅-.[𝐶𝐼]9:; + 𝜅-[\[𝐶𝑟𝑜]9:DE
 



This formula captures the fact that high concentrations of either CI or Cro (or both) will lead to 

decrease of pR transcription activity. 

In this model there are 3 important Hill coefficients, namely, 𝑛-.. , 𝑛-.,	and 𝑛-[\, which determine 

the response of transcription rates to the concentrations of viral transcription factors CII, CI, and 

Cro, respectively. Initial parameter optimizations of this model lead to arbitrarily high Hill 

coefficients when fitting to the experimental data (e.g. the value of 𝑛-[\ returned from the 

optimization protocol can be as high as 7). This was likely due to the fact that the insensitivity of 

cII mRNA levels to viral replication are strongly determined by the magnitude of the Hill 

coefficients, since the Hill coefficient 𝑛-[\ controls the strength of Cro repression. As arbitrarily 

large Hill coefficients are unrealistic, we constrained the Hill coefficients to have a maximum 

possible value of 4 during the parameter optimization. The reason for choosing a maximum 

value of 4 is given below.  

Consider the general case of a transcription-factor 𝑋 (of concentration 𝑥) which forms an 𝑛-

multimer (of concentration 𝑥9) to bind the operator region of a promoter. The dynamics which 

govern this system is described by the following set of equations: 

𝑥̇ = −𝛾\9𝑥9 + 𝛾\��𝑥9 

𝑥9̇ = 𝛾\9𝑥9 − 𝛾\��𝑥9 − 𝛿\9𝑥9𝐷` + 𝛿\��𝐷¦ 

𝐷`̇ = −𝛿\9𝑥9𝐷` + 𝛿\��𝐷¦ 

𝐷¦̇ = 𝛿\9𝑥9𝐷` − 𝛿\��𝐷¦ 

The variables 𝐷` and 𝐷¦ denote the unbound and bound states of the promoter. The rate 

constants 𝛾\9 and 𝛾\��  describe the on/off multimerization rates of 𝑋, and the constants 𝛿\9 and 

𝛿\�� describe the on/off DNA-transcription factor binding rates. Since these reactions equilibrate 

on the order of seconds and transcription occurs on the timescale of several minutes, we can 

examine this system at steady state. Thus, we set all derivatives to 0 and solve for the fraction 

of DNA in the bound state given by 𝑓¦ = 𝐷¦/(𝐷¦ + 𝐷`).  

 

𝑓¦ =
𝐷¦

𝐷` + 𝐷¦
=

𝛿\9𝛾\9
𝛿\��𝛾\��

𝑥9

1 + 𝛿\9𝛾\9
𝛿\��𝛾\��

𝑥9
 

 

(1) 

The fraction of promoter in the unbound state is simply given by 1 − 𝑓¦: 



 (1 − 𝑓¦) =
1

1 + 𝛿\9𝛾\9
𝛿\��𝛾\��

𝑥9
 

 

(2) 

In the case of pRE, we know that in equation 1 the value of  𝑛 = 4 since CII forms a tetramer. 

Past models have simulated CII as forming both dimers and tetramers, and showed that activity 

of pRE in the concentration of CII can be described by a Hill function with a Hill coefficient of 2 

or 4 (Hoopes and McClure, 1985; Jain et al., 2005; Robb and Shahrezaei, 2014; Weitz et al., 

2008). Therefore we constrained the Hill coefficient of pRE-CII to be 2 ≤ 𝑛 ≤ 4 

In the case of transcription from pR, the binding of CI and Cro is complicated. If we first focus on 

only Cro binding to oR1, then the fraction of oR1 in the unbound state is given by equation (2) 

with 𝑛 = 2 since Cro forms dimers. Similarly, the fraction of oR2 in the unbound state would also 

be given by equation (2) with 𝑛 = 2. Thus, the total fraction of DNA which has both oR2 and 

oR1 in the unbound state is given by (1 − 𝑓¦)? which is the product of the probabilities of both 

sites being unbound: 

 (1 − 𝑓¦)? =
1

51 + 𝛿\9𝛾\9
𝛿\��𝛾\��

𝑥?=
? =

1

1 + 2 𝛿\9𝛾\9
𝛿\��𝛾\��

𝑥? + 5 𝛿\9𝛾\9𝛿\��𝛾\��
=
?
𝑥M

 

 

(3) 

We can set 𝐿? = 𝛿\��𝛾\��/𝛿\9𝛾\9 and rewrite this expression as: 

 1

1 + 2 𝛿\9𝛾\9
𝛿\��𝛾\��

𝑥? + 5 𝛿\9𝛾\9𝛿\��𝛾\��
=
?
𝑥M

=
1

1 + 2m𝑥𝐿p
?
+ m𝑥𝐿p

M 
(4) 

If the concentration of Cro is very large, then 𝑥 ≫ 𝐿, which means the factor (𝑥/𝐿)�? ≈ 0 and 

therefore: 

For high Cro 

levels 

 

(1 − 𝑓¦)? =
/

/®?m¯°p
>
®m¯°p

L =
/

/®m¯°p
L
±?m¯°p

²>
®/³

≈ /

/®m¯°p
L     (5) 

If the concentration of Cro is low, then 𝑥 ≪ 𝐿 which means the factor (𝑥/𝐿)M ≈ 0 and therefore: 

For low Cro 

levels 

 

(1 − 𝑓¦)? =
/

/®?m¯°p
>
®m¯°p

L ≈
/

/®?m¯°p
> =

/

/®m ¯
°/√>

p
>    (6) 



Since pR transcription happens when both oR1 and oR2 are unoccupied, the overall response 

of pR transcription to Cro concentration can be described as being proportional to (1 − 𝑓¦)?	 

which is a decreasing Hill function. In the case of low Cro levels the Hill coefficient is 

approximately 2 (see equation 6), and in the case of high Cro levels the Hill coefficient is 

approximately 4 (see equation 5). Therefore, we searched the 𝑛-[\ 	parameter between 2 and 4 

during the optimization procedure when fitting to experimental data.  

Since CI also binds as a dimer to the same operator sites, we also assumed the 𝑛-. parameter 

to be between 2 and 4. CI dimers binding to adjacent operator sites actually do have some 

cooperativity, so the expected value of 𝑛-. would be larger than 𝑛-[\, but to keep things simple 

we simply searched both 𝑛-. and 𝑛-[\ between the values 2 and 4. Overall, we showed that this 

range allows our model to reproduce the data.  

DNA replication reactions 

Our experimental data showed that DNA replication is exponential, and also showed that when 

Cro is functional (λWT) the replication rate is higher compared to when Cro is nonfunctional 

(λcro-) (Figure 3C). The mechanism behind this phenomenon is not fully understood, and we do 

not attempt to model it explicitly. Therefore, the replication rate constant 𝑟 in our model takes on 

two unique values, 𝑟�[\ and 𝑟 , for λWT and λcro-, respectively. Note that 𝑟�[\ > 𝑟  to be 

consistent with experimental observations. In cases of high CI concentration (i.e., during 

lysogenic development), phage DNA replication stops. To capture this phenomenon, we 

assume the total replication reaction rate to be: 

DNA	replication	rate =

⎩
⎪
⎨

⎪
⎧𝑟 ⋅ 𝐷 ⋅

1
1 + (𝜅-.hJK[𝐶𝐼])9jkl

, if	Cro	is	nonfunctional

𝑟�[\ ⋅ 𝐷 ⋅
1

1 + (𝜅-.hJK[𝐶𝐼])9jkl
,				if	Cro	is	functional

 

The parameters 𝑟 , 𝑟�[\, 𝑛hJK, 𝜅-.hJK parameterize viral DNA replication and are determined by 

fitting to experimental data.  

We also noted that DNA replication does not occur immediately after infection, but only begins 

after about 5 mins post-infection. We included this in the model as well by assuming the onset 

of DNA replication occurs at a time 𝑇 ≤ 5 mins which was fit to the experimental data during the 

optimization procedure. More specifically, we modeled the onset of DNA replication by allowing 

the DNA replication rate constant to increase from 0 up to its maximum value according to the 

following Hill function.  



𝑟 =
1

1 + m𝑡𝑇p
9q 

𝑟�[\ =
1

1 + m𝑡𝑇p
9q 

This was also done for the detailed model.  

Translation reactions 

Translation of CI, Cro, and CII proteins are modeled as being proportional to the total amount of 

their respective transcripts. For protein 𝑋, the translation rate is given by 𝜎º ⋅ 𝑚º where 𝜎º is the 

translation rate per unit time and 𝑚º is the number of mRNAs which can produce 𝑋. 

Degradation reactions 

All mRNAs and proteins degrade with reaction rates being proportional to their total amount. For 

molecule 𝑋, the degradation rate is given by 𝑑º ⋅ 𝑁º where 𝑑º is the degradation rate of 𝑋 per 

unit time and 𝑁º is the number of 𝑋 molecules. This applies to all RNAs and proteins, but not to 

DNA. We assume that DNAs are stable and cannot be degraded.  

Lysogenic decisions 

We have another parameter called 𝐶𝐼�	which is defined as the threshold concentration for CI 

above which the simulation is marked as lysogenic. Otherwise, if CI levels remain below this 

threshold during the entire simulation we mark the decision outcome as lysis. This parameter 

was determined by fitting to a 30% probability of lysogeny at MOI = 1.  

The Detailed Stochastic Model 

Model assumptions 

The reactions in the detailed model were identical to those in the simpler model except we 

removed the Hill functions and instead explicitly simulated i) CI and Cro dimers binding to the 

three oR operator sites (oR1, oR2, and oR3) to regulate pRM and pR transcription and ii) CII 

tetramers binding to the pRE promoter to activate pRE transcription. Thus, this model did not 

use Hill functions to describe transcriptional responses to transcription-factor levels. Specifically, 

we modeled CI and Cro dimerization, as well as the on/off binding of CI and Cro dimers to each 

of the 3 operator sites in the oR region. This binding complexity leads to a model with a total of 

130 reactions (The major reactions and parameters can be found in Table S8 and S9, 



respectively). In theory, the rate constant for each reaction is unique since the affinities of CI 

and Cro to each of the oR operator sites are unique and depend on the current bound state of 

adjacent operator sites. This implies that the total number of free parameters in this system 

could reach 130. To reduce the number of free parameters, we assumed the binding rates 

between DNA and CI/Cro dimers to be the same, and we did the same for the unbinding rates. 

This results in a model with 29 free parameters which we determined by fitting to the data. While 

some of these parameters have been estimated in the literature, we noted that model 

parameters can change when experimental conditions change. Therefore, recalibration of model 

parameters is necessary and we perform such a calibration using an optimization protocol 

(discussed later on).  

In the detailed model, we also assumed that i) pR transcription is 0 when CI or Cro dimers are 

bound to either oR2 or oR1 ii) pRM transcription occurs only if oR3 is free and oR2 is bound by 

CI dimer iii) DNA replication stops if oR1 and oR2 are bound by CI dimers (which would 

promote DNA looping to block DNA replication as occurs in the lysogenic pathway).  

Initial simulations of this detailed molecular model reproduced the cII mRNA data at early time 

points (0 - 24 mins which is the decision time window) very well. Moreover, we confirmed that 

Cro, but not CI, is required for the cII expression robustness to DNA replication by making 

computational mutants of Cro and CI. 

While we focused on the decision time window to examine the effects of DNA replication on 

gene expression, we extended our simulation for longer to check the expression of cII at later 

time points, and some interesting phenomena were observed. Under the model assumptions, 

we find that, at 30 min and 40 min, the predicted cII mRNA level increases drastically while 

experiments showed that cII mRNA level remain almost constant at the late time points (Figure 

3A).  

In the simulation, we treated every copy of DNA equally and expression from every DNA is 

possible, but in reality, some DNA at the late stage might not be able to express genes. In the 

early stage, DNA replication happens in the theta mode, which produces circular DNA. Later, 

replication switches into sigma mode, where long concatemeric DNAs are produced, and those 

DNAs are later packaged into phage capsids to produce phage progeny. We do not know 

whether the form of DNA (circular vs linear, concatemeric DNA) would be expressed the same. 

Moreover, at the later time points, some DNAs start to be packaged into phage capsids, and this 

process can also reduce the effective transcription rate per DNA.  



Alternatively, it is possible that when DNA copy counts are high, host resources required for 

gene expression might be limited, therefore causing the effective transcription rate to decrease. 

In fact, it has been reported that the transcription rate per DNA drops when high copies of 

exogenous gene circuits are introduced into the cells simply because there are limited requisite 

host factors available (Qian et al., 2017; Shopera et al., 2017). Specifically for phage lambda, 

past work has demonstrated that phage infections reduce host cell transcription and translation 

(Howes, 1965; Liu et al., 2013; Terzi and Levinthal, 1967).  

In summary, we believe that at the late stage of phage infection, transcription rate per DNA is 

likely to change due to various factors discussed, and the lack of those factors in our model can 

lead to the increased cII expression level that was predicted at late time points.  

Detailed model with modified transcription rate 

To account for the aforementioned factors that can affect gene expression at the late stage of 

infection, we assumed that the baseline transcription rates (e.g. transcription rate per promoter) 

were inversely proportional to the number of phage DNA (a detailed derivation of this 

relationship can be found in the following section). Specifically, we multiplied the original 

transcription rates by a factor 1/(1 + 𝜀𝐷). For example, if the transcription rate per gene is 𝑘`, 

then the modified (effective) transcription rate 𝑘»�� per DNA is calculated as follows: 

 𝑘»�� =
𝑘`

1 + 𝜀𝐷
 (7) 

 

Here, 𝜀 is a constant and 𝜀 > 0 such that overall transcription per DNA is down regulated as D 

increases. Note that this modification (equation 7) is consistent with either of our hypothesized 

reasons previously described, namely that either i) late DNAs are not transcribable or ii) there is 

competition for host-factors required for transcription initiation.  

Including this modification of transcription rate allows the model predictions to match the 

experimental measurements better, especially for cII expression at 30 and 40 min (Figure S7A). 

Based on this new modified model, we examined the dependence of cII expression robustness 

on Cro and CI by removing them one at a time from the simulation. We observed the same 

phenomenon as in the existing model, and show that removing Cro abrogates the cII expression 

robustness (Figure S7B).   



Derivation of the dependence of transcription rate on DNA copy number when host resource is 

limited 

To examine how effective transcription rates per promoter can be affected by DNA copy 

numbers, we compared two simple models of transcription. The first model (model A, equations 

1A and 2A) simulates transcription occurring without the requirement of host factors, whereas 

the second model (model B, equations 3B – 5B) simulates transcription occurring only after a 

host transcription-factor binds to the promoter region.  

Model A  
(no requirement for host transcription factors) 

 
 𝐷

½]→ 𝐷 + 𝑥 1A 

 

 

 𝑥
¾¯_̂ 𝜙 2A 

 

Model B  
(transcription requires host factors) 

 
 

𝑇 + 𝐷`
𝛾\9
⇄
𝛾\��

𝐷� 
1B 

 

 𝐷�
½]→ 𝐷� + 𝑥 2B 

 

 

 𝑥
¾¯_̂ 𝜙 3B 

 

    

In model A, 𝐷 is the total DNA copy count, 𝑥 is the mRNA of gene 𝑋, 𝑘` is the transcription rate 

per promoter, and 𝑑¦ is the degradation rate of the mRNA. The rate-law describing the 

dynamics of mRNA for model A is given by: 

 𝑥̇ = 𝑘`𝐷 − 𝑑¦𝑥 (8) 

Thus, the transcription rate per DNA for model A is 𝑘`. 

In model B, 𝐷 is again the total DNA copy count, 𝐷` is the number of DNAs not bound by host-

factor, and 𝐷� is the number of DNAs bound by host-factor (thus 𝐷 = 𝐷` + 𝐷�). Similarly, the 

variable 𝑇 is the total number of host-factors in the cell, 𝑇  is the number of host-factors in the 

unbound state, and 𝑇3  is the number of host-factors bound to the promoter regions of all other 

transcribable genes on the host’s genome and viral DNAs (thus 𝑇 = 𝑇 + 𝐷� + 𝑇3). Since the 

number of other transcribable genes (not including gene 𝑋) in the cell is high, we expect the 

fraction 𝛿 = 𝑇3/𝑇 to be relatively large.  



For model B, the constants 𝛾\9 and 𝛾\��  are the host-factor on/off binding rates for the DNA 

promoter region. The constant 𝑘` is the transcription rate per host-factor-bound DNA, and 𝑑¦ is 

the degradation rate of the mRNA. The rate-law describing the dynamics of mRNA for model B 

is given by: 

 𝑥̇ = 𝑘`𝐷� − 𝑑¦𝑥 (9) 

We can rewrite this in terms of the total DNA copy count 𝐷 by writing: 

𝐷� = 5
𝐷�
𝐷
= ⋅ 𝐷 = 𝑓� ⋅ 𝐷 

Here 𝑓� is just fraction of DNA promoters bound by host factors. We then plug this expression 

into equation 9 to get equation 10.  

 𝑥̇ = 𝑘`𝑓�𝐷 − 𝑑¦𝑥 (10) 

Thus, the new effective transcription rate per DNA promoter for model B is given by 𝑘»�� = 𝑘`𝑓�. 

In order to compare the transcription rate per DNA promoter for model A and B, we first 

calculated 𝑓�.  

Since protein-DNA binding is fast (on the order of seconds) compared to the timescale of 

transcription (on the order of several minutes), we can assume reaction 1B is at equilibrium. 

This implies that 𝛾\9𝑇 𝐷` = 𝛾\��𝐷�. Since 𝐷 = 𝐷` + 𝐷� and 𝑇 = 𝑇 + 𝐷� + 𝑇3  we can rewrite this 

as equation 5 using the variable 𝛿 = 𝑇3/𝑇. Note that we can rewrite the total host-factor level as 

𝑇(1 − 𝛿) = 𝑇 + 𝐷� using the relation 𝛿 = 𝑇3/𝑇, and the quantity 𝑇(1 − 𝛿) is just the total 

amount of host-factor available for binding to the promoter region of gene 𝑋.  

 𝛾\9(𝑇(1 − 𝛿) − 𝐷�)(𝐷 − 𝐷�) = 𝛾\��𝐷� (11) 

We can multiply out the terms to arrive at a quadratic equation for 𝐷�: 

 𝑇(1 − 𝛿)𝐷 − 𝐷� 5𝑇(1 − 𝛿) + 𝐷 +
𝛾\��
𝛾\9

= + 𝐷�? = 0 (12) 

We can solve equation 12 for 𝐷� using the quadratic formula. 

 

𝐷� =
1
2
5𝑇(1 − 𝛿) + 𝐷 +

𝛾\��
𝛾\9

= ⋅

⎣
⎢
⎢
⎢
⎡
1 ± Ã1 −

4𝐷𝑇(1 − 𝛿)

m𝑇(1 − 𝛿) + 𝐷 +
𝛾\��
𝛾\9

p
?

⎦
⎥
⎥
⎥
⎤
 

 

(13) 



Notice that there are two solutions for the quadratic equation as shown in equation 6. Since we 

know that 𝐷� ≤ 𝐷 and 𝐷� ≤ 𝑇(1 − 𝛿), only one solution is plausible and therefore, the final 

expression for 𝐷� is given by equation 14.  

 

𝐷� =
1
2
5𝑇(1 − 𝛿) + 𝐷 +

𝛾\��
𝛾\9

= ⋅

⎣
⎢
⎢
⎢
⎡
1 − Ã1 −

4𝐷𝑇(1 − 𝛿)

m𝑇(1 − 𝛿) + 𝐷 +
𝛾\��
𝛾\9

p
?

⎦
⎥
⎥
⎥
⎤
 

 

(14) 

Finally, we calculate 𝑓� = 𝐷�/𝐷 as in equation 15 (after some rewriting).  

 

𝑓� =
1
2
5
𝑇(1 − 𝛿)

𝐷
+ 1 +

1
𝐷
⋅
𝛾\��
𝛾\9

= ⋅

⎣
⎢
⎢
⎢
⎡
1 − Ã1 −

𝑇(1 − 𝛿)
𝐷

⋅
4

5𝑇(1 − 𝛿)𝐷 + 1 +
𝛾\��
𝐷𝛾\9

=
?

⎦
⎥
⎥
⎥
⎤
 

 

(15) 

 𝑓� ≤
1
2
5
𝑇
𝐷
+ 1 +

1
𝐷
⋅
𝛾\��
𝛾\9

= (16) 

From equation 16 we see that as 𝐷 increases the max possible value of 𝑓� decreases in 

general. If the amount of host-factor available per gene 𝑋 is small, then the quantity 𝑧 = 𝑇(1 −

𝛿)/𝐷 is small and we can perform a power series expansion in 𝑧 to determine that 𝑓� is 

approximated by equation 17 with 𝜀 = 𝛾\9/𝛾\��: 

 
𝑓� ≈

𝑇(1 − 𝛿)𝜀
1 + 𝜀 ⋅ 𝐷

∝
1

1 + 𝜀𝐷
 

(17) 

Therefore, equations 16 and 17 tell us that the effective transcription rate depends inversely on 

DNA copy number. This has the following dependence in general, consistent with equation 7, 

which we initially proposed: 

 𝑘»�� = 𝑘`𝑓� ∝ 𝑘`
1

1 + 𝜀𝐷
 (18) 

Fold Change formula 

We performed a fold-change calculation which serves as a metric to quantify the sensitivity of 

mRNA levels to the rate of viral DNA replication. The fold change 𝐹(𝜀, 𝑡) is defined as the ratio 

between i) RNA levels at time 𝑡 when the replication rate equals a fraction 𝜀 of its wild-type 

value and ii) RNA levels at time 𝑡 when the replication rate equals its wild-type value. 

Mathematically, the formula is: 



𝐹(𝜀, 𝑡) =
𝑅𝑁𝐴Ê𝑡, 𝑟 = 𝜀 ⋅ 𝑟\VËÌ
𝑅𝑁𝐴Ê𝑡, 𝑟 = 𝑟\VËÌ

 

Here 𝑟\VË is the replication rate determined by parameter optimization. We then calculated the 

time-average of 〈𝐹(𝜀, 𝑡)〉, over all time points (6, 12, 18, 24, 30 and 40 minutes) to indicate the 

sensitivity of RNA levels to different replication rates.  

Parameter Optimization: 

The free parameters of this model were determined by fitting to the smFISH data of the λWT 

and λP- strains, as well as the average DNA levels over time obtained by qPCR. To optimize the 

parameters, we defined the cost function as the sum of squared deviations between the model 

prediction and the experimental data, shown as below: 

𝐶(𝒙) = Ï(𝑀½(𝒙) − 𝜀½)?
9

½Ð/

 

Here, 𝒙 = (𝑥/, 𝑥?, … , 𝑥9) is a vector containing the free parameters 𝑥½ (24 parameters for the 

simple model and 29 parameters for the detailed model). 𝜀½ is the 𝑘ËÒ experimental data point, 

and 𝑀½(𝒙) is the corresponding prediction from the model. 

To minimize this cost function, we applied various optimization algorithms including genetic 

algorithms, particle swarm algorithms, and downhill simplex algorithms. For the purpose of 

optimizing a stochastic simulation (as is our case), we found that using a random-walk downhill 

optimization protocol worked best and yielded an optimal solution much faster than the other 

methods. This random-walk downhill optimization method is described below: 

1. Randomly initialize a parameter vector 𝒙, and calculate the cost function 𝐶(𝒙).  

2. Randomly perturb each element of the parameter vector 𝑥½ ∈ 𝒙 by generating a random 

number 𝑟 ∈ (0,1) and setting 𝑥½ ≔ 𝑥½ ⋅ Ê1 − 𝑝 ⋅ 𝑟 + 𝑝 ⋅ (1 − 𝑟)Ì, where 𝑝 is the “percent-

search”, e.g., if 𝑝 = 0.05 then we scale 𝑥½ up by at most 5% or scale 𝑥½ down by at most 

5% in each step. We generate a different random number 𝑟 ∈ (0,1) for each parameter 

𝑥½ in 𝒙. This then defines a new parameter vector 𝒙′. Score the new parameter vector by 

calculating 𝐶(𝒙×).  

3. If 𝐶(𝒙×) < 𝐶(𝒙), then we move from 𝒙 to the new point 𝒙′ by setting 𝒙 ≔ 𝒙′. Otherwise, 

we do not move to 𝒙′ and instead go back to step 2. If we repeatedly go back to step 2 

too many times (e.g. higher than some threshold	𝑁Ë[ÙÚÛÜ = 100), we repeat step 2 but 



using a higher 𝑝 value (e.g. 𝑝 = 0.3) to generate an 𝒙′ and accept the move even if 𝐶(𝒙×) 

is not less than 𝐶(𝒙). This allows the algorithm to avoid getting stuck in local minima. 

4. Terminate the search process if the cost function has been minimized to a desired level. 

This algorithm has several advantages compared to the alternative ones mentioned above. It is 

faster since other algorithms require that the cost function to be calculated many more times per 

iteration (typically as many times as the number of parameters) before a downhill move is 

accepted. This method is also robust to incompletely converged cost function calculations. That 

is, the model’s predictions are sample averages from the stochastic simulation. If we want 

convergent predictions, we must repeatedly run the model thousands or hundreds of thousands 

of times which slows down the optimization protocol. Ideally, we would want the model’s output 

to be converged within some very small tolerance level, but this is time consuming. It appears 

that this method still works even if the model’s output is not completely converged, which means 

we can reduce the number of times we must run the stochastic simulation and find minima 

faster.  
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